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Subatomic mechanism of the oscillatory magnetoresistance in superconductors
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In the recent experiments [1] the unusual oscillatory magnetoresistance in superconductors was discovered with a periodicity essentially
independent on magnetic field direction and even material parameters. The nearly universal period points to a subatomic mechanism of
the phenomenon. This mechanism is related to formation inside samples of subatomically thin (10−11 cm) threads in the form of rings of
approximately Bohr radius. Electron states of rings go over into conduction electrons which carry the same spin imbalance in energy as rings.
The imbalance occurs due to spin interaction with the orbital momentum of the ring. The conductivity nearTc is determined by fluctuating
Cooper pairs consisting of electrons with shifted energies. Due to different angular momenta of rings these energies periodically depend on
magnetic field resulting in the observed oscillatory magnetoresistance. Calculated universal positions of peaks(n+1/2)∆H (∆H ' 0.18T

andn = 0, 1, 2...) on theR(H) curve are in a good agreement with measurements.
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1. Introduction

In normal metals there are well known Shubnikov-de Haas
oscillations of resistance in a high magnetic field [2]. In
superconductors oscillations of magnetoresistance also oc-
cur and they do not require such high magnetic fields. The
scale of oscillations in many cases is related to the magnetic
flux quantumΦ0 = πc~/e. Oscillations in magnetic field
in superconductors has a long history [3–26]. Oscillations
can occur in Josephson junctions, as Little and Parks effect,
due to variation of number of phase slips centers and lines,
in layered and granular superconductors, due to artificial ge-
ometrical restrictions, etc.

Every oscillation effect in superconductors has clear and
well studied background. At first sight, unlikely another os-
cillation phenomenon may exist whose mechanism is mys-
terious, that is outside the circle of known effects. Nev-
ertheless the unusual oscillating magnetoresistance, experi-
mentally observed in [1], stays well apart. Its underlying
mechanism cannot be reduced to a combination of known
effects since the periodic positions ofR(H) peaks are uni-
versal, that is material independent. In layered compounds
observed peak positions are independent on direction of the
magnetic field.

The observed properties are compatible with a subatomic
mechanism which controls conduction electrons in a rela-
tively large volume. This would provide material indepen-
dence since subatomic states have no resemblance to atoms
of the solid. Such a construction looks paradoxical for two
reasons: (i) formation mechanism of electron states with sub-
atomic size is unclear and (ii) it is unclear how a subatomi-
cally small state can control conduction electrons responsible
for macroscopic properties.

The mechanism of formation of subatomic states in con-
densed matter is unusual. Under the electron-photon in-
teraction the electron “vibrates” with the mean displace-

ment 〈~u〉 = 0 and the mean squared displacementr2
T =

〈u2〉 where rT ∼ 10−11cm [27–29]. This is the fluctu-
ation spreading in addition to the usual quantum mechan-
ical uncertainty [30]. For example for the harmonic os-
cillator mΩ2R2/2 the total mean squared displacement is
3~/2mΩ + 〈u2〉. In this language the “vibrating” electron
probes various parts of the potential and therefore changes its
energy (Lamb shift) [31].

In quantum mechanics, regardless of a form of the poten-
tial, the electron wave function can be singular along thez
axis asψ ∼ ln r wherer2 = x2 + y2. In this case the kinetic
energy term−~2∇2/2m is singular asδ(~r). To compensate
this singularity in the wave equation the artificialδ(~r) should
be added as a formal potential well. Such singularity source
is absent in reality and therefore the singular state does not
exist even formally.

However the singularity source appears on short dis-
tances,10−16cm, from the singularity line due to the mecha-
nism of electron mass formation [32–34]. Then under the in-
teraction with photons, electron “vibrations” smear the singu-
larity into the thread of the radiusrT along thez axis. Within
the thread the term−~2∇2/2m goes over into~2/mr2

T . As
shown in [35,36], that large kinetic energy is compensated by
the counter-term that can be interpreted as anomalous well
along the thread. This term is formed by the variation in
space of zero point electromagnetic energy on the distance
10−11 cm around the thread.

The resulting state is smooth in space and therefore phys-
ical. It is localized within the thread of the thicknessrT . The
thread is not necessary linear. The subatomically thin thread
can be in the form of a ring of the atomic radius. In a metal
the role of such rings is unusual due to orbital momentalz
of the ring along thez axis perpendicular to the ring plane.
Close to the thread (on the Compton length) relativistic ef-
fects are strong resulting injzjz coupling analogous tojj
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coupling in some atoms. Due to the interaction with pho-
tons, the state of the Fermi energy is split by two ones, with
lz = jz +1/2 andlz = jz − 1/2. This is similar to the Lamb
split in hydrogen atom where, instead ofz component, total
momenta are involved due to spherical symmetry.

Those states, with energy split for opposite spins, con-
tinue from the thread ring to larger distances going over into
conduction electrons ofEF energy. The narrow stiff region
near the thread plays a role of a boundary condition for con-
duction electrons moving in crystal field. This keeps elec-
trons with opposite spins in the volume (on the length of spin-
orbit relaxation) to be separated by discrete Lamb energies.
The driving force for that spin imbalance state is thread rings
distributed in the volume.

The spin imbalance state of conduction electrons, with
discrete energy splits for opposite spins, influences the
Cooper pairing condition in the fluctuation region close toTc.
The fluctuation correction to the resistance of normal metal is
determined by the fluctuation propagators which depend on
energy shifts of different spin states. These energy shifts can
be subsequently turned to zero by the external magnetic field.
Therefore the resultingR(H) dependence becomes oscillat-
ing as in experiments.

Actually the measurements [1] probe the spin imbalance
state in the volume of a metal. In contrast to known mech-
anisms ofR(H) oscillations, the spin imbalance mechanism
does not depend on macroscopic inhomogeneities of samples.

In Sec. 2 usual oscillation are analyzed. In Secs. 3, 4,
and 5 the mechanism of anomalous states is studied. In Sec. 6
spin imbalance states are introduced. In Sec. 7 effects on the
fluctuation region are investigated.

2. Unusual oscillations

In the film with the artificial periodic two-dimensional
structure the oscillatory magnetoresistance is due to effects
generic with Little-Parks phenomenon. See for example [25].
The period ofH oscillations was determined as

∆H =
Φ0

σ
, (1)

whereσ is the unitary cell area of the structure.
An oscillatory behavior of resistance is also possible

when the superconducting sample consists of natural grains
of the typical size

√
σ [16, 22]. In this case the typical dis-

tance between peaks ofR(H) is also determined by the ge-
ometrical condition (1). When the magnetic field is perpen-
dicular to the film surfacewidth × length the areaσ is de-
termined by grain structure on that surface. When the field
is perpendicular to the side surfacewidth × thickness the
correspondingσ is less (a larger∆H) due to the geomet-
rical restriction by the finite thickness. This clear property,
dependence of∆H on ~H direction, was observed in experi-
ments [22].

It is also clear that in a naturally disordered sample grain
sizes cannot be equal resulting in a perfect periodicity of

R(H) with the period (1). Analogously the perfect periodic-
ity is not expected with the same∆H in samples of different
materials and differently manufactured. The two main fea-
tures distinguish the oscillatory magnetoresistance observed
in [1]: independence of∆H on ~H direction and indepen-
dence of∆H on sample choice.

