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Wavelet characterization of hyper-chaotic time series
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A wavelet scaling numerical characterization of time series based on the variance of the wavelet coefficients is used for three well-known four-
dimensional and one five-dimensional hyper-chaotic systems. We report several scaling behaviors for the variables of these hyper-chaotic
systems.
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En este trabajo se realiza una caracterización de escala nuḿerica de series de tiempo hiper-caóticas basada en la varianza de los coefi-
cientes ondeleta de tres sistemas hiper-caóticos conocidos de cuatro-dimensiones y uno de cinco-dimensiones. Se reportan los diferentes
comportamientos de escala de las variables de estos sistemas hiper-caóticos.

Descriptores: Series de tiempo hiper-caóticas; transformada ondeleta discreta; varianza ondeleta; análisis de escala.
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1. Introduction

The wavelet transform (WT) is a mathematical tool for ana-
lyzing (decomposing) or synthesizing (reconstructing) a wide
variety of generic signals at different frequencies and with
different resolutions. In the wavelet analysis, a signal is de-
composed into a type of functions called wavelets, which
are translated and scaled versions of a finite-length and fast-
decaying oscillating waveform. The latter is usually re-
ferred to as the analyzing wavelet basis function, or sim-
ply the mother wavelet. Similar to its preceding Fourier
analysis, the wavelet analysis also contains various, closely-
related forms of its transform, namely the continuous wavelet
transform, the wavelet series, and the orthonormal discrete
wavelet transform or, for short, the discrete wavelet trans-
form (DWT). However, the most common choice to perform
the analysis and synthesis of the original signal is the DWT
because of the enormous versatility for computational calcu-
lations offered through its multiresolution filter bank struc-
ture [1,2]. Just as in the other existent formats of the wavelet
transform, the DWT is endowed with temporal resolution as
a unique key advantage over its Fourier transform counter-
part which allows to capture both the frequency and location
information of the raw signal being processed in this way.

To the best of our knowledge, the class of hyper-chaotic
systems,i.e., those dynamical systems having at least two
positive Lyapunov exponents, have not been directly studied
by means of wavelet transforms. This motivated us to pro-
vide here a wavelet scaling analysis of four hyper-chaotic sys-
tems, of which three are four-dimensional – Chen, Chua, and
Rössler – and one is a recently introduced five-dimensional
system. All these systems are reviewed in Sec. 2, where we
briefly present their systems of equations and attractors for

values of the parameters corresponding to the hyper-chaotic
regime. Section 3 is devoted to a short description of the
DWT. The main results are in Sec. 4, where we apply the
wavelet analysis to the time series (TS) of the variables of
these systems when they are in the hyper-chaotic regime. The
paper ends up with a short conclusion section.

2. Hyper-chaotic systems

This section is devoted to a brief presentation of the four
hyper-chaotic systems which we will consider in this work.
These systems, despite their relative simplicity, exhibit a
more complex dynamics than the chaotic systems, and they
have received wide coverage in different areas of mathemat-
ics, physics, and engineering, among others [3–9].

2.1. Hyper-chaotic Chen system

The hyperchaotic dynamics of Chen’s system is modeled by
the set of differential equations [4,6]

ẋ = a(y − x),

ẏ = x(d− z) + cy − w,

ż = xy − bz,

ẇ = x + k,

(1)

wherea, b, c, d andk are parameters of the system. Ifa = 36,
b = 3, c = 28, d = −16 and−0.7 ≤ k ≤ 0.7, the system
(1) is in the hyper-chaotic regime. In fact, to check the ex-
istence of hyper-chaos, there must be at least two positive
Lyapunov exponents. The numerically calculated exponents
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FIGURE 1. The hyper-chaotic attractors projected on the planex − z of (a) Chen’s system fork = 0.5, (b) Chua’s system, (c) Rossler’s
system, and (d) the 5D hyper-chaotic system.

are λ1 = 1.627, λ2 = 0.060, λ3 = 0.000, and λ4 =
−12.684, which confirms such hyper-chaotic situation. In
Fig. 1(a), we display the hyper-chaotic attractor generated by
the Chen system withk = 0.5 projected onto the planex−z.

