RESEARCH Revista Mexicana déskca64 (2018) 261-274 MAY-JUNE 2018
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In the recent experiments [1] the unusual oscillatory magnetoresistance in superconductors was discovered with a periodicity essentially
independent on magnetic field direction and even material parameters. The nearly universal period points to a subatomic mechanism o
the phenomenon. This mechanism is related to formation inside samples of subatomically) tHihdm) threads in the form of rings of
approximately Bohr radius. Electron states of rings go over into conduction electrons which carry the same spin imbalance in energy as rings.
The imbalance occurs due to spin interaction with the orbital momentum of the ring. The conductiviy. medetermined by fluctuating

Cooper pairs consisting of electrons with shifted energies. Due to different angular momenta of rings these energies periodically depend or
magnetic field resulting in the observed oscillatory magnetoresistance. Calculated universal positions(ef pdadRSAH (AH ~ 0.18T

andn = 0,1,2...) on theR(H) curve are in a good agreement with measurements.
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1. Introduction ment (@) = 0 and the mean squared displacemeht =

(u?) wherery ~ 107em [27-29]. This is the fluctu-
In normal metals there are well known Shubnikov-de Haastion spreading in addition to the usual quantum mechan-
oscillations of resistance in a high magnetic field [2]. Injcal uncertainty [30]. For example for the harmonic os-
superconductors oscillations of magnetoresistance also ogillator mQ2R?2/2 the total mean squared displacement is
cur and they do not require such hlgh magnetiC fields. Th%h/QmQ + <u2> In this |anguage the “Vibrating” electron

scale of oscillations in many cases is related to the magnetigrobes various parts of the potential and therefore changes its
flux quantum®, = =wch/e. Oscillations in magnetic field energy (Lamb shift) [31].

in supercopductors has a Iong history .[3_26]' Oscillations In quantum mechanics, regardless of a form of the poten-
can occur in Josephson junctions, as Little and Parks effecﬁal the electron wave fun’ction can be singular along the
due to variation of number of phase slips centers and Iinesaxi’S asp ~ Inr wherer? — 2 + 2. In this case the kinetic

in Iaygred and_gr_anular superconductors, due to artificial geénergy term-A2V2 /2m is singular a (). To compensate
ometrical restrictions, etc.

- . his singularity in the wave equation the artificddF) should
Every oscillation effect in superconductors has clear an g y q cif)

well studied background. At first sight, unlikely another os- e added as a formal potential well. Such singularity source

N . Lo is absent in reality and therefore the singular state does not
cillation phenomenon may exist whose mechanism is mys-

terious, that is outside the circle of known effects. Nev-exISt even formally.
ertheless the unusual oscillating magnetoresistance, experi- However the singularity source appears on short dis-
mentally observed in [1], stays well apart. Its underlyingtances10~%cm, from the singularity line due to the mecha-
mechanism cannot be reduced to a combination of knowRiSm of electron mass formation [32-34]. Then under the in-
effects since the periodic positions Bf H) peaks are uni- teraction with photons, electro.n “vibrations” smear th.e singu-
versal, that is material independent. In layered compoundiity into the thread of the radiug- along thez axis. Within
observed peak positions are independent on direction of tH&e thread the term-12V? /2m goes over intdi? /mr7.. As
magnetic field. shown in [35,36], that large kinetic energy is compensated by
The observed properties are compatible with a subatomif1€ counter-term that can be interpreted as anomalous well
mechanism which controls conduction electrons in a rela?long the thread. This term is formed by the variation in
tively large volume. This would provide material indepen- SPace of zero point electromagnetic energy on the distance
dence since subatomic states have no resemblance to atohfs '~ M around the thread.
of the solid. Such a construction looks paradoxical for two  The resulting state is smooth in space and therefore phys-
reasons: (i) formation mechanism of electron states with sulical. It is localized within the thread of the thickness The
atomic size is unclear and (ji) it is unclear how a subatomi-thread is not necessary linear. The subatomically thin thread
cally small state can control conduction electrons responsiblean be in the form of a ring of the atomic radius. In a metal
for macroscopic properties. the role of such rings is unusual due to orbital momdpnta
The mechanism of formation of subatomic states in con-of the ring along the: axis perpendicular to the ring plane.
densed matter is unusual. Under the electron-photon in€lose to the thread (on the Compton length) relativistic ef-
teraction the electron “vibrates” with the mean displace-fects are strong resulting ifij, coupling analogous tg;
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coupling in some atoms. Due to the interaction with pho-R(H) with the period (1). Analogously the perfect periodic-

tons, the state of the Fermi energy is split by two ones, withty is not expected with the sam®H in samples of different

l.=j.+1/2andl, = j, —1/2. Thisis similar to the Lamb materials and differently manufactured. The two main fea-

split in hydrogen atom where, instead oEomponent, total tures distinguish the oscillatory magnetoresistance observed

momenta are involved due to spherical symmetry. in [1]: independence oAH on H direction and indepen-
Those states, with energy split for opposite spins, condence ofAH on sample choice.

tinue from the thread ring to larger distances going over into

conduction electrons of» energy. The narrow stiff region 3 1. |ndependence oA H on H direction

near the thread plays a role of a boundary condition for con-

duction electrons moving in crystal field. This keeps elec-n experiments [1] the distancAH between maxima of

trons with opposite spins in the volume (on the length of spin-R( H) is constant with the accuracy 6. In addition, AH

orbit relaxation) to be separated by discrete Lamb energiess the same for alld directions. This points to a differ-

The driving force for that spin imbalance state is thread ringssnt mechanism of the oscillations of magnetoresistance com-

distributed in the volume. pared to the geometrical origin (1). Indeed, films thickness
The spin imbalance state of conduction electrons, withn [1]is smaller than/o and therefore projections of grain ar-

discrete energy splits for opposite spins, influences theas to the side surface and upper one cannot be equal. There-

Cooper pairing condition in the fluctuation region closéto  fore the nature of magnetoresistance oscillations in that case
The fluctuation correction to the resistance of normal metal iss not of geometrical origin (1), as in Refs. [16, 22, 25], but

determined by the fluctuation propagators which depend ogualitatively different.
energy shifts of different spin states. These energy shifts can

be subsequently turned to zero by the external magnetic fielfé 2
Therefore the resulting?(H) dependence becomes oscillat-

ing as in experiments. o AH was revealed to be equal fdir;_,La,CuO, and
Ac_tually the measurements [1] probe the spin imbalance, g,,Cu,0, [1]. This independence ak H also looks sur-
state in the volume of a metal. In contrast to known meCh'prising and says against the geometrical origin (1). Otherwise

anisms ofR(H) oscillations, the spin imbalance mechanismgamples of different materials have to have identical and per-
does not depend on macroscopic inhomogeneities of samplq%cﬂy periodic grain structure.

In Sec. 2 usual oscillation are analyzed. In Secs. 3, 4,
and 5 the mechanism of anomalous states is studied. In Sec, 6 . .
spin imbalance states are introduced. In Sec. 7 effects on tr?e& Various mechanisms
fluctuation region are investigated.