2.1. Independence of∆H on ~H direction

In experiments [1] the distance∆H between maxima of
R(H) is constant with the accuracy of5%. In addition,∆H
is the same for all~H directions. This points to a differ-
ent mechanism of the oscillations of magnetoresistance com-
pared to the geometrical origin (1). Indeed, films thickness
in [1] is smaller than

√
σ and therefore projections of grain ar-

eas to the side surface and upper one cannot be equal. There-
fore the nature of magnetoresistance oscillations in that case
is not of geometrical origin (1), as in Refs. [16, 22, 25], but
qualitatively different.

2.2. Independence of∆H on sample choice

∆H was revealed to be equal forSr1−xLaxCuO2 and
Y1Ba2Cu3O7 [1]. This independence of∆H also looks sur-
prising and says against the geometrical origin (1). Otherwise
samples of different materials have to have identical and per-
fectly periodic grain structure.

2.3. Various mechanisms

The stable feature (independence of macroscopic properties)
of magnetoresistance oscillations says about a subatomic
mechanism as mostly probable one. In geometrical effects,
generic with Little-Parks one, magnetoresistance oscillations
occur due to periodic inH diamagnetic pair breaking. As-
sociated∆H is analogous to (1) and is not universal with
respect to different~H directions. In contrast, the mechanism
of paramagnetic pair breaking is promising since it is not ge-
ometrical and therefore is expected to provide no angular~H
dependence. But such a mechanism should also result in the
oscillatoryR(H). It is not clear a priori how it can be.

In this paper we investigate that phenomenon. It is shown
that anomalous electron-photon states are likely responsible
for the observations [1].

3. Anomalous electron states

Since the observed oscillations are universal, this drives to
analyze a possible subatomic mechanism to avoid a depen-
dence on material choice and~H direction. The subatomic
mechanism, considered from usual atomic distances, look
like a singularity of the wave function. At shorter (subatomic)
distances the singularity has to be washed out within the cer-
tain small scale. In this section we show that such anomalous
states can really exist.
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3.1. What follows from wave equation

First, we consider an electron without an interaction with
any (in particular, electromagnetic) fluctuating field to be in-
cluded as the second step. Such electron is described by
a quantum mechanical wave equation in some static poten-
tial U(~R). When the potential is physically smooth, the
Schr̈odinger equation in the space~R = {~r, z} (~r = {x, y})

(
− ~

2

2m
∇2 + U

)
ψ = Eψ (2)

can have the singular solution, which isψ ∼ ln r at r → 0,
extended along thez axis. This solution requires the singu-
larity sourceδ(~r) in the right-hand side of (2). This source
is absent in this equation and therefore that singular solution
does not exist even formally.

However it is not clear whether such source appear un-
der the reduction ofr when the formalism (2) is not valid.
The Schr̈odinger description (2) of that singularity holds at
rc < r whererc = ~/mc ' 3.86× 10−11 cm is the electron
Compton length. Atr < rc one has to use the Dirac quantum
mechanics for the bispinorψ = (ϕ, χ) whereϕ andχ are
two spinors satisfying the equations for free electron [31]

(ε + i~c~σ∇)ϕ = mc2χ, (ε− i~c~σ∇)χ = mc2ϕ. (3)

Hereε is the total relativistic energy and~σ are Pauli matrices.
In equations (3) the gradient terms are large and the static po-
tential is neglected since it is less thanmc2. Equations (3)
follow from the Dirac Lagrangian [31]

L = i~cψ̄γµ∂µψ −mc2ψ̄ψ, (4)

whereγµ are Dirac matrices,̄ψ = ψ∗γ0 is the Dirac conju-
gate, and the partial derivatives are∂µ = (∂/∂ct,∇).

It follows from (3) that

(ϕ− χ) = − i~c
ε + mc2

~σ∇(ϕ + χ). (5)

To be specific, one can choose the spinor(ϕ+χ) in the form

(ϕ + χ) =
1√
2

(
1
1

)
F, (6)

whereF satisfies the equation
(
−∇2 +

m2c2

~2

)
F =

ε2

~2c2
F. (7)

This equation is similar to (2) (with no potential) whenε =
mc2 + E and the energyE is small compared tomc2.

As follows from Eq. (7), at smallr the term with∇2 dom-
inates and the singular solutionF ∼ ln r also requires the
singularity sourceδ(~r) which is absent in (7). Therefore our
attempt to naturally get a singularity source at smallerr < rc

failed. The singular solution, continued to the regionr < rc,
does not exist as in the Scrödinger formalism. Note that at
r < rc the combination(ϕ − χ) ∼ rc/r dominates but at
rc < r the term(ϕ + χ) ∼ ln r is the principal one related to
the Scr̈odinger equation.

3.2. Beyond wave equation

Below we analyze what happens to the singularity on much
shorter distancesr compared to the electron Compton length
rc. Also one should specify a physical origin of that shorter
distance.

According to the Standard Model, masses of electron,
other leptons,W± andZ weak bosons, and quarks are gen-
erated by the Higgs field [32–34]. Electron acquires its mass
through the connection between the fermion fieldψ, which
includes electrons, and the Higgs fieldφ. Instead of the elec-
tron mass in the Lagrangian (4) the term, connectingψ andφ,
appears. One should formally substitutemc2 → Gφ where
G ∼ m/µ ∼ 10−5 and µ ∼ 100 GeV/c2 is the mass of
the Higgs boson. So the last part in the Lagrangian (4) is
−Gψ̄φψ which is called the Yukawa term.

The Higgs fieldφ = v + h contains the fluctuating parth
for which 〈h〉 = 0. Therefore the electron massm is deter-
mined by the expectation valuev of the Higgs field

mc2 = Gv. (8)

Besides the generation of electron mass, the Yukawaφ
depending term in the Lagrangian also influences the Higgs
field. As above, we consider the problem without fluctuat-
ing gauge fieldsW±

µ , Zµ, Aµ (Aµ relates to photons) and the
fluctuating parth of the Higgs field. In this case the expecta-
tion valuev of the Higgs field obeys the equation [32–34]

~2c2∇2v + µ2c4v − v3 =
~3c3

2
Gψ̄ψ. (9)

The right-hand side of (9) can be calculated according to
Dirac quantum mechanics [31]

ψ̄ψ = ϕ∗χ + χ∗ϕ =
1
2

(|ϕ + χ|2 − |ϕ− χ|2) (10)

since fluctuating fields are absent.
Equation (9), producing the finite expectation value of the

Higgs field, reminds the Ginzburg-Landau equation. The pe-
culiarity of (9) is its right-hand side mainly determined by the
singular part (5) in Eq. (10). That part is essentially coordi-
nate dependent that makesv also a function ofr. According
to (8), the mass in the Lagrangian (4) becomes variable in
space. One can easily show that the relations (5) and (6) in
this case remain the same but Eq. (7) now reads

(
−∇2 +

∇mc2

ε + mc2
∇+

m2c2

~2

)
F =

ε2

~2c2
F. (11)

In Eq. (9) the expectation value becomes variablev → v +
δv(r). According to (8), the electron mass is also variable
m → m + δm(r). As follows from (9), (10), and (5),

(
−∇2 +

2
R2

c

)
δm = G2 ~3c

4

( ∇F

ε + mc2

)2

, (12)
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where Rc = ~/µc ∼ 10−16 cm is the Compton length
of the Higgs boson. In Eq. (11) atr < rc only gra-
dient terms are significant. It follows that the expression
r(∂F/∂r)/(ε+mc2) is a constant. In the limiting cases [35]

δm(r)
m

∼ G2

{
R2

c/r2, Rc < r,

−(lnRc/r)2, r < Rc.
(13)

The variable mass correction is localized atr . Rc and al-
ways small. The mainr-dependenceF ∼ ln Rc/r is added
by the correction proportional toG2(lnRc/r)3 [35]. The
electron densityn ∼ (∂F/∂r)2 ∼ 1/r2 at r ¿ rc.