2.2. Hyper-chaotic Chua system

We also consider the four-dimensional hyper-chaotic system
based on Chua’s sytem as defined in Ref. 5

ẋ = a(y − f(x)),

ẏ = x− y + z,

ż = −by − cz + w,

ẇ = −dx + yz,

(2)

with parameter values(a, b, c, d) = (30, 50, 0.32, 0.1111),
where the non-linear functionf(x) is defined as the follow-
ing cubic polynomial
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f(x) = px + (1 + q)x3, (3)

with p = 0.03 and q = −1.2. With the above-given
value ofd, we obtain the Lyapunov exponentsλ1 = 0.529,
λ2 = 0.017, λ3 = 0, andλ4 = −12.221, which confirms
the hyper-chaotic behavior. Figure 1(b) shows one hyper-
chaotic attractor projected on the planex − z. It is worth to
say that the spectrum of Lyapunov exponents depends on the
parameterd, and we may obtain different attractors for other
values ofd [5].

2.3. Hyper-chaotic R̈ossler system

This is the first system that has been shown to display hyper-
chaotic behavior [3]. It is described by the equations

ẋ = −(y + x),

ẏ = x + ay + w,

ż = b + xz,

ẇ = −cz + dw,

(4)

with parameter values(a, b, c, d) = (0.25, 3, 0.5, 0.05), for
which the corresponding four Lyapunov exponents areλ1 =
0.119, λ2 = 0.014, λ3 = 0, andλ4 = −15.859. Thex − z
projection of the hyper-chaotic attractor for this system is
shown in Fig. 1(c).

2.4. A 5D hyper-chaotic system

The last case to be considered is a recent five-dimensional
(5D) hyper-chaotic system defined in Ref. 7 and 8

ẋ = a(y − x) + yzw,

ẏ = b(x + y) + v − xzw,

ż = −cy − dz − ew + xyw,

ẇ = −fw + xyz,

v̇ = −g(x + y),

(5)

with the values of the parameters(a, b, c, d, e, f, g) =
(30, 10, 15.7, 5, 2.5, 4.45, 38.5). The corresponding five Lya-
punov exponents areλ1 = 4.270, λ2 = 0.2501, λ3 = 0,
λ4 = −11.294, and λ5 = −24.911. We can observe
that its maximum Lyapunov exponent is larger than those
of most hyper-chaotic systems, which implies more com-
plex dynamic behaviors compared to other systems. Besides,
there are cubic nonlinear product terms in four variables,
while the order of other systems is usually not larger than
two. Because of its significant complexity implying strong
security, this 5D system has been considered in secure com-
munication systems and cryptosystems [7, 8]. Figure 1(d)
shows one projection of this 5D hyper-chaotic attractor.

3. The Discrete Wavelet Transform

In the DWT context, the representation of a generic function
or process,x(t), is given in terms of the translated and dilated
versions of the wavelet function,ψ(t), as well as its associ-
ated scaling function,ϕ(t) [1, 2]. Drawing on this principle
and considering that the scaling and wavelet functions

ϕj,k(t) = 2j/2ϕ(2jt− k), ψj,k(t) = 2j/2ψ(2jt− k),

j, k = 0,±1,±2, . . . (6)

form an orthonormal basis, one can then write the expansion
of x(t) as

x(t) =
∑

k


aj0

k ϕj0,k(t) +
J−1∑

j=j0

xj
kψj,k(t)


 , (7)

where the scaling or approximation coefficients,aj
k, and the

wavelet coefficients,xj
k, are defined as

aj
k =

∫
x(t)ϕj,k(t)dt, xj

k =
∫

x(t)ψj,k(t)dt, (8)

with j and k denoting the dilation and translation indices,
respectively. To calculateaj

k andxj
k in a practical numeri-

cal analysis, the DWT utilizes the so-called multiresolution
analysis (MRA) approach. The key point of MRA is a mul-
tiscale, admissibility condition satisfying an approximation
design originally developed by Mallat and Meyer [2] whose
theoretical foundation would ultimately develop into what is
known as the fast wavelet transform (FWT). Consistent with
this idea, the FWT algorithm connects, in an elegant way,
wavelets and filter banks, where the multiresolution signal
decomposition of a signalX, based on successive decompo-
sitions, is covered by a series of approximations and details
which become increasingly coarser. As a result, a time-scale
representation of a digital signal is obtained through the suc-
cessive combinatorial coding of these digital filtering tech-
niques. Briefly, the said procedure starts with the partitioning
of the signal into an approximation and a detail part, which
both together yield the original signal itself. This subdivi-
sion is such that the approximation signal contains the low
frequencies, whereas the detail signal collects the remain-
ing high frequencies. By repeatedly applying this subdivi-
sion rule to the approximation part, the details of increasingly
coarse resolution are then progressively separated out while
the approximation itself grows coarser and coarser. This pro-
cedure in effect offers a good time resolution at high frequen-
cies and good frequency resolution at low frequencies, since
it progressively halves the time resolution of the signal —
signifying that only half the number of samples iteratively
characterizes the entire signal— while gradually doubling the
frequency resolution —since the frequency band of the sig-
nal spans only half the previous frequency band, effectively
reducing thereby the uncertainty in the frequency by half as
each decomposition level advances over. Figure 2 illustrates
a typical three-level decomposition procedure of the FWT,
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FIGURE 2. (a) A three-stage structure in a multiresolution signal
decomposition using a digital filter bank. (b) The frequency spec-
trum splitting by the filtersh[k] andg[k].