Independence ofA H on sample choice

The stable feature (independence of macroscopic properties)
of magnetoresistance oscillations says about a subatomic
2. Unusual oscillations mechanism as mostly probable one. In geometrical effects,
generic with Little-Parks one, magnetoresistance oscillations
In the f|lm W|th the artiﬁcial pel‘iodiC tWO'dimenSional occur due to periodic i diamagnetic pair breaking_ As-
structure the oscillatory magnetoresistance is due to effecigociatedA H is analogous to (1) and is not universal with
generic with Little-Parks phenomenon. See for example [25]yespect to differenti directions. In contrast, the mechanism

The period ofH oscillations was determined as of paramagnetic pair breaking is promising since it is not ge-
oy ometrical and therefore is expected to provide no angtlar
AH = — (1)  dependence. But such a mechanism should also result in the

) _ oscillatoryR(H). Itis not clear a priori how it can be.
whereo is the unitary cell area of the structure. In this paper we investigate that phenomenon. It is shown

An oscillatory behavior of resistance is also possiblegat anomalous electron-photon states are likely responsible
when the superconducting sample consists of natural graing, ihe observations [1].

of the typical size,/o [16, 22]. In this case the typical dis-

tance between peaks &f(H) is also determined by the ge-

ometrical condition (1). When the magnetic field is perpen-3,  Anomalous electron states

dicular to the film surfacevidth x length the arear is de-

termined by grain structure on that surface. When the fiel&ince the observed oscillations are universal, this drives to

is perpendicular to the side surfacedth x thickness the  analyze a possible subatomic mechanism to avoid a depen-

correspondingr is less (a largeAH) due to the geomet- dence on material choice arfd direction. The subatomic

rical restriction by the finite thickness. This clear property,mechanism, considered from usual atomic distances, look

dependence cA H on H direction, was observed in experi- like a singularity of the wave function. At shorter (subatomic)

ments [22]. distances the singularity has to be washed out within the cer-
It is also clear that in a naturally disordered sample grairtain small scale. In this section we show that such anomalous

sizes cannot be equal resulting in a perfect periodicity ofstates can really exist.
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3.1. What follows from wave equation 3.2. Beyond wave equation

FirSt, we consider an electron without an interaction W|thBe|OW we ana|yze what happens to the Singu|arity on much
any (in particular, electromagnetic) fluctuating field to be in-shorter distancescompared to the electron Compton length
cluded as the second step. Such electron is described By, Also one should specify a physical origin of that shorter

a quantum mechanical wave equation in some static poteRtistance.

tial U(R). i
Schidinger equation in the spaée= {7, z} (¥ = {z,y})

hQ
(—V2+U> = Ei 2)
2m

can have the singular solution, whichiis~ Inr atr — 0,

When the potential is physically smooth, the

According to the Standard Model, masses of electron,
other leptons}¥+ and Z weak bosons, and quarks are gen-
erated by the Higgs field [32—34]. Electron acquires its mass
through the connection between the fermion figldwhich
includes electrons, and the Higgs fieldinstead of the elec-
tron mass in the Lagrangian (4) the term, connectiramnde,

extended along the axis. This solution requires the singu- appears. One should formally substitute®> — G¢ where
larity sourced(7) in the right-hand side of (2). This source ¢ ~ m/u ~ 107° andpu ~ 100 GeV/& is the mass of
is absent in this equation and therefore that singular solutiofhe Higgs boson. So the last part in the Lagrangian (4) is

does not exist even formally.

However it is not clear whether such source appear un-

—G¢p which is called the Yukawa term.
The Higgs fieldp = v + h contains the fluctuating paht

der the reduction of when the formalism (2) is not valid. for which (h) = 0. Therefore the electron massis deter-
The Schédinger description (2) of that singularity holds at ined by the expectation valueof the Higgs field

re < r wherer, = h/mc ~ 3.86 x 107! cm is the electron
Compton length. At < r. one has to use the Dirac quantum

mechanics for the bispinap = (¢, x) whereyp andy are
two spinors satisfying the equations for free electron [31]

(e +ihciV)p = mc®x, (e —ihedV)x = mc*p. (3)

Heree is the total relativistic energy ariglare Pauli matrices.

me? = Gu. (8)

Besides the generation of electron mass, the Yukawa
depending term in the Lagrangian also influences the Higgs
field. As above, we consider the problem without fluctuat-
ing gauge field$VF, Z,,, A,, (A,, relates to photons) and the

B

In equations (3) the gradient terms are large and the static pgctuating part: of the Higgs field. In this case the expecta-

tential is neglected since it is less thar:?. Equations (3)
follow from the Dirac Lagrangian [31]

L= ihm/}y“@uzp — me), 4)

where~* are Dirac matrices)) = 1)*+° is the Dirac conju-
gate, and the partial derivatives d@ig= (9/0ct, V).
It follows from (3) that
B ihe
€ + mc?

(p—x) = V(e + Xx)- (5)

To be specific, one can choose the spifior- x) in the form

1 /1
+ - F7 6
(¢ +x) \/§<1) (6)
whereF" satisfies the equation
2.2 2
5 Mm-c €
(‘V N )F:h??F @)

This equation is similar to (2) (with no potential) when=
mc? + E and the energy is small compared teuc?.
As follows from Eq. (7), at smat the term withv? dom-

inates and the singular solutidn ~ Inr also requires the
singularity source () which is absent in (7). Therefore our

attempt to naturally get a singularity source at smallerr.
failed. The singular solution, continued to the regiog .,

tion valuev of the Higgs field obeys the equation [32—34]

RV + et = O @ 9
pretv — vt = ——Gyy. ©)

The right-hand side of (9) can be calculated according to
Dirac quantum mechanics [31]

Py = x +x" 0= % (le+ x> =le—x*) (10
since fluctuating fields are absent.

Equation (9), producing the finite expectation value of the
Higgs field, reminds the Ginzburg-Landau equation. The pe-
culiarity of (9) is its right-hand side mainly determined by the
singular part (5) in Eqg. (10). That part is essentially coordi-
nate dependent that makeslso a function of-. According
to (8), the mass in the Lagrangian (4) becomes variable in
space. One can easily show that the relations (5) and (6) in
this case remain the same but Eq. (7) now reads

F (11)

Vmc? m2c? g2
—V? v F=
< * e +mc? * h? ) h2c?

In Eq. (9) the expectation value becomes variable> v +

does not exist as in the Sutinger formalism. Note that at m — m + dm(r). As follows from (9), (10), and (5),

r < r. the combination¢ — x) ~ r./r dominates but at
r. < rtheterm(p + x) ~ Inr is the principal one related to

the Scibdinger equation.

ov(r). According to (8), the electron mass is also variable
2 me( VF \°
— 2 —_ — 27 e
( \Y +R3)6m G 1 (€+ c2> , (12)
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where R, = h/uc ~ 10716 cm is the Compton length Far away from the axis the state is hardly violated by the
of the Higgs boson. In Eqg. (11) at < r. only gra- interaction with photons due to smallness:6f/%c. Because
dient terms are significant. It follows that the expressionof locality of the system, described by differential equations,
r(0F/0r)/(s +mc?) is a constant. In the limiting cases [35] one can track the exact stationary solution (with the total en-
ergy E,;) in the multi-dimensional space from large to small

om(r) 2 | R2/r2, R. <, r. The state, continued from the infinity, comes to the singu-
G (13) . L i
m —(InR./r)?, 7 <R.. larity at the new positio = @ which depends on a choice of
photon degrees of freedom. The electron density, calculated
The variable mass correction is localizedra R. and al- in Sec. 3.2, now becomes
ways small. The main-dependencé’ ~ In R./r is added 1
by the correction proportional t&?(In R./r)® [35]. The n~ G (15)
r—u

electron density, ~ (OF/0r)? ~ 1/r? atr < 7.