We consider the topological case when the phase of the
wave function remains the same after completing the circle
around thez axis. Generally speaking, in this process the
wave function can be multiplied byexp(2iπν). In this case
the electron density isn ∼ 1/r2+2ν at smallr. This situation
requires further studies.

Without the∇m term in (11) it would be∇2F ∼ δ(~r)
with the non-existing singularity source in the right-hand
side. After the subsequent average on fluctuating fields
(Sec. 3.3.) theδ function would be smeared within a fi-
nite region resulting in the non-existing term extended in
space. In contrast, with the∇m term in (11) the kinetic part
∇2F ∼ G2/r2 exists at anyr → 0 and after the average
it goes over into the smooth part that is physical. In other
words, the∇m term provides the singularity source which is
localized at short distancesr . Rc. These distances corre-
spond to the condition1/r2

c < G2/r2 of domination of∇m
term in Eq. (11).

More details about the singularity are in Ref. 35.

3.3. Smearing of the singularity

The solution obtained remains singular until fluctuations of
gauge fieldsW±

µ , Zµ, Aµ and of the fieldh enters the game.
These fluctuations are expected to wash out the singularity
within the certain radiusrT around thez axis. Masses of the
fields W±

µ , Zµ andh are large, about of 100 GeV/c2. For
this reason, fluctuations of these fields result in a less fluctu-
ation length compared to fluctuations of the massless photon
field Aµ. Therefore for study of singularity smearing one can
account for solely the electron-photon interaction.

To generally understand how the singularity is washed out
let us account for photons by implementation of the multi-
dimensional quantum mechanics where photons are the infi-
nite set of harmonic oscillators [31]. See also [36, 37]. The
total eigenenergy of the stationary state is

Etot = E(~r, z) +
∑ ~ω

2
−

(∑ ~ω
2

)

0

, (14)

where the first term relates to the electron part which also in-
cludes the interaction with photons. The last term is the zero
point energy of photons in absence of the electron. A depen-
dence on~r andz in the second term of (14) comes from a
spatial dependence of the photon density of states.

Far away from thez axis the state is hardly violated by the
interaction with photons due to smallness ofe2/~c. Because
of locality of the system, described by differential equations,
one can track the exact stationary solution (with the total en-
ergyEtot) in the multi-dimensional space from large to small
r. The state, continued from the infinity, comes to the singu-
larity at the new position~r = ~u which depends on a choice of
photon degrees of freedom. The electron density, calculated
in Sec. 3.2, now becomes

n ∼ 1
(~r − ~u)2

. (15)

Each fixed set of electromagnetic variables specifies in three-
dimensional space the singularity curve (~u(z) in (15)) local-
ized around thez axis. Without the electron-photon interac-
tion ~u = 0 as in Sec. 3.2. An average on photon degrees of
freedom leads to a superposition of states with various sin-
gularity curves. The resulting state is smooth. It recalls the
thread of the certain thicknessrT along thez axis. Below this
thickness is determined.

3.3.1. Lamb shift

Suppose that in the three-dimensional potential wellU(R)
(R2 = r2 + z2) the ground state energy of the electron is
E in the absence of the interaction with photons. Under this
interaction the electron “vibrates” with displacements~u. The
related mean displacement〈~u〉 = 0 but the mean squared dis-
placementr2

T = 〈u2〉 is finite. The effective potential can be
estimated as [27–29]

〈U(|~R− ~u|)〉 ' U(R) +
〈u2〉
6
∇2U(R). (16)

The quantum mechanical perturbation, due to the second
term in (16), leads to the eigenenergy deviated fromE by
the Lamb shiftδEL [31]

δEL =
〈u2〉
6

∫
ψ∗(~R)∇2U(R)ψ(~R)d3R. (17)

When the potential is the harmonic oscillatorU(R) =
mΩ2R2/2, or it is close to it at smallR, the total mean
squared displacement is

〈R2〉 =
3~

2mΩ
+ 〈u2〉, (18)

where the first part is the usual quantum mechanical uncer-
tainty. One can calculate [27–29,36]

r2
T = 〈u2〉 =

2r2
c

π

e2

~c
ln

mc2

~Ω
. (19)

It follows that rT ∼ 10−11 cm. The Lamb shift (17) of the
ground state energy, with the result (19), is valid with the
logarithmic accuracy and it can be obtained without the full
machinery of quantum electrodynamics just applying non-
relativistic quantum mechanics [27, 29, 36]. To go beyond
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the logarithmic accuracy the non-relativistic approach is not
sufficient.

The results (17) and (19) are applicable to hydrogen atom
whereU(R) = −e2/R, ∇2U = 4π2e2δ(~R), and|ψ(0)|2 =
(me2/~2)3/π. In this case one should substitute~Ω in (19)
by Rydberg energy [27–29]. Eq. (17) produces the Lamb
shift of the ground state of hydrogen atom

δEL =
8mc2

3π

(
e2

~c

)5

ln
~c
e2

, (20)

that coincides with the exact (with the logarithmic accuracy)
result following from quantum electrodynamics [31].

The Lamb shift of levels of the harmonic oscillator
U(R) = mΩ2R2/2 is

δEL =
mΩ2

2
〈u2〉, (21)

where the mean squared displacement is given by Eq. (19).

3.3.2. Smearing of the singularity

We see that electron “vibrations” due to its interaction with
photons results in the typical fluctuation lengthrT . The sin-
gularity along thez axis is washed out within the thread
(along thez direction) of the subatomically small radius
rT ∼ 10−11 cm. This thread state can be calledanomalous
electron state.

One should emphasize that smearing of the singularity,
within the finite radiusrT , occurs solely when thez axis co-
incides with the equilibrium position of the electron. This
corresponds to the potentialmΩ2r2/2 at smallr. For a free
electron the thread radiusrT = ∞ sinceΩ = 0. In this
case anomalous state does not exist. Instead there is the usual
Lehmann representation of the electron propagator in quan-
tum electrodynamics [31]. In other words, anomalous state is
impossible for free electron.

The direct average of the electron density (15) formally
results in the logarithmic divergence at small arguments. The
direct average of higher spatial derivatives ofn results in even
stronger divergences. For this reason, it is convenient to aver-
age the number of electrons which are at the interval between
r andrc

N(r) = 2πa

rc∫

r

n(r1)r1dr1 ∼ ln
rc

r
, (22)

wherea is the length of the thread.
After the average〈N(r)〉 becomes a smooth function ofr

with the typical scalerT . Its derivative with respect tor pro-
duces the physically smooth electron density with the same
typical scale inr. This density has the peak at the thread
positionn(rT ) ∼ n(rc)r2

c/r2
T ∼ n(rc)~c/e2.

More details about smearing of the singularity are in
Ref. 35.

3.4. Origin of the MeV well

The peak of the electron density atr . rT can be interpreted
as enhancement of the electron kinetic energy~c/rT at that
region. Formally this corresponds to the domination of the
kinetic term∇2F in Eq. (11).

On the other hand, we continue the exact stationary state
of the multi-dimensional system (Sec. 3.3.) with the energy
(14) from larger. At fixed Etot various photon field config-
urations lead to the above local enhancement of the first term
in (14). This enhancement has to be compensated by the lo-
cal reduction of the second term in (14) just to keep the same
Etot. Therefore the spatial redistribution of the photon den-
sity of states in (14) is adjusted to produce the certain well,
along thez axis, localized atr . rT around this axis. The
depth of this well, formed by the reduction of the vacuum
energy, is

U0 ∼ ~c
rT

∼ mc2

√
~c
e2

. (23)

One estimatesU0 ∼ 1 MeV. As follows from (23),U0 can-
not be obtained from the perturbation theory one2/~c despite
this parameter is small. The reason is that the electron density
is proportional to1/(~r − ~u)2 where the both displacements
are of the same order atr . rT .