panel (a), with the respective frequency decomposition band-
width performed by the filtersh[k] andg[k] in panel (b). Note
that the bandwidth of the signal at every level is highlighted
in a different color on each panel of the figure.

The FWT calculates the scaling and wavelet coefficients
at scalej from the scaling coefficients at the next finer scale
j + 1 by utilizing the following formulas

aj
k =

∑

l

h[l − 2k]aj+1
l , (9)

xj
k =

∑

l

g[l − 2k]aj+1
l . (10)

In the above expressions,h[k] andg[k] are the low pass and
high pass filters, respectively, in the associated analysis filter
bank, whereas the signalsaj

k andxj
k are the convolutions of

aj+1
k with filtersh[k] andg[k] followed by a down-sampling

of factor 2 [2], respectively. The wavelet transform, as many
other available transforms, is reversible (i.e., it allows to go
back and forth between the raw and processed signals), pro-
vided that the admissibility condition is satisfied; yet, it still
exhibits high redundancy in the information it provides, sig-
nificantly increasing the amount of computation time and re-
sources for its processing. However, since the bandwidth fil-
ters utilized during the FWT process form orthonormal bases,
the synthesis, or reconstruction, of the original signal can
be conveniently performed by following in reverse order the
above mentioned procedure, signifying a meaningful reduc-
tion in computation time. In short, the reconstruction of the
original scaling coefficientsaj+1

k can be made from the fol-
lowing combination of the scaling and wavelet coefficients at
a coarse scale

aj+1
k =

∑

l

(
h[2l − k]aj

l + g[2l − k]xj
l

)
, (11)

which corresponds to the synthesis filter bank, and represents
the inverse of the FWT for computing Eq. (7). This part

can be viewed as the discrete convolutions between the up-
sampled signalaj

k and the filtersh[k] and g[k]. In other
words, by following an up-sampling of factor 2, the con-
volutions between the up-sampled signal and the filtersh[k]
andg[k] are calculated, essentially signifying that the num-
ber of levels depends on the length of the signal,e.g., a sig-
nal with 2L values can be decomposed into(L + 1) lev-
els. Fig. 2(a) illustrates a typical three-level decomposition
process of the FWT. The corresponding frequency decom-
position performed by the filtersh[k] andg[k] is shown in
Fig. 2(b).

3.1. Wavelet Variance

In the wavelet approach the fractal character of a certain sig-
nal can be inferred from the behavior of its power spectrum
P (ω), which is the Fourier transform of the autocorrelation
function and in differential formP (ω)dω represents the con-
tribution to the variance of the part of the signal contained
between frequenciesω andω + dω. Indeed, it is known that
for self-similar random processes the spectral behavior of the
power spectrum is given by

P (ω) ∼| ω |−β , (12)

whereβ is the spectral parameter of the signal. In addition,
the variance of the wavelet coefficients var{xj

k} is related to
the levelj through a power law of the type [10]

var{xj
k} ≈ (2j)−β . (13)

