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Fractal imbibition in Koch’s curve-like capillary tubes
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Fractal dimension effects in capillary imbibition process are analytically studied. The fractal formulation of tortuous flow with the assumption
of a fractal tortuous path introduced by Cai and Yu is used to analyse the capillary rise through the tubes with deterministic fractal geometry.
Capillary rise in Koch’s curve-like tubes was investigated. A new permeability parameter that takes into account the tortuosity of the flow
path is deduced, and a geometrical relationship for fractal dimension of flow tortuosity (dτ ) in porous media is obtained. The equilibrium
height time as a function of fractal dimension of the flow tortuosity in capillary tubes with tortuous path was derived.
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1. Introduction

Spontaneous capillary imbibition is a transport phenomenon
present in a variety of technological applications such as oil
recovery, building materials, soil science, textile and hydrol-
ogy [1]. Due to this diversity of applications, an infinity of
theoretical [2-6] and experimental [7-14] studies have been
carried out based on the pioneering works of Lucas [15] and
Washburn [16] in order to understand the imbibition mech-
anism and the related phenomena (for review, see [1,17,18],
and references therein).

It was experimentally demonstrated that the imbibition
speed becomes slower than that of Lucas-Washburn Regime
(x ∝ √

t) [7-14] as a consequence of the heterogeneity of
flow in porous media due to the complex network of ran-
domly distributed pores that connect to each other forming
tortuous capillaries through which fluid flows. This tortuous
path has a fractal character and the Lucas-Washburn equation
is scarce to model imbibition process in permeable materials
that possess fractal architecture.

Li and Zhao [19] added a fractal parameter to the classical
model of spontaneous imbibition to describe the heterogene-
ity of the porous medium asx ∝ tdf−2 where2 < df < 3 is
the fractal dimension of the medium. However, Cai and Yu
[5] presented a fractal formulation of tortuous flow through
the assumption of a fractal tortuous path given byx ∝ t1/dτ ,
wheredτ is the fractal dimension of flow tortuosityto de-
pict the previous experimental results for a scaling exponent
within the range of0.25 ≤ δ = 1/dτ < 0.5. The men-
tioned fractal approach is used in this work to study of liquid
travel distance in the Euclidean case regarding the fractal case
and find the time when the equilibrium height is achieved
as a function of the fractal dimension of flow tortuosity in
tubes with the shape of the Koch curve, Modified Koch curve,
Minkowski curve and the “Carpintieri curve” [20].

The objective of this work is to investigate the effects of
the fractality in spontaneous imbibition processes on capillar-
ies with paths similar to theoretical curves with exact fractal
dimension.

The rest of the Letter is organized as follows. In Sec. 2
the mathematical tools needed in this paper were studied and
defined. In Sec. 3 a new permeability parameter and an an-
alytical model to describe the capillary rise by spontaneous
imbibition on tubes with deterministic fractal geometry are
established. In Sec. 4 an illustrative example in order to dis-
cuss some physical implications has been solved. In Sec. 5
the main findings and conclusions are outlined.

2. Basic tools in the fractal imbibition

In what follows, some basic concepts of fractal imbibition in
highly tortuous capillaries are presented.

2.1. Governing equations in the Euclidean space

The governing equation of the liquid rise in a vertical cap-
illary tube embedded in the Euclidean spaceE1, when the
capillary forces are dominant and the radius is very small, is
given by a balance in the capillary, viscous and gravitational
forces [21,22], respectively represented as:

4σ cos θ

Φ
=

32µ

Φ2
x

dx

dt
+ ρgx, (1)

whereσ is the surface tension of the liquid having viscosity
µ, θ is the contact angle between the liquid and the capillary
surface,Φ is the capillary diameter,x denotes the distance
penetrated by the liquid,t is the imbibition time,ρ is the fluid
density and,g is the gravitational acceleration. The process
of the liquid rise in a vertically straight capillary tube is ob-
tained from Eq. (1) asdx/dt = K(Pc − ρgx)/µx, where
K = Φ2/32 is the intrinsic permeability of the tube [1,23].
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When an equilibrium is reached, the force that drives the cap-
illary rise Pc = 4σ cos θ/Φ equals the weight of the column
of liquid, ρgx; therefore the net force on the liquid vanishes
and the rising of the liquid stops.