The change of photon energy (the last two terms in (14))
can be estimated through averaged magnetic and electric
fields

−U0 ∼
∫

d3R

8π

[〈H2〉+ 〈E2〉 − (〈H2〉+ 〈E2〉)0
]

(24)

So the states in the well relate to the non-perturbative ap-
proach and they are exact. This means that each state is non-
decaying,ImEtot = 0. Another property is that one can
take any energyEtot and arrive to the thread state. There-
fore the spectrum of states in the well is continuous and non-
decaying. This contrasts with a usual potential well which is
fixed and is not adjusted to each electron state. The continu-
ous non-decaying spectrum in a well in presence of a contin-
uous medium is not forbidden in nature. Such spectrum was
revealed in Ref. [38] on the basis of the exact solution.

The similar well creation occurs, for example, in attrac-
tion of two hydrogen atoms at large distances [31, 39]. This
Casimir (van der Waals) attraction is of the eV scale but the
physical mechanism is of the same nature, namely the pho-
ton zero point energy becomes variable in space due to spatial
variation of photon density of states. Usually in the Casimir
effect the force is calculated but the method, based on energy
calculation, is equivalent.

3.5. Comments

It happens that the formally singular solution of wave equa-
tion does not terminate its story. On short distances10−16 cm
the natural singularity source enters the game. This source
relates to the generation of electron mass. The fluctuating
electromagnetic field washes out the singularity along thez
axis turning it into the thread of the subatomically small but
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finite radius10−11 cm. Within the thread, due to the local
reduction of the vacuum energy, the well of MeV scale depth
is formed.

The phenomenon occurs when thez axis coincides with
the equilibrium position of the electron at some macroscopic
potential extended along that axis. The thread state of the free
electron is impossible.

An electron motion in vacuum in the static homogeneous
magnetic fieldH also corresponds to a finiterT . In this case
one should substitutedΩ in (19) by the cyclotron frequency
|e|H/mc. According to (19),

rT ' 0.26

√
ln

4.39× 109

H(T )
× 10−11(cm). (25)

At H = 1T the radiusrT ' 1.23 × 10−11 cm. Therefore
anomalous electron states in magnetic field in vacuum are
possible as in condensed matter. The spectrum of these state
is continuous (no transverse quantization) and they can be
bound with the binding energy of the MeV order. So the elec-
tron anomalous states in a magnetic field substantially differ
from Landau ones [30].

Usually subatomic physics deals with nuclear and particle
phenomena of scales well below the Bohr radius. It appears
that electron states of a subatomic size are possible. They
are localized at positions separated from nuclei. Due to short
distances these states relate to MeV energies. So the origin
of electron MeV energies in condensed matter is paradoxical
solely at first sight.

4. Thread shape

The thread can exist solely along a valley of equilibrium elec-
tron positions in some potential. These positions are gener-
ally along a curve in three-dimensional space. A small devi-
ationr of the thread from that curve costs energymΩ2r2/2
where~r is the direction locally perpendicular to the curve.

In metals a potential along the above valley can be cre-
ated by a redistribution of conduction electrons related to the
energy pay of∼ 1 eV. But the energy gain, due to electrons in
the MeV well, is of the order of 1 MeV. Therefore existence
of thread state in solids is real. The thread may be of various
shapes and lengths. For example, the thread can be restricted
by two lattice sites taking the position between them along a
minimum of the electrostatic potential created by lattice sites
and redistributed electrons.

Electrons in a solid can be redistributed in various man-
ners providing various curves for the equilibrium valley. Sup-
pose this curve to locally deviate from the straight line along
the z axis and it becomes at~r = ~u(z) whererT ¿ |~u|. If
to take new variables{~r − ~u, z} in Eq. (7), then in the new
variables

−∇2F → −∇2F −
(

∂ux

∂z

)2
∂2F

∂x2
, (26)

FIGURE 1. Anomalous state in the form of the circle of the radius
a ∼ 10−8 cm. The thickness of the ring thread is on the order of
10−11 cm. The electron momentum along the ring produces the
angular momentum in thez direction.

where the vector~u has thex component only and itsz de-
pendence is weak. The evaluation of the second term, as in
Sec. 3.4, shows that it corresponds to the enhancement of
the electron kinetic energy. Analogously an evaluation of the
electromagnetic part also results in energy enhancement

(∇× ~A)2 → (∇× ~A)2 +
(

∂ux

∂z

)2 (
∂Ay

∂x

)2

. (27)

We see that a deformation of the valley costs energy and this
recalls a deformation of an elastic string. When the thread is
between two lattice sites its preferable shape is linear.

A linear thread is not its unique stable form. The thread
can be in the form of ring shown in Fig. 1. A local deviation
of the valley from the perfect circle, as for a linear thread,
costs energy much larger than the Coulomb one. Therefore
the thread can be a nearly perfect circle and solely its radius
is to be determined.

In a given potential valley the thread energy does not de-
pend on its length (compare with (24)). To create a valley
of the length2πa conduction electrons in a crystal should
be rearranged requiring the energy∼ e2a/a2

B of valley for-
mation (aB = ~2/me2 is the Bohr radius). On the other
hand, to reduce the bending energy of the circular thread,
the radiusa has a tendency to increase. There are electron
and photon (24) contributions to the bending energy. To es-
timate the latter one one should account for the explicit ra-
dial dependence of the magnetic field in Eq. (24). For ex-
ample, in the cylindrical coordinates the radial component
Hr = (∂Az/∂ϕ)/r − ∂Aϕ/∂z results in the contribution to
the energy (24) with the part

〈H2
r 〉 =

〈 (
∂Aϕ

∂z

)2 〉
+

〈(
∂Az

r∂ϕ

)2 〉
(28)

In the expansion

1
r2
' 1

a2
− 2(r − a)

a3
+

3(r − a)2

a4
(29)

the first term results in the derivative∂Az/∂(aϕ) which is
analogous to the derivative along the thread in the linear case.
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FIGURE 2. Ring position inside the lattice of a solid. The ring size
is on the order of Bohr radiusaB .

The second term is averaged out. The contribution to the en-
ergy (24) reads

∫
d2rdz

8π

〈 (
∂Az

∂aϕ

)2 〉3(r − a)2

a2
. (30)

Subtracting the term〈...〉0, related to absence of the electron
as in (24) and using the estimate(r − a) ∼ rT , we obtain

bending energy ∼ r2
T

a2
T

U0 ∼ ~2

ma2
. (31)

Here we accounted for the approximate relationrT /rc ∼ 1.
The electron contribution to the bending energy is of the same
type as (31). The minimization of the total energy, consist-
ing of (31) and valley creation one, results in the estimate
a ∼ aB .

A position of the tread circle of the radius∼ aB is shown
in Fig. 2. Deviations from the exact circular form cost a
large energy (comparable with MeV) and therefore the thread
forms almost perfect circle. Its radius weakly depends on a
crystal field. Effects of the ring on lattice sites are not impor-
tant for our purposes. One can consider angular momenta of
the ring created by a current along the thread.