We consider the topological case when the phase of thgch fixed set of electromagnetic variables specifies in three-
wave function r.emains the same af'Fer cpmpl.eting the circlgjimensional space the singularity curé4) in (15)) local-
around thez axis. Generally speaking, in this process thejzeq around the axis. Without the electron-photon interac-
wave function can be multiplied byxp(2irv). In this case  tion 7 = 0 as in Sec. 3.2. An average on photon degrees of
the electron density is ~ 1/r**” at smallr. This situation  freedom leads to a superposition of states with various sin-
requires further studies. gularity curves. The resulting state is smooth. It recalls the

~ Without the Vim term in (11) it would beV2F ~ (%) thread of the certain thickness along the: axis. Below this
with the non-existing singularity source in the right-handnickness is determined.

side. After the subsequent average on fluctuating fields
(Sec. 3.3.) they function would be smeared within a fi- 331 [amb shift
nite region resulting in the non-existing term extended in
space. In contrast, with tHém term in (11) the kinetic part Suppose that in the three-dimensional potential WEIR)
V2F ~ G?/r? exists at anyr — 0 and after the average (R?> = r2? 4 22) the ground state energy of the electron is
it goes over into the smooth part that is physical. In otherE in the absence of the interaction with photons. Under this
words, theVm term provides the singularity source which is interaction the electron “vibrates” with displacemetitsThe
localized at short distances< R.. These distances corre- related mean displacemefat) = 0 but the mean squared dis-
spond to the condition/r2 < G2/r? of domination ofVm  placement2 = (u2) is finite. The effective potential can be
termin Eq. (11). estimated as [27-29]

More details about the singularity are in Ref. 35.

<Uﬂﬁ——ﬁb>:l]UD4—ﬁg2V2U(R) (16)

3.3. Smearing of the singularity

The solution obtained remains singular until fluctuations ofThe quantum mechanical perturbation, due to the second

gauge fielddV £, Z,,, A,, and of the fieldh enters the game. term in (16)’. leads to the eigenenergy deviated frbny
K ; .the Lamb shifdo £y, [31]
These fluctuations are expected to wash out the singularity

within the certain radiusr around ther axis. Masses of the (u?) . Shed =

fields W,F, Z, andh are large, about of 100 GeVic For 0EL = 6 /¢ (R)VU(R)Y(R)d’ R (17)

this reason, fluctuations of these fields result in a less fluctu-

ation length compared to fluctuations of the massless photowhen the potential is the harmonic oscillatbi(R) =

field A,,. Therefore for study of singularity smearing one canmQ*R?/2, or it is close to it at smallR, the total mean

account for solely the electron-photon interaction. squared displacement is
To generally understand how the singularity is washed out sk

let us account for photons by implementation of the multi- (R?) = — + (u?), (18)

dimensional quantum mechanics where photons are the infi- 2mi}

nite set of harmonic oscillators [31]. See also [36,37]. Thewhere the first part is the usual quantum mechanical uncer-

total eigenenergy of the stationary state is tainty. One can calculate [27-29, 36]
o hw hw 22 02 me?
Eiy=E E;—— E;— 14 Z=(u?)="—In—r
tot (7, 2) + 5 < 2>07 (14) ry = (u’) = - hcln —h (19)

where the first term relates to the electron part which also intt follows thatrr ~ 107!t cm. The Lamb shift (17) of the

cludes the interaction with photons. The last term is the zerground state energy, with the result (19), is valid with the
point energy of photons in absence of the electron. A deperegarithmic accuracy and it can be obtained without the full
dence on” andz in the second term of (14) comes from a machinery of quantum electrodynamics just applying non-
spatial dependence of the photon density of states. relativistic quantum mechanics [27, 29, 36]. To go beyond
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the logarithmic accuracy the non-relativistic approach is noB8.4. Origin of the MeV well

sufficient.
The results (17) and (19) are applicable to hydrogen ator] N€ peak of the electron densnyrag rr can be interpreted
wherelU(R) = —¢2/R, V2U = 4n2e25(R), and|(0)]> = @S enhancement of the electron kinetic endrgyr, at that

(me?/h2)?/x. In this case one should substitdt® in (19) region. Formally this corresponds to the domination of the
by Rydberg energy [27-29]. Eq. (17) produces the Lamp<inetic termV2F in Eq. (11).

shift of the ground state of hydrogen atom On the other hand, we continue the exact stationary state
of the multi-dimensional system (Sec. 3.3.) with the energy

sme2 /e2\°  he (14) from larger. At fixed E;,; various photon field config-
b = 3 (ﬁc) N (20)  urations lead to the above local enhancement of the first term

in (14). This enhancement has to be compensated by the lo-
that coincides with the exact (with the logarithmic accuracy)cal reduction of the second term in (14) just to keep the same

result following from quantum electrodynamics [31]. E,.:. Therefore the spatial redistribution of the photon den-
The Lamb shift of levels of the harmonic oscillator Sity of states in (14) is adjusted to produce the certain well,
U(R) = mQ?R?/2is along thez axis, localized at < rp around this axis. The
depth of this well, formed by the reduction of the vacuum
9 .
SE, = ms2 (u2), 21) energy, is . -
2 Up ~ 25 o me?y | 2. 23)
rT e

where the mean squared displacement is given by Eq. (19).One estimates/y ~ 1 MeV. As follows from (23),U, can-

not be obtained from the perturbation theoryedphc despite
this parameter is small. The reason is that the electron density
is proportional tol /(* — )? where the both displacements
are of the same order at< rr.

The change of photon energy (the last two terms in (14))
can be estimated through averaged magnetic and electric
fields

3.3.2. Smearing of the singularity

We see that electron “vibrations” due to its interaction with
photons results in the typical fluctuation length The sin-
gularity along thez axis is washed out within the thread
(along thez direction) of the subatomically small radius
rp ~ 10711 cm. This thread state can be call@domalous

3
electron state Uy ~ / &R [(HQ) (82 — ((H?) + <52>)0] (24)
One should emphasize that smearing of the singularity, 8
within the finite radius'7, occurs solely when the axis co- So the states in the well relate to the non-perturbative ap-

incides with the equilibrium position of the electron. This proach and they are exact. This means that each state is non-
corresponds to the potential2%r2 /2 at smallr. For a free  decaying,ImFE,,, = 0. Another property is that one can
electron the thread radius = oo sinceQ2 = 0. Inthis take any energy,,; and arrive to the thread state. There-
case anomalous state does not exist. Instead there is the ust@le the spectrum of states in the well is continuous and non-
Lehmann representation of the electron propagator in quardecaying. This contrasts with a usual potential well which is
tum electrodynamics [31]. In other words, anomalous state ifixed and is not adjusted to each electron state. The continu-
impossible for free electron. ous non-decaying spectrum in a well in presence of a contin-
The direct average of the electron density (15) formallyuous medium is not forbidden in nature. Such spectrum was
results in the logarithmic divergence at small arguments. Theevealed in Ref. [38] on the basis of the exact solution.
direct average of higher spatial derivativesa&sults in even The similar well creation occurs, for example, in attrac-
stronger divergences. For this reason, it is convenient to avetion of two hydrogen atoms at large distances [31, 39]. This
age the number of electrons which are at the interval betwee@asimir (van der Waals) attraction is of the eV scale but the
r andr, physical mechanism is of the same nature, namely the pho-
ton zero point energy becomes variable in space due to spatial

Te

e variation of photon density of states. Usually in the Casimir
N(r) =2ma / n(r)ridry ~1n =, (22)  effect the force is calculated but the method, based on energy
T calculation, is equivalent.

wherea is the length of the thread.