Liquid-air interface equilibrium height is defined as
xeq = Pc/ρg; and the liquid rise in the capillary tube be-
tween the time of initial contact and the final equilibrium is
described by the relation [1,23]:

dx

dt
=
K
µ

ρg
(xeq

x
− 1

)
. (2)

When the gravitational forces can be considered very small,
for example when the capillary tube is in the upright posi-
tion and the penetration of the liquidx is very small, or the
gravitational force is equal to zero (when the capillary tube
is in the horizontal position), the above mentioned equation
reduced todx/dt = Φσ cos θ/8µx and integrating it with
the initial conditionsx = 0, t = 0, the following Lucas-
Washburn relation holds:

x(t) =
(

2KPc

µ

) 1
2

(t)
1
2 , (3)

when the gravitational forces are included, integrating Eq. (2)
with the initial conditionsx = 0, t = 0, we get:

x(t) ∼ xeq

(
1− e−t/teq

)
, (4)

whereteq = −128σ cos θµ/Φ3ρ2g2.

2.2. Governing equations in fractal space

The actual tortuous path of a flow in a porous medium is de-
fined asxτ = τ x, whereτ is the tortuosity. In the [24]
a scaling relationship for a flow through heterogeneous me-
dia was developed for the actual lengthxτ versus the scale
of observationε given byxτ = ε1−dτ xdτ wheredτ is the
fractal dimension of the flow tortuosity. Expression men-
tioned implies the property of self-similarity, which means
that the value ofdτ is constant for a range of length scales
εc ≤ x ≤ `, whereεc > 0 is the lower cutoff with value
of the order of an average pore radius and` is the upper cut-
off that describes the straight-line distance that the particle
travels between the starting and the ending points of fractal
(tortuous) path (see Fig. 1). Hence the diameters of capillar-
ies are analogous to the length scaleε [25,26] and the fractal
scaling relationship between the diameterΦ and the length of
capillariesx andxτ in a porous medium can be written as:

xτ = x
( x

Φ

)dτ−1

, (5)

where
1 ≤ dτ = 1 +

ln τ

ln(x/Φ)
< 2. (6)

When dτ = 1 the capillary tube is straight and the
one-dimensional Euclidean case is presented, meanwhile for

FIGURE 1. Fractal parameters of scale invariance fordτ . Note that
`τ →∞ asεc → 0.

dτ = 2 the capillary tube is a highly tortuous line so irreg-
ular that fills a two-dimensional space. The capillaries with
tortuous path are embedded in the Euclidean spaceE2.

Differentiating Eq. (5) with respect to timet for a single
capillary results in [24]:

vτ = dτΦ1−dτ xdτ−1v, (7)

wherevτ = dxτ/dt is the actual velocity of liquid through
distance of a tortuous capillary;v = dx/dt is the straight-line
imbibition velocity; and as for the Euclidian casedτ = 1, it
holds thatvτ = v. The scaling ratio between both velocities
can be rewritten as

dxτ

dt
= dτΦ1−dτ xdτ−1 dx

dt
. (8)

When a wetting liquid is contacted with a tortuous capillary
of any shape (Euclidean or Fractal), the capillary rise is de-
scribed as [5,16]:

dxτ

dt
=
K
µ

x

xτ
ρg

(xeq

x
− 1

)
. (9)

Substituting Eqs. (5) and (8) in (9) the following differential
equation that governs the capillary rise in a tortuous capillary
is obtained :

dx

dt
=
K
µ

ρg

dτ x2dτ−2Φ2−2dτ

(xeq

x
− 1

)
. (10)

If the gravitational force is negligible, Eq. (10) is reduced to:

dx

dt
=

K
µdτΦ2−2dτ

Pc

x2dτ−1
, (11)

with the initial conditionsx = 0, t = 0. Integration leads to
Lucas-Washburn-Cai Equation [5]:

x(t) =
(

2KPc

Φ2−2dτ µ

) 1
2dτ

tδ=
1

2dτ , (12)

and whendτ = 1 the last expression is reduced to the classi-
cal of Lucas-Washburn equation.
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FIGURE 2. Capillary tubes with deterministic fractal geometries for first 6 iterations. a) Modified Koch curve [27]; b) Classic Koch curve;
c) Carpintieri curve; d) Cuadratic Koch curve or “Minkowski sausage”.