The creation of anomalous threads in a solid is described
in Ref. 36. They can be produced either by an irradiation of
keV ions of the metallic surface or by an occasional expo-
sure to radiation. In these processes not the ion keV energy
is relevant but the spatial variation of electric charge density
created by ions de Broglie wave length10−11 cm [36]. Un-
der this condition the matrix element between anomalous and
conduction electron states of same energies is not small. Also
shock waves, propagating in a metal, can cause thread forma-
tion.We emphasize that rings are not created during the usual
crystal growth since the scale10−11 cm is not involved into
that process.

FIGURE 3. r is distance from the center of the ring of the radius
a shown in Fig. 1. The positionz = 0 is taken. The electron(s),
localized deep in the anomalous well of the size(r − a) ∼ rT ,
produces the Coulomb barrier for the conduction electron of the
energyEF . The circle is of the radiusrc. The electron density
decays from the thread till(r − a) ∼ aB . Then it increases going
over into the state of conduction electron.

5. Electron states of the energyEF

The subatomic potential well of the depthU0 ∼ 1 MeV
is sketched in Fig. 3. The well acquires electrons from the
solid which occupy deeply localized states in the well. This
process is energetically favorable. Transitions of conduction
electrons to the well region is restricted by the Coulomb bar-
rier around the thread created by electrons already localized
in the well. When the numberN of electrons in the thread
exceeds the certain critical value the barrier prevents further
penetration due to a small tunneling probability of electrons
of Fermi energyEF .

5.1. Origin of electrons localized in the well

Supposer =
√

x2 + y2 andz are distances from the center
of the ring as in Fig. 1. The electrostatic potential of the ho-
mogeneously charged ring with the total chargeeN in Fig. 1
has the form atz = 0 [40]

eϕ =
2Ne2

π(r + a)
K

(
2
√

ar

r + a

)
, (32)

whereK is the elliptic integral. At larger, eϕ ' e2/r. The
electric field is~E = −∇ϕ. Close to the thread,(r − a) ¿ a,
atz = 0

eEr ' Ne2

πa(r − a)
+

Ne2

2πa2
ln

a

|r − a| . (33)
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The Coulomb barrier (32) is sketched in Fig. 3. Con-
duction electrons of the Fermi energy leak through the bar-
rier (32) via tunneling increasing the numberN of electrons
localized inside the thread.N saturates when the tunnel-
ing probability becomes extremely small. To get a general
impression about this probability one can approximateeϕ
by e2/(r − a) and then in the approximation of Wentzel,
Kramers, and Brillouin [30] the tunneling probability is

1
t0

exp
(
−N

πe2

~

√
2m

EF

)
=

1
t0

exp

[
− 23.2N√

EF (eV)

]
, (34)

wherem is the electron mass andt0 ∼ 10−15 s is a typi-
cal atomic time. We considers-wave only. The parameter
(e2/~)

√
m/EF in (34) is on the order of unity (not a semi-

classical regime). The coefficient 23.2 is of the numerical
origin. If to take a typicalEF , the expectation time of filling
the well, containingN electrons, is estimated as10(8N−15) s.
ForN = 1, 2 the expectation time is not large but forN = 3
it is years. Therefore the number of electrons, localized in
the well, in Fig. 3 is no more than two.

5.2. Electron state

The potential energy in Fig. 3 is electrostatic one (32) sup-
plemented by the deep well atr = a. At this region, inside
the circle in Fig. 3, the electron-photon interaction is essen-
tial (Sec. 3.). Besides deeply localized electrons in the well,
there are also states close to the Fermi energyEF . Such
state starts with the part, localized close to the well region
((r − a) ∼ aB), and shown by the dashed curve in Fig. 3.
At larger distances that state goes over into the conduction
electron shown by the solid curve.

The state in Fig. 3 is stationary since the lifetime of states
in the subatomic well is infinite [36, 38]. This happens since
the electron-photon state inside the thread is of polaronic type
but not of dissipative one when the reservoir is a perturbation.
The particular example of such state is studied in [38]. One
can qualitatively explain why photons are not emitted in that
state. The electron is connected to the the thread region and
is dragged by it. Under photon emission the thread would
oscillate increasing the electron kinetic energy. This prevents
the electron to lose its total energy resulting in non-decaying
states. So theEF electron does not go down in energy at the
deep well by quanta emission.

The ring in Fig. 1 has the angular momentum~lz due to
the circulating current. The underbarrier wave function and
its extension from under the barrier in Fig. 3 is topological as
ψ ∼ exp(iϕlz) whereϕ corresponds to rotation around thez
axis.

At small distances from the ring(r − a) . rc, within the
circle in Fig. 3, relativistic effects are strong [36]. This re-
minds strong relativistic effects in some atoms where instead
of ls coupling there isjj one. In our case this isjzjz coupling
due to cylindrical (circle) symmetry. The crystal field hardly
violate the narrow region around the thread wherejzjz cou-
pling is formed. This means that for the thin thread circle the

energy is characterized byjz quantum number but not bysz

andlz separately. The corresponding electron state continues
from the thread to outside.

Those quantum mechanical effects, that is without pho-
tons participation, do not influence superconducting state or
pairing effects. Analogously spin-orbit phenomena do not af-
fect a superconducting state as known.

6. Spin imbalance state

In this section we study how the electron state, close to the
thread circle in Fig. 3, goes over into a conduction electron
at large distances. We start with the effect of the interaction
with photons at(r − a) . aB .

6.1. Lamb shift

First of all, we emphasize that the Lamb shift, considered in
this section, does not relate to atomic levels. In our case this
is an energy shift of electron levels close toEF caused by the
Coulomb field of an electron localized deep in the well (in
presence of the electron-photon interaction) in Fig. 3. The
associated electron density is plotted in Fig. 3.

The description (16) and (17) of the Lamb shift is referred
to l = 0. Whenl 6= 0 it is better to use the first non-zero term
of the perturbation theory for the Lamb shift [31]

EL = − e3

2πm2c3
〈 |~s (~E × ~p)| 〉, (35)

Accounting for the relation~~l = ~R × ~p one can obtain from
(35)

EL =
e2~(szlz)
2πm2c3

〈 ∣∣∣ ~r

r2

∂eϕ

∂ ~R

∣∣∣
〉
, (36)

where onlyszlz part survives after the spatial average.
The main contribution to the matrix element in (36)

comes from the underbarrier wave function in Fig. 3. Esti-
mating from the second term in (33)∂eϕ/∂R ∼ e2/a2

B , we
obtain

EL = −2(szlz)εL , εL ∼ me4

~2

(
e2

~c

)3

. (37)

The usual spin-orbit term~l~s is a part of the Hamiltonian
related to the wave equation [31]. That term is time-reversal
and therefore it does not influence superconducting state.

The Lamb shift result (36) also looks as one originated
from some correction to the potential energy as in the case
of spin-orbit. But the Lamb shift phenomenon is not reduced
to a correction of the potential energy. The point is that in
formation of the result (36) virtual photons are involved [31].
Due to this the motion is not characterized by an electron
momentum only which changes sign under the time reverse.
Therefore opposite spins, referred to the split (37), produce
the depairing effect on superconductivity.
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FIGURE 4. Scheme of the spin imbalance state close to the ring.
With the magnetic field energy differences (a)E− and (b)E+ be-
tween electrons of opposite spins are shown by arrows. Without
the magnetic field the energy difference is the same,(2n + 1)εL,
for the both cases (broken lines).