After the averagéN (r)) becomes a smooth functionof
with the typical scaler. Its derivative with respect topro- It happens that the formally singular solution of wave equa-
duces the physically smooth electron density with the saméon does not terminate its story. On short distariges'® cm
typical scale inr. This density has the peak at the threadthe natural singularity source enters the game. This source

3.5. Comments

positionn(rr) ~ n(r.)r?/rk ~ n(r.)he/e?. relates to the generation of electron mass. The fluctuating
More details about smearing of the singularity are inelectromagnetic field washes out the singularity alongzthe
Ref. 35. axis turning it into the thread of the subatomically small but
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finite radius10~!! cm. Within the thread, due to the local 7z
reduction of the vacuum energy, the well of MeV scale depth
is formed. /
The phenomenon occurs when thaxis coincides with
the equilibrium position of the electron at some macroscopic y
potential extended along that axis. The thread state of the free
electron is impossible. a
An electron motion in vacuum in the static homogeneous
magnetic fieldd also corresponds to a finitg-. In this case /
one should substituted in (19) by the cyclotron frequency X
|e| H/mc. According to (19),

FIGURE 1. Anomalous state in the form of the circle of the radius
439 x 109 a ~ 1078 cm. The thickness of the ring thread is on the order of
rr o~ 0.264 /1In — x x 107" (cm). (25) 107" cm. The electron momentum along the ring produces the
H(T) angular momentum in thedirection.

At H = 1T the radiusry ~ 1.23 x 10~ cm. Therefore where the vectofi has thex component only and its de-
anomalous electron states in magnetic field in vacuum arpendence is weak. The evaluation of the second term, as in
possible as in condensed matter. The spectrum of these stédec. 3.4, shows that it corresponds to the enhancement of
is continuous (no transverse quantization) and they can bile electron kinetic energy. Analogously an evaluation of the
bound with the binding energy of the MeV order. So the elec-electromagnetic part also results in energy enhancement
tron anomalous states in a magnetic field substantially differ
from Landau ones [30]. 2 2 ou, \* (04,

. . . . (VXA)—>(V><A)+( ) (”) (27)

Usually subatomic physics deals with nuclear and particle 0z ox

phenomena of scales well below the Bohr radius. It appears i i
that electron states of a subatomic size are possible. The{/€ See that a deformation of the valley costs energy and this

are localized at positions separated from nuclei. Due to shofecalls @ defolrmgnon_ of an elasfnc Sé:lngh When lt_he thread is
distances these states relate to MeV energies. So the orighftWeen two lattice sites its preferable shape is linear.

of electron MeV energies in condensed matter is paradoxical A linéar thread is not its unique stable form. The thread
solely at first sight. can be in the form of ring shown in Fig. 1. A local deviation

of the valley from the perfect circle, as for a linear thread,
costs energy much larger than the Coulomb one. Therefore
4. Thread shape the thread can be a nearly perfect circle and solely its radius
is to be determined.

The thread can exist solely along a valley of equilibrium elec-  |n a given potential valley the thread energy does not de-
tron positions in some potential. These positions are genepend on its length (compare with (24)). To create a valley
ally along a curve in three-dimensional space. A small deviof the length2ra conduction electrons in a crystal should
ationr of the thread from that curve costs energf2’r*/2  be rearranged requiring the energye2a/a% of valley for-
whereris the direction locally perpendicular to the curve.  mation @z = h?/me? is the Bohr radius). On the other

In metals a potential along the above valley can be crehand, to reduce the bending energy of the circular thread,
ated by a redistribution of conduction electrons related to thehe radiusz has a tendency to increase. There are electron
energy pay of- 1 eV. But the energy gain, due to electrons in and photon (24) contributions to the bending energy. To es-
the MeV well, is of the order of 1 MeV. Therefore existence timate the latter one one should account for the explicit ra-
of thread state in solids is real. The thread may be of variousdlial dependence of the magnetic field in Eq. (24). For ex-
shapes and lengths. For example, the thread can be restrictaghple, in the cylindrical coordinates the radial component
by two lattice sites taking the position between them along &, = (9A. /dy)/r — A, /9 results in the contribution to
minimum of the electrostatic potential created by lattice siteshe energy (24) with the part
and redistributed electrons.

Electrons in a solid can be redistributed in various man- 2 0A, 2 0A., ?

onsin a ted <Hr>—<<) >+<(> > (28)

ners providing various curves for the equilibrium valley. Sup- 0z rOp
pose this curve to locally deviate from the straight line along
the z axis and it becomes at = u(z) wherery < |ul. If
to take new variable$r — i, z} in Eq. (7), then in the new

In the expansion

1 1 2(r—a) 3(r—a)?

variables BT 3 + pr (29)
2 2 Oug \* O°F the first t Its in the derivativid. /o hich i
_V2F — —V2F — > (26) e first term results in the derivatived, /0(ap) which is

0z Ox analogous to the derivative along the thread in the linear case.
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4\ /& potential electron
g \ density

? C}} 4 localized

FIGURE 2. Ring position inside the lattice of a solid. The ring size T electrons
is on the order of Bohr radiuss. 0

] o FIGURE 3. r is distance from the center of the ring of the radius
The second term is averaged out. The contribution to the eny shown in Fig. 1. The position = 0 is taken. The electron(s),

ergy (24) reads localized deep in the anomalous well of the size— a) ~ rr,
produces the Coulomb barrier for the conduction electron of the
dPrdz 0A, 2 3(r — a)2 energyEr. The circle is of the radius.. The electron density
/ 8w < (3a<ﬂ> > a2 : (30) decays from the thread tilir — a) ~ ap. Then it increases going

over into the state of conduction electron.