This wavelet variance has been used to find dominant lev-
els associated with the signal, for example, in the study of
numerical and experimental chaotic time series [11–13]. In
order to estimateβ we used a least squares fit of the linear
model

log2(var{xj
k}) = −jβ + (K + vj), (14)

whereK andvj are constants related to the linear fitting pro-
cedure. Processes or signals corresponding to1 < β < 3
are known as the fractional Brownian motions, whereβ = 2
corresponds to the classical Brownian motion. On the other
hand, processes within the interval−1 < β < 1, are termed
fractional Gaussian noises; for example the classical sta-
tionary Gaussian white noise is a special case withβ = 0
[10, 12, 14]. Equation (13) is certainly suitable for studying
discrete chaotic time series, because their log variance plot
has a well-defined form as pointed out in [12, 13]. If the log
variance plot shows a maximum at a particular wavelet level,
or a bump over a group of wavelet levels, which means a
high energy concentration, it will often correspond to a co-
herent structure or a fundamentalcarrier frequency. In ad-
dition, if the log variance of the wavelet coefficients plotted
against levelj shows a slope−β, thus the signal presents a
fractal behavior, which is consistent with the statistically self-
similar structure of the signal [12]. In general, the slope of
a noisy time series turns out to be zero in the variance plot,
therefore it does not show any energy concentration at spe-
cific wavelet level. In certain cases the slope of some chaotic
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time series has a similar appearance to that of Gaussian noise
at lower wavelet levels, which implies that these chaotic time
series do not present a fundamentalcarrier frequency at any
wavelet level.

4. Results

In this section, the scaling dynamics of the above-mentioned
hyper-chaotic systems is evaluated with the wavelet vari-
ance scaling analysis. The hyper-chaotic systems are simu-
lated numerically with the classical fourth-order Runge-Kutta
algorithm. To carry out the wavelet analysis, we use the
Daubechies wavelet function db2. This wavelet function pos-
sess several desirable properties such as orthogonality, ap-
proximation quality and numerical stability [1, 2]. Also, the
algorithm with the Daubechies family wavelet functions is
memory efficient and is reversible, whereas other wavelet
bases have a slightly higher computational overhead and are
conceptually more complicated.

For our illustrative analysis, we first examine the hyper-
chaotic Chen’s system (1). Figure 3(a) shows a part of the
TS of the z variable, whereas Fig. 3(b) displays a semi-
logarithmic plot of the wavelet coefficient variances as a
function of levelj, which is known as the variance plot of
the wavelet coefficients. One can notice that the whole series

FIGURE 3. (a)Time series of thez variable of hyper- chaotic Chen’s
system. (b) logarithmic variance of wavelet coefficientszj

k, and (c)
the reconstructed time series based on the sequence from the 6th to
the 11th wavelet levels.

FIGURE 4. (a)Time series of thew variable of hyper- chaotic
Chen’s system, and (b) the respective logarithmic variance of its
wavelet coefficientswj

k.

is dominated by the 9th wavelet level,i.e., the major share of
signal energy goes into this wavelet level. However, to catch
almost the entire energy, we add together the six neighbor
wavelet levels,j = 6 − 11. The reconstruction of the signal
at these wavelet levels is shown in Fig. 3(c), where the struc-
ture of the original signal can be noticed. A similar behavior
occurs in the TS of thex andy variables.

On the other hand, a different situation occurs for the TS
of thew variable, which is shown in Fig. 4(a). The logarith-
mic variance plot of its wavelet coefficients is displayed in
Fig. 4(b), where the line of negative slope indicates a frac-
tal behavior. The fractal coefficient is given by the slope and
its numerically calculated value isβ ≈ 2. This implies that
this variable is statistically self-similar and corresponds to the
classical Brownian motion. Such a situation does not occur in
the case of chaotic time series of 3D chaotic systems [12,13].

The second hyper-chaotic system that we study is Chua’s
system (2). In this case, the first 17,000 TS samples of the
z variable are shown in Fig. 5(a), while the wavelet variance
plot is given in Fig. 5(b), where the behavior suggests a sub-
stantial energy concentration. We have found that by sum-
ming over the wavelet levels fromj = 5 to j = 13 we are
able to have a good reconstruction of the corresponding TS
with the mentioned wavelet levels, see Fig. 5(c). However,
more than a half of the wavelet levels number is considered,
which means that no significant energy concentration can be
seen. Thus, this case does not have a fundamentalcarrier fre-
quency and therefore this hyper-chaotic attractor has a Gaus-
sian noisy behavior. A similar behavior is found for the TS
of the x variable. The TS of they variable required three
wavelet levels less, which points to a fundamental carrier
frequency. As in the previous case, the TS of thew variable
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FIGURE 5. (a)Time series of thez variable of hyper- chaotic Chua’s
system. (b) logarithmic variance of its wavelet coefficientszj

k, and
(c) the reconstructed time series of the sum from the 5th to the 13th
wavelet levels.

FIGURE 6. (a)Time series of thew variable of hyper- chaotic
Chua’s system, and (b) the respective logarithmic variance of its
wavelet coefficientswj

k.