6.2. Spin imbalance states

The total angular momentumjz = n + 1/2 (n ≥ 0) can be
realized in two ways

jz = n +
1
2
⇒

{
{↓, lz=n + 1} EL=(n + 1)εL

{↑, lz=n} EL=− nεL.
(38)

Arrows up and down show spin directions along thez axis.
The values2lzsz = −n − 1 and2lzsz = n produce Lamb
energies in (37). Analogously, the total angular momentum
jz = −n− 1/2 (n ≥ 0) can be realized also in two ways

jz=−n−1
2
⇒

{
{↑, lz=− n− 1} EL=(n+1)εL

{↓, lz=− n} EL=−nεL.
(39)

The energy split (broken lines in Fig. 4) between pair of states
in (38) or (39) can be written in the form

∆EL = (2n + 1)εL (40)

at any integern.
We see that under spin-orbit interaction the level with the

fixed jz was double degenerated withlz = jz ± 1/2. The
electron-photon interaction removes this degeneracy. That
is similar to hydrogen atom where spin-orbit interaction re-
mains degenerated two states with the samej but different
l = j ± 1/2. The electron-photon interaction removes the
degeneracy in hydrogen atom (Lamb shift) [31].

As shown in Appendix A, the wave function in Fig. 3 is
reasonably localized close to the ring andn-dependence of
εL is weak.

6.3. Why small thread rings strongly influence conduc-
tion electrons

The above classification is applicable to the region of the
Bohr radius size near the thread ring. At(r − a) . aB elec-
tron states with opposite spins are split in energy according
to (40). After coming out from under the barrier in Fig. 3

FIGURE 5. Scheme of the spin-imbalance state in the volume of a
metal. The states of opposite spins are separated in energy by “stiff
dumbbells”. For convenience these subsystems are drawn shifted
in momentump. The entire system (within the circle) oscillates,
along the energy axis, under interaction with phonons keeping the
same energy split (40) between opposite spin subsystems. These
oscillations are denoted by dashed arrows.

electrons are scattered by lattice sites and impurities. These
processes are elastic and therefore the electron keeps the en-
ergy split (40) for opposite spins. In the volume electrons are
no more described by orbital quantum numbers but instead
by momenta in the lattice~p. Electrons of opposite spin relate
to the energiesε(~p) + (n + 1)εL andε(~p)−nεL, whereε(~p)
is the energy spectrum in the lattice.

This is shown in Fig. 5 where “stiff dumbbells” separate
in energy electrons of opposite spins. The energy split (40)
for opposite spin directions remains stiff in the crystal lat-
tice within the spin-lattice relaxation length (approximately
a0(~c/e2)2) which is a few microns. Within this scale there
is no equilibrium between Fermi levels of subsystems with
opposite spins as shown in Fig. 5. The number of spin up and
spin down electrons are the same. When the mean distance
between thread rings is shorter than the spin-lattice relaxation
length, such spin imbalance state exists in the entire volume.
High concentration of rings (on the order of crystal ions con-
centration) is not necessary for that. Thread rings, distributed
in the volume, are the driving force for spin imbalance state.

Inelastic processes in a metal, resulted from electron-
phonon effects, are characterized by the uncertainty
T 3/(~ωD)2 of the electron energy (imaginary part of the
spectrum). HereωD is the Debye frequency. Those processes
can be interpreted as oscillations, along the energy axis, of the
entire system (the circle in Fig. 5). This is shown by dashed
arrows. Under these oscillations the energy split between op-
posite spin subsystems in Fig. 5 remains the same. The total
spin imbalance state is a superposition of ones characterized
by energy splits (40) with variousn.

There is a difference in states in the bulk generated by
thread circles and ones in the usual scattering by impuri-
ties. The latter hardly influence electron states in the volume.
Atomic size rings also can be treated as impurities. But the
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essential feature of such impurities is the inner structure of
them with the subatomic region within the thread. The state
parameters (spin imbalance), formed on that small scale, are
stiff and transformed through a relatively transparent barrier
to the bulk.

There is an analogy with the usual impurity scattering
when the impurity also has an inner structure: a discrete en-
ergy level. In this case the scattering amplitude of particles,
with the energy close to resonance one (Wigner resonance
scattering), is anomalously large [30]. In our case each ring
also can be treated as a stiff boundary condition for conduc-
tion electrons.

6.4. Influence of the magnetic field

The action of the external magnetic field on the spin imbal-
ance state is not described by the Zeeman termµB(~l + 2~s) ~H
(not by ag-factor), as for an atom, since in the volume there
is no orbital quantum numberl. HereµB = |e|~/2mc is
the Bohr magneton. The orbital part goes over into the dia-
magnetic one,(e/mc)~p ~A, in the volume. Due to impurity
scattering the diamagnetic part provides the continuous spin-
independent contribution to the total spectrum. This is not
significant for our purposes. Therefore the influence of the
magnetic field can be accounted for through the paramagnetic
part2µB~s ~H only.

Suppose the applied magnetic fieldH to be directed along
thez. The paramagnetic energy2µBszH enters the game. To
be specific supposeH > 0. Then for the cases (38) (Fig. 4(a))
and (39) (Fig. 4(b)) the level splits are

E∓
n = (2n + 1)εL ∓ 2µBH, (41)

where two energies refer to the states withsz = ±1/2.
When in layered compounds thread circles are inab

planes, the magnetic field in Eq. (41) is one directed along
thec axis. When the circle plane is perpendicular toab plane,
H in Eq. (41) corresponds to one in theab plane.

7. Effect on cooper pairing

The Cooper pair can be formed by the electron with the ener-
giesε(−~p )−EF−nεL+µBH andε(~p )−EF +(n+1)εL−
µBH (Fig. 4(a)). The former refers to the state (denoted as
↑) with the spin superposition along thez axis and along~H.
The latter(↓) relates to mutually inverted spins. As plotted
in Fig. 5, the Fermi levels of subsystems with opposite spins
are also shifted by the same energy.

Pairing of those spin imbalance states correspond to the
order parameter∆↓↑. Analogously the component∆↑↓ is
formed, according to Fig. 4(b). AboveTc instead of order
parameter there are fluctuation propagators satisfying equa-
tions (see Appendix B)

[
iπ

8T
(−~ω + E−

n ) +
T − Tc

T
+ ξ2k2

]
∆↓↑

n = 0 (42)

[
iπ

8T
(−~ω + E+

n ) +
T − Tc

T
+ ξ2k2

]
∆↑↓

n = 0, (43)

whereξ ∼ ~vF /Tc is the coherence length. These propa-
gators differ from usual ones [41] by non-zero energiesE∓

n .
Due to gauge invariance it is impossible to eliminateE∓

n in
those equations by choosing proper phases of∆n. This is due
to the difference in Fermi levels of two subsystems with op-
posite spins in Fig. 5 where paramagnetic shifts are included.

At first sight, one can choose the new gauge∆ →
exp(iχ)∆ to compensateE±

n , or a part of them, byi~χ̇. But
in this case additional non-stationary terms appear in the for-
malism of the diagram technique nearTc and the final result
for resistance remains the same as forχ = 0.

The specificity of spin imbalance state, resulting in the
propagators (42) and (43), is shifted Fermi energies of sub-
systems with opposite spins. This state is supported by rings
distributed in the volume. In the usual equilibrium metal
Fermi levels of subsystems with opposite spins coincide (the
length of the upper “dumbbell” in Fig. 5 is zero). In this case
the Zeeman terms in Eqs. (42) and (43) are absent. Instead
there is the depairing term(µBH/T )2. See also [42, 43].
Formally this follows from Appendix B, where in Eq. (B.2)
the arguments of tangents are not shifted byE1,2 (coinciding
Fermi levels).