Subtracting the tern...)o, related to absence of the electron
as in (24) and using the estimdte— a) ~ rr, we obtain

) 5. Electron states of the energye'r

r2 h
bendi ~ LUy~ —. 31
endimg energy a% 0 a2 (31) The subatomic potential well of the depilyy ~ 1 MeV

is sketched in Fig. 3. The well acquires electrons from the

Here we accounted for the approximate relatiofir. ~ 1. solid which occupy deeply localized states in the well. This
The electron contribution to the bending energy is of the sam@rocess is energetically favorable. Transitions of conduction
type as (31). The minimization of the total energy, consist-g|ectrons to the well region is restricted by the Coulomb bar-
ing of (31) and valley creation one, results in the estimat&ier around the thread created by electrons already localized
a~ag. in the well. When the numbeN of electrons in the thread

A position of the tread circle of the radiusap is shown  exceeds the certain critical value the barrier prevents further
in Fig. 2. Deviations from the exact circular form cost a penetration due to a small tunneling probability of electrons
large energy (comparable with MeV) and therefore the threadf Fermi energyt .
forms almost perfect circle. Its radius weakly depends on a
crystal field. Effects of the ring on lattice sites are notimpor-5.1.  Origin of electrons localized in the well
tant for our purposes. One can consider angular momenta of
the ring created by a current along the thread. Suppose: = /x? + y2 andz are distances from the center

The creation of anomalous threads in a solid is describe@f the ring as in Fig. 1. The electrostatic potential of the ho-
in Ref. 36. They can be produced either by an irradiation ofmogeneously charged ring with the total chatgéin Fig. 1
keV ions of the metallic surface or by an occasional expohas the form at = 0 [40]
sure to radiation. In these processes not the ion keV energy

2 Yy
is relevant but the spatial variation of electric charge density ep = 2Ne K (2 ar) , (32)
created by ions de Broglie wave length—!! cm [36]. Un- m(r + a) rt+a

der this condition the matrix element between anomalous and . T 2
conduction electron states of same energies is not small AIsWhereK s the elliptic integral. Atlarge, cp = ¢ /r. The
- MQectric field is€ = —V. Close to the threadr — a) < q,

shock waves, propagating in a metal, can cause thread forma:

tion.We emphasize that rings are not created during the usugfz =0
crystal growth since the scal®~!! cm is not involved into < Ne? Ne? ) a 33
that process. = rar—a) oma® " r—a] (33)
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The Coulomb barrier (32) is sketched in Fig. 3. Con-energy is characterized by quantum number but not by,
duction electrons of the Fermi energy leak through the barandi, separately. The corresponding electron state continues
rier (32) via tunneling increasing the numh¥rof electrons  from the thread to outside.
localized inside the thread N saturates when the tunnel- Those quantum mechanical effects, that is without pho-
ing probability becomes extremely small. To get a generatons participation, do not influence superconducting state or
impression about this probability one can approximate pairing effects. Analogously spin-orbit phenomena do not af-
by e?/(r — a) and then in the approximation of Wentzel, fect a superconducting state as known.

Kramers, and Brillouin [30] the tunneling probability is
23.2N

1 ( N7T€2 2m ) 1
— ex — _ P — = —ex R —
fo P RV E:) 16 | Ere)
In this section we study how the electron state, close to the

wherem is the electron mass ang ~ 107'° siis a typi-  thread circle in Fig. 3, goes over into a conduction electron
cal atomic time. We considerwave only. The parameter at Jarge distances. We start with the effect of the interaction
(e2/h)\/m/Er in (34) is on the order of unity (not a semi- with photons atr —a) < ap.

classical regime). The coefficient 23.2 is of the numerical

origin. If to take a typicalE'r, the expectation time of filling 6.1. Lamb shift

the well, containingV electrons, is estimated g8V —1%) s, o

For N = 1,2 the expectation time is not large but fdf = 3 Fjrst of all, we emphasize that the Lamb shift, considered in
it is years. Therefore the number of electrons, localized inpjs section, does not relate to atomic levels. In our case this
the well, in Fig. 3 is no more than two. is an energy shift of electron levels closefg caused by the
Coulomb field of an electron localized deep in the well (in
presence of the electron-photon interaction) in Fig. 3. The

The potential energy in Fig. 3 is electrostatic one (32) sup@ssociated electron density is plotted in Fig. 3.
plemented by the deep well at= a. At this region, inside The description (.1(.5) and (17) of the La.mb shiftis referred
the circle in Fig. 3, the electron-photon interaction is essent®! = 0- Wheni 7 0 itis better to use the first non-zero term
tial (Sec. 3.). Besides deeply localized electrons in the well©f the perturbation theory for the Lamb shift [31]

there are also states close to the Fermi endigy Such o3

state starts with the part, localized close to the well region E; = _ﬁ< 13(E x 7)), (35)

((r — a) ~ ap), and shown by the dashed curve in Fig. 3. Tm=c

At larger distances that state goes over into the CondUCtioﬁccounting for the relatiol’ —

. (34) 6. Spin imbalance state

5.2. Electron state

R x {one can obtain from

electron shown by the solid curve. (35)
The state in Fig. 3 is stationary since the lifetime of states 2h(s,l,) /| 7 Deg
in the subatomic well is infinite [36, 38]. This happens since Ep = ﬁ< ‘ﬁﬁ >, (36)

the electron-photon state inside the thread is of polaronic type
but not of dissipative one when the reservoir is a perturbationwhere onlys.. . part survives after the spatial average.

The particular example of such state is studied in [38]. One The main contribution to the matrix element in (36)
can qualitatively explain why photons are not emitted in thatcomes from the underbarrier wave function in Fig. 3. Esti-
state. The electron is connected to the the thread region andating from the second term in (38 /0R ~ €2 /a%, we

is dragged by it. Under photon emission the thread wouldbtain

oscillate increasing the electron kinetic energy. This prevents W, a3

the electron to lose its total energy resultmg.m non-decaying Ep = —2(s.l.)en, ep ~ me- (6) ) (37)
states. So thé&'r electron does not go down in energy at the h? \ hc

deep well by quanta emission.

The ring in Fig. 1 has the angular momentiify due to The usual spin-orbit terrf¥ is a part of the Hamiltonian
the circulating current. The underbarrier wave function andelated to the wave equation [31]. That term is time-reversal
its extension from under the barrier in Fig. 3 is topological asand therefore it does not influence superconducting state.
¥ ~ exp(ipl,) whereyp corresponds to rotation around the The Lamb shift result (36) also looks as one originated
axis. from some correction to the potential energy as in the case

At small distances from the ring: — a) < 7., withinthe  of spin-orbit. But the Lamb shift phenomenon is not reduced
circle in Fig. 3, relativistic effects are strong [36]. This re- to a correction of the potential energy. The point is that in
minds strong relativistic effects in some atoms where insteaébrmation of the result (36) virtual photons are involved [31].
of [s coupling there igj one. In our case thisjs j, coupling  Due to this the motion is not characterized by an electron
due to cylindrical (circle) symmetry. The crystal field hardly momentum only which changes sign under the time reverse.
violate the narrow region around the thread whgrg cou-  Therefore opposite spins, referred to the split (37), produce
pling is formed. This means that for the thin thread circle thethe depairing effect on superconductivity.
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(ntl)e ?
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T, T
!

(a) (b)
FIGURE 4. Scheme of the spin imbalance state close to the ring.
With the magnetic field energy differences @) and (b)E™ be-

269

energy

tween electrons of opposite spins are shown by arrows. Without

the magnetic field the energy difference is the saf@e,+ 1)er,
for the both cases (broken lines).