TABLE I. Properties of capillary tubes with deterministic fractal
geometries, unitary porosity, constant diameterΦ = 0.001 cm and
vertical heightx = 64 cm.

Fractal curve
Parameter

Koch MKa Carpintieri Minkowski

df 001.261 001.161 001.340 0001.500

dτ0 001.000 001.000 001.000 0001.000

dτ1 001.025 001.020 001.036 0001.062

dτ2 001.051 001.040 001.073 0001.125

dτ3 001.077 001.060 001.109 0001.187

dτ4 001.103 001.090 001.146 0001.250

dτ5 001.129 001.100 001.183 0001.313

xτ0 064.000 064.000 064.000 0064.000

xτ1 085.330 080.000 096.000 0128.000

xτ2 113.770 100.000 144.000 0256.000

xτ3 151.703 125.000 216.000 0512.000

xτ4 202.271 156.250 324.000 1024.000

xτ5 269.695 195.310 486.000 2048.000
a Modified Koch curve.

3. Capillary rise on the linear fractals

Fractal propierties of capillary tubes with deterministic frac-
tal geometries are obtained (see Fig. 2) for the first six itera-
tions of each linear fractal including their fractal dimension,
df , as it is shown in Table I.

The generalized permeability for a tortuous capillary tube
is given by [28-31]:

K =
Φ2

32
φ

τ
. (13)

However, the fractal approach to capillary cylinder perme-
ability with fractal geometry is obtained inserting Eq. (5) in
Eq. (13):

Kτ =
Φdτ+1

32xdτ−1
, (14)

and for capillary tubes with unitary porosity,φ = 1. Where
Kτ , is a permeability ratio for permeable media with scale
invariance in materials where a pre-fractal pore network ex-
ists [32].

It was shown that the equilibrium heightxeq is the same
for both, straight tubes and tubes with tortuous path. Substi-
tutingxeq, τ andKτ in Eq. (10) and the following expression
that describes the capillary rise by spontaneous imbibition in
tubes with fractal geometry is obtained:

dx

dt
=

Kτρg

µ dτxdτ−1Φ1−dτ

(xeq

x
− 1

)
. (15)

When dτ = 1, Eq. (15) reduces to Eq. (2). In the first
stage of imbibition the liquid rise in the capillary tube is given
by x(t) ∝ tδ where the time exponentδ = 1/2dτ and the
second stage of imbibition can be found solving numerically
Eq. (15). The fractal dimension of flow tortuosity increases
with the increase of the capillary tubes tortuosity, meanwhile
in the case of tubes with a shape similar to linear fractals
shown in Table I, the tortuosity increases with the increase of
the fractal curve iteration (see Fig. 3) as described in Eq. (6),
or it can be calculated by the following relation:

dτ = λi ln τ + 1, (16)

whereλi = 0.2327709525Φ0.1667743386 (see the insert of
Fig. 3 where the slopeλi depends on the capillary diameter
by the power law).

4. Example in Koch’s curve-like capillary
tubes

In this section an illustrative example to clarify the physical
implications of the introduced models is presented.
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FIGURE 3. Semi-log plotτ vs. dτ for different capillary di-
ameters of linear fractals with logarithmic fittings, wheredτ =
slope ln(τ) + 1 represented by straight lines. Dashed line shows a
graph obtained from linear fractals (that is in agreement with Fig. 1
of Ref. 5. Insert shows data of Fig. 3versuscapillary diameter,
fitted curve for linear regression analysis.

FIGURE 4. Comparison between the Euclidean case and fractal
case in the first stage of imbibition. Graph shows Washburn Regime
in Euclidean case (dτ = 1) while the fractal case (dτ > 1) evolves
slower then the Washburn regime.