7.1. R(H) oscillations

AboveTc the electric resistance differs from its value in the
normal metal by the fluctuation part which is determined by
fluctuation propagators (42) and (43) [41]. The measured
R(H) is a sum on spin directions and depends on all propaga-
tors∆↓↑

n and∆↑↓
n . Contributions of propagators to resistance

are negative. With finite energy shiftsE∓
n these contributions

are enhanced by the factor proportional to|E∓
n |/∆T (com-

pare with [41]). This factor essentially increases the fluctu-
ation contribution since∆T is a small width related to the
fluctuation region nearTc. At E∓

n = 0 the factor equals unity
which is the conventional case of non-shifted energy [41].
Well belowTc any oscillation effect, related to the condition
E±

n = 0, is small since it is determined byE±
n /Tc.

Therefore the most weak contribution of|E−
n | occurs

when that value is zero. This condition (mostly restored nor-
mal resistance) corresponds to pronounced maxima on the
R(H) curve. PositionsHn of maxima ofR(H), correspond-
ing to the condition|E−

n | = 0, are

Hn =
(

1
2

+ n

)
∆H, ∆H =

εL

µB
(44)

with all integern. With the choiceH < 0 the energyE+
n

is involved instead ofE−
n and the condition (44) remains the

same for integern of any sign.
The calculated period ofR(H) oscillations is∆H '

0.18 T . We use the approximate estimate (37). One should
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FIGURE 6. Magnetoresistance curves inSr0.88La0.12CuO2 sam-
ple [1]. The universal positions of maxima correspond to Eq. (44)
including “1/2 ”. Each peak can be marked byn = 0, 1, 2... (a)
The case ofB⊥. (b) Temperature control. (c)B‖ curves in same
sample.

emphasize that the oscillations ofR(H) in the fluctuation re-
gion are due to the periodic inH coincidence of Fermi ener-
gies for opposite spins.

Experimental magnetoresistance curves for different ori-
entations of the magnetic field are shown in Fig. 6. Positions
of maxima of resistance coincide very good with the condi-
tion (44). First, the periodicity follows from the theory. Sec-
ond, the observed periodicity0.155T is close to calculated
one. Third, even “1/2” in Eq. (44) corresponds to observa-
tions.

We see that the positions of maxima on the oscillatory
curveR(H) are determined by paramagnetic effects related
to the conditionE∓

n = 0. To analyze the entire shape of the
curve (for example the steady slope) one should include also
diamagnetic effects.

The periodicity of peak positions in Fig. 6 is within the
5% uncertainty. On the other hand, the matrix element (36)
depends on the wave function outside the deep well in Fig. 3.
In turn, that wave function depends onlz since usually at
larger orbital momentum the wave function is localized at
larger distances from the center. This would reduce the ma-
trix element (36) at largerlz. ThereforeεL in Eq. (37),
strictly speaking, depends onn violating the periodicity on
magnetic field.

But in our case the electron distribution cannot be shifted
toward larger distances under the increase oflz due to the
fixed position of the well atr = a. As shown in Appendix
A, the electron distribution is localized close tor = a which
results in a weak dependence ofεL (and therefore of∆H) on
n.

In layered compounds thread circle planes are oriented in
two different ways: inab planes and perpendicular to them.
The former rings are responsible for the periodicR(H) when
~H is perpendicular toab planes. The latter rings determine
R(H) when ~H in in ab planes (Sec. 6.4.). These two possi-
bilities are presented in Fig. 6.

8. Discussion

We study the phenomenon which does not fall into the set of
known mechanisms. Universality ofR(H) periodicity with
respect to magnetic field orientation and a very weak depen-
dence on material turned us to look for a different scenario.
Likely a subatomic mechanism, which is material indepen-
dent, could relate to the phenomena observed. The non-trivial
issue in the whole story is the introduction of electron-photon
subatomic mechanism.

It is unusual that subatomic phenomenon plays a substan-
tial role into condensed matter physics. We emphasize that
the subatomic mechanism involved is not referred to nuclear
and particle phenomena but to electron ones. In this paper the
subatomic electron mechanism is proposed which explains
the unconventional experimental results. In that mechanism
the spatial scale of the electron system is of the Compton
length~/mc ∼ 10−11 cm. This is103 times less than the
atomic size.

The basis for that is a state where the electron density is
formally singular on the certain line. This is possible accord-
ing to quantum mechanics of electron and arguments stem-
ming from mechanisms of its mass generation. Due to the
interaction with photons the electron “vibrates” leading to
smearing of that singularity within the thread of the subatom-
ically small radius10−11 cm. This anomalous electron state
is accompanied by a well of the depth∼ 1 MeV localized
within the narrow thread region. This energy scale is unex-
pected in condensed matter. The origin of the well is due to a
local reduction of electromagnetic zero point energy.

The thread is not necessary linear. The subatomically thin
thread can be in the form of a ring of approximately Bohr ra-
dius. In a metal the role of such rings is unusual due to orbital
momenta of the ring along thez axis (perpendicular to the
ring plane). The substantial issue is the subatomic smallness
of the thread thickness. Due to this, inner properties on such
scale do not depend on the crystal field.

Close to the thread (on the Compton length) relativistic
effects are strong resulting injzjz coupling analogous tojj
coupling in some atoms. So relativistic quantum mechani-
cal states are marked byjz. At atomic distances from the
thread, due to the interaction with photons, the state of the
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Fermi energy is split by two ones, withlz = jz + 1/2 and
lz = jz − 1/2. This is similar to the Lamb split in hydro-
gen atom where, instead ofz component, total momenta are
involved due to spherical symmetry.

The electron of the Fermi energy probes the well of the
MeV depth close to the thread. Those states, with energy split
for opposite spins, are continued across the barrier to larger
distances going over into conduction electrons close toEF in
energy. For this reason, that narrow stiff region plays a role
of a boundary condition for conduction electrons moving in
eV crystal field. This keeps electrons with opposite spins in
the volume to be separated by discrete Lamb energies.

Such spin imbalance state in the volume is relaxed, due to
spin-orbit effects, on the distance of a few microns. But when
the mean distance among rings is smaller, the spin imbalance
state exists in the entire volume of the metal. Note that usual
impurity atoms result in simple scattering of conduction elec-
trons with continuous energies.

That spin imbalance state of conduction electrons, with
discrete energy splits for opposite spins, influences the
Cooper pairing condition. The resistance in Ref. [1] was
measured close toTc in the fluctuation region. Under this
condition the fluctuation correction to the resistance of nor-
mal metal is determined by the fluctuation propagators. They,
in turn, depend on energy shifts of different spin states. These
energy shifts can be subsequently turned to zero by the exter-
nal magnetic field. Therefore the resultingR(H) dependence
becomes oscillating as in experiments. There is a good coin-
cidence of the experimental, Fig. 6, and theoretical, Eq. (44)
(including “1/2”), positions of magnetoresistance peaks.

In a solid threads can be created during sample prepara-
tion or through exposure to radiation. For example, ions of
keV energy, bombarding the sample, have the wave length
∼ 10−11 cm and produce charge density of the same scale
after reflections from lattice sites. The matrix element of that
perturbation between a conduction state and anomalous one
is not small. Samples with identical materials and geome-
try, fabricated under different conditions (at different labs),
can exhibit oscillatory magnetoresistance or not regarding
threads generation in a sample in the process of fabrication.

The observed oscillatory magnetoresistance is an implicit
manifestation of anomalous states. One can compare this
with observation of X-ray laser pulses from the “dead” sam-
ple during 20 hours (see [36]). In that case there is an explicit
manifestation of anomalous states.