6.2. Spinimbalance states

The total angular momentugy = n + 1/2 (n > 0) can be
realized in two ways
{l, L=n+1} Er=(

{{Ta lz:n}

Arrows up and down show spin directions along thaxis.
The value2l,s, = —n — 1 and2l,s, = n produce Lamb

1
jz:n“r?i )5L

38
ELifTLEL. ( )

FIGURE 5. Scheme of the spin-imbalance state in the volume of a
metal. The states of opposite spins are separated in energy by “stiff
dumbbells”. For convenience these subsystems are drawn shifted
in momentump. The entire system (within the circle) oscillates,
along the energy axis, under interaction with phonons keeping the
same energy split (40) between opposite spin subsystems. These
oscillations are denoted by dashed arrows.

electrons are scattered by lattice sites and impurities. These
processes are elastic and therefore the electron keeps the en-
ergy split (40) for opposite spins. In the volume electrons are
no more described by orbital quantum numbers but instead
by momenta in the latticg. Electrons of opposite spin relate

to the energies(p) + (n + 1)er ande(p) — ner, wheres(p)

energies in (37). Analogously, the total angular momentumyg e energy spectrum in the lattice

j. = —n —1/2 (n > 0) can be realized also in two ways

{

. 1
jz:_n_§ =

{Tv l,=—n-— 1} Er=(n+1)ep,

39
(L= —n) (39)

EL:—neL.

This is shown in Fig. 5 where “stiff dumbbells” separate
in energy electrons of opposite spins. The energy split (40)
for opposite spin directions remains stiff in the crystal lat-
tice within the spin-lattice relaxation length (approximately

The energy split (broken lines in Fig. 4) between pair of statego (ic/€?)?) which is a few microns. Within this scale there

in (38) or (39) can be written in the form
AEp, = (2n+ 1)ey, (40)

at any integen.

is no equilibrium between Fermi levels of subsystems with
opposite spins as shown in Fig. 5. The number of spin up and
spin down electrons are the same. When the mean distance
between thread rings is shorter than the spin-lattice relaxation
length, such spin imbalance state exists in the entire volume.

We see that under spin-orbit interaction the level with theyjigh concentration of rings (on the order of crystal ions con-

fixed j, was double degenerated with = j, + 1/2. The

centration) is not necessary for that. Thread rings, distributed

electron-photon interaction removes this degeneracy. Tha the volume, are the driving force for spin imbalance state.

is similar to hydrogen atom where spin-orbit interaction re-
mains degenerated two states with the sgnheit different
I = j +1/2. The electron-photon interaction removes the
degeneracy in hydrogen atom (Lamb shift) [31].

As shown in Appendix A, the wave function in Fig. 3 is
reasonably localized close to the ring amdiependence of
er, is weak.

6.3. Why small thread rings strongly influence conduc-
tion electrons

The above classification is applicable to the region of the

Bohr radius size near the thread ring. (At— a) < ap elec-

Inelastic processes in a metal, resulted from electron-
phonon effects, are characterized by the uncertainty
T3 /(hwp)? of the electron energy (imaginary part of the
spectrum). Herep is the Debye frequency. Those processes
can be interpreted as oscillations, along the energy axis, of the
entire system (the circle in Fig. 5). This is shown by dashed
arrows. Under these oscillations the energy split between op-
posite spin subsystems in Fig. 5 remains the same. The total
spin imbalance state is a superposition of ones characterized
by energy splits (40) with various.

There is a difference in states in the bulk generated by
thread circles and ones in the usual scattering by impuri-

tron states with opposite spins are split in energy accordingies. The latter hardly influence electron states in the volume.
to (40). After coming out from under the barrier in Fig. 3 Atomic size rings also can be treated as impurities. But the
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essential feature of such impurities is the inner structure of {Z (—hw + EZ) + T-1. i Ezkz} AlT — (42)
them with the subatomic region within the thread. The state 8T T "

parameters (spin imbalance), formed on that small scale, are i T_T

stiff and transformed through a relatively transparent barrier [ST( hw+ EF) + —F <+ §2k2} All =0, (43)
to the bulk.

There is an analogy with the usual impurity scatteringwhereé ~ hvr/T. is the coherence length. These propa-
when the impurity also has an inner structure: a discrete ergators differ from usual ones [41] by non-zero enerdigs
ergy level. In this case the scattering amplitude of particlesPue to gauge invariance it is impossible to elimin&tg in
with the energy close to resonance one (Wigner resonandbose equations by choosing proper phases,ofThis is due
scattering), is anomalously large [30]. In our case each rindgo the difference in Fermi levels of two subsystems with op-
also can be treated as a stiff boundary condition for conducposite spins in Fig. 5 where paramagnetic shifts are included.
tion electrons. At first sight, one can choose the new gaufye —

exp(ix)A to compensat&:*, or a part of them, byhy. But

in this case additional non-stationary terms appear in the for-
6.4. Influence of the magnetic field malism of the diagram technique né&rand the final result

for resistance remains the same asyfot 0.
The action of the external magnetic field on the spin imbal-  The specificity of spin imbalance state, resulting in the
ance state is not described by the Zeeman !zeg‘nﬁ + 2§)H propagators (42) and (43), is shifted Fermi energies of sub-
(not by ag-factor), as for an atom, since in the volume theresystems with opposite spins. This state is supported by rings
is no orbital quantum numbér Herepup = |e|h/2mcis  distributed in the volume. In the usual equilibrium metal
the Bohr magneton. The orbital part goes over into the diaFermi levels of subsystems with opposite spins coincide (the
magnetic one(e/mc)p4, in the volume. Due to impurity |ength of the upper “dumbbell” in Fig. 5 is zero). In this case
scattering the diamagnetic part provides the continuous spirthe Zeeman terms in Egs. (42) and (43) are absent. Instead
independent contribution to the total spectrum. This is nothere is the depairing terfuz H/T)?. See also [42, 43].
significant for our purposes. Therefore the influence of the=ormally this follows from Appendix B, where in Eq. (B.2)
magnetic fleld can be accounted for through the paramagnetifie arguments of tangents are not shifted®y (coinciding
part2upsH only. Fermi levels).

Suppose the applied magnetic fidido be directed along
thez. The paramagnetic energy zs. H entersthe game. To 7.1. R(H) oscillations

be specific supposE > 0. Then for the cases (38) (Fig. 4(a)) ) . . . .
and (39) (Fig. 4(b)) the level splits are Above T, the electric resistance differs from its value in the

normal metal by the fluctuation part which is determined by
fluctuation propagators (42) and (43) [41]. The measured
R(H) is asum on spin directions and depends on all propaga-
_ _ torsALT andAl!. Contributions of propagators to resistance
where two energies refer to the states wsith= +1/2. are negative. With finite energy shifi&T these contributions
When in layered compounds thread circles arean  are enhanced by the factor proportional & | /AT (com-
planes, the magnetic field in Eq. (41) is one directed alongare with [41]). This factor essentially increases the fluctu-
thec axis. When the circle plane is perpendiculazt@lane,  ation contribution since\T" is a small width related to the
H in Eq. (41) corresponds to one in thiplane. fluctuation region nedf.. At 5 = 0 the factor equals unity
which is the conventional case of non-shifted energy [41].
Well below T, any oscillation effect, related to the condition