FIGURE 7. (a)Time series of thez variable of hyper- chaotic
Rössler’s system. (b) logarithmic variance of its wavelet coeffi-
cientszj

k, and (c) the reconstructed time series based on the sum
from the 9th to the 13th wavelet levels.

(Fig. 6(a)) presents a similar fractal behavior in the majority
of the high wavelet levels with a value ofβ ≈ 2.3, as dis-
played in Fig. 6(b).

Next, the hyper-chaotic R̈ossler system (4) is analyzed.
Figure 7(a) displays a part of the TS of thez variable, and
Fig. 7(b) illustrates the wavelet variance plot. We notice
a substantial energy concentration from the 9th to the 13th
wavelet levels. Based on this range of levels, the recon-
structed TS is shown in Fig. 7(c). A similar situation occurs
with the x andy variables. The latter results suggest again
that a fundamental carrier frequency is present in these vari-
ables. On the other hand, the TS of the fourth variable,w,
(Fig. 8(a)), presents a fractal behavior in the high wavelet
levels with a value ofβ ≈ 1.6, as can be seen in Fig. 8(b).
The main result regarding this system is that it also presents
two scaling behaviors as the previous hyper-chaotic systems
do.

Finally, the scaling analysis of the 5D hyper-chaotic sys-
tem (5) shows that it presents also two different scaling be-
haviors in its TS, but the fractal behavior dominates in the
majority of the TS of the variables. In the variance plot of the
first two variables,x andy, the slope is close to zero, which
means no significant concentration of energy. Thus, these
variables do not present a fundamentalcarrier frequency, and
therefore a Gaussian noisy behavior is present. But more in-
terestingly, a fractal behavior is also observed in the rest of
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TABLE I. Wavelet variance analysis of the TS of the hyper-chaotic
systems. CF, GN, and F stand for carrier frequency, Gaussian noise,
and fractal behaviors, respectively.

Hyper-chaotic system Variables

x y z w v

Chen CF CF CF F –

Chua GN CF GN F –

Rössler CF CF CF F –

5D GN GN F F F

FIGURE 8. (a)Time series of thew variable of hyper- chaotic
Rössler’s system, and (b) the respective logarithmic variance of its
wavelet coefficientswj

k.

the variables,z, w andv, which is displayed in Fig. 9. The
β values for thez andw variables are closer to the Brownian
motion than the value obtained for thev variable.

As a summary, Table I shows the numerical results of
the wavelet variance analysis of the time series of all studied
hyper-chaotic systems. It is worth to say that the scaling pa-
rameterβ is also related to other exponents, such as the scal-
ing exponentα of the detrended fluctuation analysis (DFA) of
the signal byα = (1 + β)/2. With theβ values obtained for
the TS with fractal behavior, the corresponding scaling expo-
nentsα are in agreement with those found in Ref. [15], which
were calculated with a DFA method based on wavelets [16].
In addition, in Ref. [13] some chaotic systems were analyzed,
but the results showed that some variables present an energy
concentration or Gaussian noise behavior, whereas in this
study we found that in the fourth variable a fractal behav-
ior can be present. Thus, with these new spectral properties
may allow us to have a better understanding of these kind of
systems.

FIGURE 9. Time series of the variables of the 5D hyper- chaotic
system: (a)z (c) w, and (e)v, and the logarithmic variance of its
wavelet coefficientszj

k, wj
k, andvj

k in (b), (d), and (f), respectively.

5. Conclusions

In this work, the variance of the wavelet coefficients is used to
analyze hyper-chaotic time series from different systems. It
appears that the wavelet approach is a very illustrative means
of revealing some dynamical properties of the hyper-chaotic
systems. The results show a tendency of the majority of the
time series of the variables of the 4D systems to present an
enhanced energy concentration in a few wavelet levels, which
we interpret as the carrier frequencies of the hyper-chaotic
time series. On the other hand, for the fourth variable, a
Brownian motion behavior is observed for the majority of
the time series. For the time series of the 5D hyper-chaotic
system, we have found a fractal behavior, closer to the Brow-
nian motion behavior, in the time series of three variables (z,
w, andv), with a nearly zero slope of the log variance of the
wavelet coefficients at lower scales. This situation is differ-
ent from the 4D hyper-chaotic systems. Finally, the informa-
tion provided by this wavelet scaling analysis may be used to
choose the appropriate hyper-chaotic dynamical system for
whatever application.
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