Anomalous electron states in vacuum in a magnetic field
are possible as in condensed matter. The spectrum of these
state is continuous (no transverse quantization) and they can
be bound with the binding energy of the MeV order. So the
electron anomalous states in a magnetic field substantially
differ from Landau ones.

9. Conclusions

The observed universal oscillations of magnetoresistance are
associated with subatomic states inside the superconductor.

Such states are the subatomically thin (10−11 cm) threads
in the form of the rings of approximately Bohr radius (10−8

cm). In the thread region the subatomic potential well of the
MeV depth is formed which is unusual in condensed matter
physics. From thread regions electron states continue to the
volume producing there spin imbalance state. This state is
probed in the measurements. Calculated universal positions
of peaks(n + 1/2)∆H (n = 0, 1, 2...) on theR(H) curve
are in a good agreement with measurements.

Appendix

A. Dependence ofεL on n

Below we evaluate the form of the underbarrier wave func-
tion which is responsible for the parameterεL (37). This
function describes the electron outside the circle in Fig. 3. In-
side that circle the electron-photon hybridization occurs and
a description by the wave equation is not valid. That circle
(thread) region plays a role of a boundary condition for the
outside region. For simplicity one can consider the constant
potential energy instead of the Coulomb one (32). In this
case it is convenient to use the dimensionless Schrödinger
equation

−∇2ψ + ψ = cδ(z)δ(r − a) exp(ilzϕ), (A.1)

where the right-hand side is analogous toδ(~r) for the lin-
ear thread along thez axis in Sec. 3.3.. The coordinates
relate to Fig. 1. The constantc stays for the normaliza-
tion of the wave function. The dimensionlessa ∼ 1 cor-
responds to the Bohr radiusaB . In Eq. (A.1) the components
~r = {r cos ϕ, r sin ϕ} are used.

It is easy to show that the Fourier component of the wave
function is

ψk = 2cπa exp
(
− iπlz

2
+ ilzϕ1

)
Jlz (ka)

k2
z + k2 + 1

, (A.2)

where

Jn(v) =

2π∫

0

dθ

2π
exp(−inθ + iv sin θ) (A.3)

is the Bessel function and~k = {k cos ϕ1, k sin ϕ1}. As fol-
lows from (A.2), the wave function is

ψ(~r, z) = ca exp(ilzϕ)

∞∫

0

kdk

2
√

1 + k2

× exp
(
−|z|

√
1 + k2

)
Jlz (ka)Jlz (kr). (A.4)

Rev. Mex. Fis.64 (2018) 261–274



SUBATOMIC MECHANISM OF THE OSCILLATORY MAGNETORESISTANCE IN SUPERCONDUCTORS 273

Close to the axis of the ring

At r ¿ a one can use the asymptoticsJn(v) ' (v/2)n/n! at
small arguments forJlz (kr). The result is

ψ(~r, z) =
c

2lz!
exp (iϕlz)

( r

2a

)lz
∞∫

0

vlz+1dv√
v2 + a2

Jlz (v)

× exp
(
−|z|

a

√
v2 + a2

)
. (A.5)

Close to the thread

In the limit (r − a), z ¿ a largek in (A.4) are essential.
With the asymptotics

Jn(v) '
√

2
πv

cos
(
v − πn

2
− π

4

)
, 1 ¿ v (A.6)

it follows from (A.4)

ψ(~r, z) =
c

4π
exp(iϕlz) ln

1
(r − a)2 + z2

. (A.7)

The wave function logarithmically diverges close to the
thread as it should be (Sec. 3.3).

Far from the ring

In the casea ¿ r in Eq. (A.4)kr ∼ 1 andka ¿ 1. Accord-
ing to these limits,

ψ(~r, z) =
c

2lz!
exp (iϕlz)

exp(−|z|)
r2

×
( a

2r

)lz
∞∫

0

vlz+1Jlz (v)dv. (A.8)

Dependence ofεL on n

One can conclude from Eqs. (A.5) and (A.8) that the electron
density|ψ|2 strongly decays with the distance(r − a) from
the ring. In other words, it is localized close to the ring since,
after the adjustment of the constantc,

∫
|ψ|2d2rdz = 1 (A.9)

for all lz.
The Lamb energyεL (37) is determined by the formal

matrix element (36) where|ψ|2 is integrated with the elec-
tric field. This field contains the part (the first term in (33))
which is odd with respect to(r − a) and therefore weakly
contributes to the integral in (36). The second term in (33) is
even with respect to(r−a) and slightly varies close tor = a
where|ψ|2 is mainly localized. Therefore, due to the condi-
tion (A.9), the matrix element (36) hardly depends onlz. For
this reason,εL and∆H in (44) weakly depend onn.

B. Fluctuation propagator in spin imbalance
state

Suppose that in Fig. 5 the left spectrum refers to spin(↓) and
the right one to to spin(↑). Fluctuation propagators (42) and
(43) depend onω andk. As the first step, supposek = 0.
We consider the phonon mechanism of pairing. The final re-
sult hardly depends on this choice. Then the propagator is
determined by the equation [41,44]


 1
|g| +

∞∫

−∞

dε

4πi
Qε


 ∆↓↑

n = 0, (B.1)

whereg is the electron-phonon constant and
∫

dξp

[ (
G−R

ε p

)↓↓ (
G+R

ε−~ω p

)↑↑
tanh

ε− ~ω − E2

2T

− tanh
ε− E1

2T

(
G−A

ε p

)↓↓ (
G+A

ε−~ω p

)↑↑ ]
= Qε . (B.2)

Here retarded and advanced Green’s functions are
(
G−R,A

ε p

)↓↓
= (ε− ξp − E1 ± iδ)−1 (B.3)

(
G+R,A

ε p

)↑↑
= (ε + ξp + E2 ± iδ)−1, (B.4)

whereξp = ε(p) − EF (we suppose the isotropic particle
spectrumε(p)) and the positiveδ is small. In equations (B.3)
and (B.4)

E1 = (n + 1)εL − µBH, E2 = −nεL + µBH. (B.5)

In Eq. (B.2) there is also the cross term, containing
G−R

ε G+A
ε−~ω, but it does not contribute in our case [44].

Performing the pole integration onξp in (B.2), we obtain

Qε=− 2πi

Rε
tanh

ε−~ω − E2

2T
− 2πi

R∗ε
tanh

ε− E1

2T
, (B.6)

whereRε = 2ε− ~ω − E1 + E2 + 2iδ.
The integration in (B.1), with the expression (B.6), con-

sists of the pole part and the contribution of largeε > T .
According to that, the equation (B.1)reads

[
1
|g| −

ωD∫

0

dε

ε
tanh

ε

2T

+
iπ

8T
(E1 − E2 − ~ω)

]
∆↓↑

n = 0 (B.7)

with the upperωD cut off. In the second term in (B.7) we
neglected~ω, E1, andE2 which are small compared toT .

The integral in (B.7) is evaluated asln ωD/T . Due to the
relation for the phonon model1/|g| = ln ωD/Tc, the first
two terms in (B.7) areln T/Tc which is(T −Tc)/Tc close to
Tc. Now it follows from (B.7)

[
iπ

8T
(−~ω + E−

n ) +
T − Tc

T

]
∆↓↑

n = 0, (B.8)
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where we use the relationE1 − E2 = E−
n .

Before we consider the harmonics of∆↓↑
n with k = 0.

It is not difficult to account for finitek. After the routine
procedure with the substitution in (B.4)ξp → ξp − ~vF

~k,
one obtains Eq. (42) with the coherence lengthξ ∼ ~vF /Tc.
Analogously one can derive Eq. (43).
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