7. Effect on cooper pairing EF =0, is small since it is determined by /T...
Therefore the most weak contribution F, | occurs

The Cooper pair can be formed by the electron with the ener\Nhen that value is zero. This condition (mOStly restored nor-
giess(—p)— Ep —nep +ppH ande(5) — Er+ (n+1)e,—  Mal resistance) corresponds to pronounced maxima on the

pupH (Fig. 4(a)). The former refers to the state (denoted ag?(#) curve. Positiond],, of maxima ofR(H), correspond-
1) with the spin superposition along theaxis and alongi.  ing to the conditio £, | = 0, are
The latter(]) relates to mutually inverted spins. As plotted

e (L) as

ET =(2n+1)er F2upH, (41)

AH =L (44

in Fig. 5, the Fermi levels of subsystems with opposite spins B
B

are also shifted by the same energy.
Pairing of those spin imbalance states correspond to theith all integern. With the choiceH < 0 the energyE;"

order parameteA!!. Analogously the componenk'! is s involved instead o5, and the condition (44) remains the

formed, according to Fig. 4(b). AboVE. instead of order same for integen of any sign.

parameter there are fluctuation propagators satisfying equa- The calculated period oR(H) oscillations iSAH ~

tions (see Appendix B) 0.18 T. We use the approximate estimate (37). One should
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But in our case the electron distribution cannot be shifted
toward larger distances under the increasé,aflue to the
fixed position of the well att = a. As shown in Appendix
A, the electron distribution is localized closente= a which
results in a weak dependence=gf(and therefore oA H) on
T=21.5K n.

e T=22.9K In layered compounds thread circle planes are oriented in
+ T=23.3K two different ways: inub planes and perpendicular to them.

» T=17.7K * T=24.0K The former rings are responsible for the perioRid? ) when
=14.1K - T=18.8K ° $=24'9E H is perpendicular tab planes. The latter rings determine

© T=151K« T=20.1K @ T=265 R(H) whenH in in ab planes (Sec. 6.4.). These two possi-
bilities are presented in Fig. 6.

8. Discussion

We study the phenomenon which does not fall into the set of
known mechanisms. Universality ¢i(H ) periodicity with
respect to magnetic field orientation and a very weak depen-
dence on material turned us to look for a different scenario.
Likely a subatomic mechanism, which is material indepen-
dent, could relate to the phenomena observed. The non-trivial
issue in the whole story is the introduction of electron-photon
. . subatomic mechanism.
00 02 04 06 08 1.0 Itis unusual that subatomic phenomenon plays a substan-
B (T) tial role into condensed matter physics. We emphasize that
the subatomic mechanism involved is not referred to nuclear
ple [1]. The universal positions of maxima correspond to Eq. (44) and partlple phenomena but FO elgctron ones. In th's paper.the
including “1/2”. Each peak can be marked hy— 0,1,2... (a)  Subatomic electron mechanism is proposed which explains
The case of3+. (b) Temperature control. (g3 curves in same  the unconventional experimental results. In that mechanism
sample. the spatial scale of the electron system is of the Compton
length/mc ~ 10~ cm. This is10® times less than the
emphasize that the oscillations Bf H) in the fluctuation re-  atomic size.
gion are due to the periodic i coincidence of Fermi ener- The basis for that is a state where the electron density is
gies for opposite spins. formally singular on the certain line. This is possible accord-
Experimental magnetoresistance curves for different oriing to quantum mechanics of electron and arguments stem-
entations of the magnetic field are shown in Fig. 6. Positionsning from mechanisms of its mass generation. Due to the
of maxima of resistance coincide very good with the condi-interaction with photons the electron “vibrates” leading to
tion (44). First, the periodicity follows from the theory. Sec- smearing of that singularity within the thread of the subatom-
ond, the observed periodicity. 1557 is close to calculated ically small radiusl0~!' cm. This anomalous electron state
one. Third, even “1/2" in Eq. (44) corresponds to observais accompanied by a well of the depth 1 MeV localized
tions. within the narrow thread region. This energy scale is unex-
We see that the positions of maxima on the oscillatorypected in condensed matter. The origin of the well is due to a
curve R(H) are determined by paramagnetic effects relatedocal reduction of electromagnetic zero point energy.
to the conditionE;F = 0. To analyze the entire shape of the  The thread is not necessary linear. The subatomically thin
curve (for example the steady slope) one should include alsthread can be in the form of a ring of approximately Bohr ra-
diamagnetic effects. dius. In a metal the role of such rings is unusual due to orbital
The periodicity of peak positions in Fig. 6 is within the momenta of the ring along the axis (perpendicular to the
5% uncertainty. On the other hand, the matrix element (36)ing plane). The substantial issue is the subatomic smallness
depends on the wave function outside the deep well in Fig. 30f the thread thickness. Due to this, inner properties on such
In turn, that wave function depends @nsince usually at scale do not depend on the crystal field.
larger orbital momentum the wave function is localized at  Close to the thread (on the Compton length) relativistic
larger distances from the center. This would reduce the maeffects are strong resulting i j. coupling analogous tgj
trix element (36) at larget,. Thereforeey, in Eq. (37), coupling in some atoms. So relativistic quantum mechani-
strictly speaking, depends onviolating the periodicity on  cal states are marked by. At atomic distances from the
magnetic field. thread, due to the interaction with photons, the state of the

FIGURE 6. Magnetoresistance curves $mg.ssLag.12CuO2 sam-
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Fermi energy is split by two ones, with = j. +1/2 and  Such states are the subatomically thi®(** cm) threads
I, = j. — 1/2. This is similar to the Lamb split in hydro- in the form of the rings of approximately Bohr radiu)(®
gen atom where, instead sfcomponent, total momenta are cm). In the thread region the subatomic potential well of the
involved due to spherical symmetry. MeV depth is formed which is unusual in condensed matter
The electron of the Fermi energy probes the well of thephysics. From thread regions electron states continue to the
MeV depth close to the thread. Those states, with energy splitolume producing there spin imbalance state. This state is
for opposite spins, are continued across the barrier to larggrobed in the measurements. Calculated universal positions
distances going over into conduction electrons clogégon  of peaks(n + 1/2)AH (n = 0,1,2...) on the R(H) curve
energy. For this reason, that narrow stiff region plays a rolere in a good agreement with measurements.
of a boundary condition for conduction electrons moving in
eV crystal field. This keeps electrons with opposite spins in
the volume to be separated by discrete Lamb energies. .
Such spin imbalance state in the volume is relaxed, due tg\ppendlx
spin-orbit effects, on the distance of a few microns. But when
the mean distance among rings is smaller, the spin imbalancd. Dependence ot onn
state exists in the entire volume of the metal. Note that usual

impurity atoms result in simple scattering of conduction elec-Below we evaluate the form of the underbarrier wave func-
trons with continuous energies. tion which is responsible for the parametar (37). This
That spin imbalance state of conduction electrons, withfunction describes the electron outside the circle in Fig. 3. In-
discrete energy splits for opposite spins, influences thejde that circle the electron-photon hybridization occurs and
Cooper pairing condition. The resistance in Ref. [1] wasa description by the wave equation is not valid. That circle
measured close t@, in the fluctuation region. Under this (thread) region p|ays a role of a boundary condition for the
condition the fluctuation correction to the resistance of norputside region. For simplicity one can consider the constant
mal metal is determined by the fluctuation propagators. Theypotential energy instead of the Coulomb one (32). In this

in turn, depend on energy shifts of different spin states. Thesgase it is convenient to use the dimensionless &tihger
energy shifts can be subsequently turned to zero by the extegquation

nal magnetic field. Therefore the resultiR§H ) dependence

becomes oscillating as in experiments. There is a good coin- 2 .