Consider a tortuous flow path, similar to a classic Koch
curve, shown in Figure 1.b, with the following mechanical
properties: θ = 0◦, ρ = 0.998 g/cm3, µ = 0.01 dina
sec/cm2, σ = 725 dina/cm andx = 64 cm for the first
(i = 0, 1, · · · , 5) iterations. The results of the first stage
of spontaneous imbibition, are in agreement with the time
scaling exponentδ = 0.5d−1

τ as it is shown in Fig. 4. The
influence of the fractality is reflected only by the fractal di-
mension of flow tortuosity, meanwhile the fractal dimension
of the deterministic fractal-like capillary tube does not influ-
ence on the behaviour of the flow.

FIGURE 5. Comparison between Euclidean case and fractal case in
the second stage of imbibition. Travel distance as function of time,
for different iterations of the basic Koch’s curve-like capillary tube.

FIGURE 6. Time equilibrium heightversusfractal dimension of
flow tortuosity for1 ≤ dτ < 2.

The flow behaviour in the second stage of imbibition, is
obtained solving Eq. (15), where the equilibrium height is
always the same and does not depend on the fractal dimen-
sion of the flow tortuosity (see Fig. 5). However, the time
that fluid requires to reach the equilibrium height depends di-
rectly ondτ , as:

t(xeq) ∝ dα
τ , (17)

whereα = 18.44, as in Fig. 6.
The previous results are common for ideal liquids, when

the contact angle is equal to zero. The capillary rise is di-
rectly affected by the hydrostatic effect depending on the con-
tact angle. This effect is calculated with the information of
Fig. 4 according to Lucas-Washburn Eq. (3) and such effects
are shown in Fig. 7. In an upcoming report the experimen-
tal results of fractal imbibition in tortuous Koch’s curves-like
capillary tubes will be given.
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FIGURE 7. Contact angle as time function deduced from the Figure
4 data according to Eq.(3) and the parameters from Table I.

5. Conclusions

In this paper the permeability relation for flow paths in capil-
lary tubes with fractal geometry was generalized. This re-

lation was used in Eq. (10) (Jian Chao Cai Equation) to
describe the spontaneous fractal imbibition model given by
Eq. (15). Also it was found that the fractal dimension of flow
tortuosity increases, as the tortuosity and the capillary diam-
eters of the cylinders increases, and does not depend on the
fractal dimension of capillary tube (see Eq. (16)). An illus-
trative example of capillaries with the shape of linear fractal
of Koch curve was presented. Results obtained are in agree-
ment with the previously reported findings standard calcu-
lations and with the Lucas-Washburn-Cai equation, showing
that as the fractality increases the penetration distance de-
creases. Finally, it was found that the necessary time to reach
the equilibrium height of the tortuous capillary tube in the
second stage of spontaneous imbibition is a function of the
fractal dimension of flow tortuositysuch thatt(xeq) ∝ dα

τ .
This results provide a more detailed description of the

physical phenomena of the spontaneous imbibition in linear
fractal-like capillary tubes.
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23. M. Dubé, M. Rost, and M. Alava,The European Physical Jour-
nal B-Condensed Matter and Complex Systems, 15 (2000) 691.

24. S. W. Wheatcraft and S. W. Tyler,Water Resources Research,
24 (1988) 566.

25. B. Yu and P. Cheng,International Journal of Heat and Mass
Transfer, 45 (2002) 2983.

26. B. Yu, Chinesse Physics Letters22 (2005) 158.

27. L. Damian, A. Kryvko, D. Samayoa, and A. R. Castellanos,
Rev. Mex. Fis. 63 (2017) 12.

28. M. Panda and W. Lak,AAPG Bulletin78 (1994) 1028.

29. A. Costa,Geophysical Research Letters33 (2006) L02318.

30. N. Montersen, F. Okkels, and H. Bruus,Physical Review E71
(2005) 057301.

31. F. Dullien, M. El-Sayed, and V. Batra,Journal of Colloid and
Interface Science60 (1977) 497.

32. A. Balankin, J. Valdivia, J. Ḿarquez, O. Susarrey, and M. A.
Solorio-Avila,Phyics Letters A380(2016) 2767.

Rev. Mex. Fis.64 (2018) 291-295