cidence of the expgrimental,pFig. 6, and theoreticagla, Eq. (44) —V v = ed(2)0(r — a) exp(il: ), A1)
(including “1/2"), positions of magnetoresistance peaks. ] o ]

In a solid threads can be created during sample prepardhere the right-hand side is analogousit@) for the lin-
tion or through exposure to radiation. For example, ions of@r thread along the axis in Sec. 3.3.. The coordinates
keV energy, bombarding the sample, have the wave IengtFF'ate to Fig. 1. The_ constaiat s;ays fqr the normaliza-
~ 10~ cm and produce charge density of the same scaltion of the wave functloq. The dimensionless~ 1 cor-
after reflections from lattice sites. The matrix element of thaf ©SPONds to the Bohr radius;. In Eq. (A.1) the components
perturbation between a conduction state and anomalous ofig= {7 €08 ¢, 7 sin ¢} are used.
is not small. Samples with identical materials and geome- Itis easy to show that the Fourier component of the wave
try, fabricated under different conditions (at different labs),function is
can exhibit oscillatory magnetoresistance or not regarding
threads generation in_a sample in the process of_fabri_catio_n_. Vp = 2emaexp (_mlz il 1) Ji, (ka) . (A2)

The observed oscillatory magnetoresistance is an implicit 2 k2 +Ek2+1
manifestation of anomalous states. One can compare this
with observation of X-ray laser pulses from the “dead” sam-where

ple during 20 hours (see [36]). In that case there is an explicit o
manifestation of anomalous states. df . —
: . e Jo(w)= [ — —inf + 0 A3
Anomalous electron states in vacuum in a magnetic field n(v) / 2m exp(—inf + ivsin ) (A-3)
are possible as in condensed matter. The spectrum of these 0

state is continuous (no transverse quantization) and they can . -

be bound with the binding energy of the MeV order. So thelS the Bessel function ankd = {k cos ¢y, ksing:}. As fol-
electron anomalous states in a magnetic field substantialllPWs from (A.2), the wave function is

differ from Landau ones.

b(F, ) = caexp(il )7 il
. r,zZ) = Xp(2ly ————
9. Conclusions P QO. 2v/1 + k2

0

The observed universal oscillations of magnetoresistance are (
, . : > Of — 2]V 2) . (A4
associated with subatomic states inside the superconductor. xexp | =2 + k2 ) Ji. (ka) Ji. (kr) (A-4)
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Close to the axis of the ring B. Fluctuation propagator in spin imbalance
. state
At r < a one can use the asymptoti€s(v) ~ (v/2)"/n! at
small arguments foy;_(kr). The resultis Suppose that in Fig. 5 the left spectrum refers to $pjrand
the right one to to spif!). Fluctuation propagators (42) and

. c ) rl [ oty (43) depend o andk. As the first step, suppose = 0.
»(T2) = o1 &P (ipl.) (%) /\/ﬁ 1. (v) We consider the phonon mechanism of pairing. The final re-
0 sult hardly depends on this choice. Then the propagator is
determined by the equation [41, 44]

X exp (ZWW) . (A.5)

1 7 de
T — Q. | Al = B.1
Close to the thread <g+ / 4m~Q) n =0, (B.1)

— 00

In the limit (r — a), z < a largek in (A.4) are essential. whereg is the electron-phonon constant and

With the asymptotics
_ Ll m e —hw— E2
/dé‘p [ (Gsf) (G:Fhwp) tanh T

2 ™m o w
Jn(v)_y/acos(v—j—z), < (A.6)

e—FE; _an +A "
: — tanh G G =Q.. (B2
it follows from (A.4) M ToT (G5) ( 5—’“”’) Q. (B2)
. c . 1 Here retarded and advanced Green’s functions are
w("’72) = Eexp(lgolz) lnm . (A?) m
(G PN =(e—¢—E +i6)" (B.3)
The wave function logarithmically diverges close to the RN N
thread as it should be (Sec. 3.3). (G5 =(e+ &+ B £id) ™, (B.4)
Ear f he r where¢, = e(p) — Er (we suppose the isotropic particle
ar from the ring spectrune(p)) and the positivé is small. In equations (B.3)
In the caser < r in Eq. (A.4)kr ~ 1 andka < 1. Accord- and (B.4)
ing to these limits, Ey=(n+1)e, —ppH, Ey=—ne,+pupH. (B.5)
S c . exp(—|z : -
W(F, 2) = —— exp (ipl.) (2 21) In_gq.+£B.2) there is also the cross term, containing
21! r GZ "G, butit does not contribute in our case [44].
L% Performing the pole integration &p in (B.2), we obtain
aN'= l.+1
X (;) /” Ji.(v)dv. (A.8) e P =By i e By
0 =T R ™ 2T R: M Tor 0 W
Dependence oty onn whereR, = 2e — hw — Ey + E3 + 2i6.

The integration in (B.1), with the expression (B.6), con-
One can conclude from Egs. (A.5) and (A.8) that the electrorsists of the pole part and the contribution of large> 7.

density|/|* strongly decays with the distan¢e — a) from  According to that, the equation (B.1)reads
the ring. In other words, it is localized close to the ring since,

after the adjustment of the constant { 1 “P e L
— — — tanh —
2 52 ] 2T
/le d*rdz=1 (A.9) 0
e g 1 _
for all 1. + 8T(E1 By — hw)| Ay =0 (B.7)

The Lamb energy;, (37) is determined by the formal
matrix element (36) wherg)|? is integrated with the elec-
tric field. This field contains the part (the first term in (33)) i ' .
which is odd with respect tér — a) and therefore weakly T_he integral in (B.7) is evaluated aswp/T". Due to _the

. . i . . relation for the phonon moddl/|g| = Inwp/T., the first
contributes to the integral in (36). The second term in (33) |s[WO terms in (B.7) arén T'/T, which is (T — T.) /T, close to
even with respect to- — a) and slightly varies close to= a T Now it foIIoWs from (B 76) e/rre
where|t|? is mainly localized. Therefore, due to the condi- =< '
tion (A.9), the matrix element (36) hardly depends onFor % T-T,
this reasong;, andA H in (44) weakly depend on. 8T T

with the upperwp cut off. In the second term in (B.7) we
neglectediw, £, andE>; which are small compared .

(—hw+E;) + All =0, (B.8)
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where we use the relatiofl, — E> = E;.

Before we consider the harmonics af," with & = 0.
It is not difficult to account for finitek. After the routine
procedure with the substitution in (B.4) — &, — Tpk,
one obtains Eq. (42) with the coherence length hivp /T,.
Analogously one can derive Eq. (43).
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