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Fractal imbibition in Koch'’s curve-like capillary tubes
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Fractal dimension effects in capillary imbibition process are analytically studied. The fractal formulation of tortuous flow with the assumption
of a fractal tortuous path introduced by Cai and Yu is used to analyse the capillary rise through the tubes with deterministic fractal geometry.
Capillary rise in Koch’s curve-like tubes was investigated. A new permeability parameter that takes into account the tortuosity of the flow
path is deduced, and a geometrical relationship for fractal dimension of flow tortuds)tin(porous media is obtained. The equilibrium

height time as a function of fractal dimension of the flow tortuosity in capillary tubes with tortuous path was derived.
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1. Introduction The objective of this work is to investigate the effects of
the fractality in spontaneous imbibition processes on capillar-

Spontaneous capillary imbibition is a transport phenomenOIiPS with paths similar to theoretical curves with exact fractal

present in a variety of technological applications such as oifimension. _ _

recovery, building materials, soil science, textile and hydrol- 1€ rest of the Letter is organized as follows. In Sec. 2
ogy [1]. Due to this diversity of applications, an infinity of the.mathemat|cal tools needed in thl§ paper were studied and
theoretical [2-6] and experimental [7-14] studies have bee€fined. In Sec. 3 a new permeability parameter and an an-
carried out based on the pioneering works of Lucas [15] andYtical model to describe the capillary rise by spontaneous
Washburn [16] in order to understand the imbibition mech-imbibition on tubes with deterministic fractal geometry are

anism and the related phenomena (for review, see [1,17 1B?stablished. In Sec. 4 an illustrative example in order to dis-
and references therein). ' """ Cuss some physical implications has been solved. In Sec. 5

_ . ... themain findings and conclusions are outlined.
It was experimentally demonstrated that the imbibition

speed becomes slower than that of Lucas-Washburn Regime ) ) o

(z V) [7-14] as a consequence of the heterogeneity o- Basic tools in the fractal imbibition
flow in porous media due to the complex network of ran- : o
domly distributed pores that connect to each other formindr? what follows, some pasm concepts of fractal imbibition in
tortuous capillaries through which fluid flows. This tortuous ighly tortuous capillaries are presented.

path has a fractal character and the Lucas-Washburn equati
is scarce to model imbibition process in permeable material

that possess fractal architecture. The governing equation of the liquid rise in a vertical cap-

Li and Zhao [19] added a fractal parameter to the classicallary tube embedded in the Euclidean spdcg when the
model of spontaneous imbibition to describe the heterogenesapillary forces are dominant and the radius is very small, is
ity of the porous medium as o t%/ ~2 where2 < df < 3is  given by a balance in the capillary, viscous and gravitational
the fractal dimension of the medium. However, Cai and Yuforces [21,22], respectively represented as:
[5] presented a fractal formulation of tortuous flow through
the assumption of a fractal tortuous path givendy ¢'/¢-, docosh Bz—uxd—x + pgx (1)

2 )

whered. is the fractal dimension of flow tortuositio de- o o= dt
pict the previous experimental results for a scaling exponentwherecs is the surface tension of the liquid having viscosity
within the range 0f0.25 < 6 = 1/d, < 0.5. The men- p, 6 is the contact angle between the liquid and the capillary
tioned fractal approach is used in this work to study of liquidsurface,® is the capillary diametery denotes the distance
travel distance in the Euclidean case regarding the fractal cageenetrated by the liquid,is the imbibition time p is the fluid
and find the time when the equilibrium height is achieveddensity andy is the gravitational acceleration. The process
as a function of the fractal dimension of flow tortuosity in of the liquid rise in a vertically straight capillary tube is ob-
tubes with the shape of the Koch curve, Modified Koch curvetained from Eq. (1) a€lz/dt = K(P. — pgx)/ux, where
Minkowski curve and the “Carpintieri curve” [20]. K = ®2/32 is the intrinsic permeability of the tube [1,23].

%nl Governing equations in the Euclidean space
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When an equilibrium is reached, the force that drives the cap-
illary rise P, = 40 cos 8/® equals the weight of the column
of liquid, pgz; therefore the net force on the liquid vanishes
and the rising of the liquid stops. N

Liquid-air interface equilibrium height is defined as y
zeq = P./pg; and the liquid rise in the capillary tube be-
tween the time of initial contact and the final equilibrium is
described by the relation [1,23]:

dr K Teq
== -1). 2
dt M,Og ( x ) )
When the gravitational forces can be considered very small, z

for example when the capillary tube is in the upright posi- FiIcure 1. Fractal parameters of scale invarianceder Note that
tion and the penetration of the liquidis very small, or the ¢, — oo ase. — 0.

gravitational force is equal to zero (when the capillary tube

is in the horizontal position), the above mentioned equatior.- = 2 the capillary tube is a highly tortuous line so irreg-
reduced todz/dt = ®o cosf/Sux and integrating it with ~ ular that fills a two-dimensional space. The capillaries with
the initial conditionsz = 0, ¢t = 0, the following Lucas- tortuous path are embedded in the Euclidean spzce

Washburn relation holds: Differentiating Eq. (5) with respect to timefor a single
L capillary results in [24]:
2KP.\?2 , 1
x(t) = < p > ()2, 3) v, = d.BLdr g1y, )
when theT gr'avitatior)gl forces are included, integrating Eq. (2wherev, = dzx, /dt is the actual velocity of liquid through
with the initial conditionsr = 0, ¢ = 0, we get: distance of a tortuous capillary;= dx/dt is the straight-line
_ept imbibition velocity; and as for the Euclidian cage = 1, it
z(t) ~ Teg (1 —€ e“) ) (4)  holds that, = v. The scaling ratio between both velocities
) can be rewritten as
wheret., = —1280 cos O/ 3 p? 2.
My _ g, g1-de g1 0 8)
2.2. Governing equations in fractal space dt T dt

When a wetting liquid is contacted with a tortuous capillary

The actual tortuous path of a flow in a porous medium is de X . R
fined asz, — 7, wherer is the tortuosity. In the [24] of any shape (Euclidean or Fractal), the capillary rise is de-
4 ’ scribed as [5,16]:

a scaling relationship for a flow through heterogeneous me-
dia was developed for the actual length versus the scale de., Kz

of observatiore given byz, = '~ 2% whered, is the A (
fractal dimension of the flow tortuosity. Expression men-

tioned implies the property of self-similarity, which means Substituting Egs. (5) and (8) in (9) the following differential
that the value ofl. is constant for a range of length scales €quation that governs the capillary rise in a tortuous capillary
e, < x < {, wheres, > 0 is the lower cutoff with value IS obtained :

of the order of an average pore radius drigl the upper cut- dr K g Teq

off that describes the straight-line distance that the particle T W d, 22 —2p2—2d; ( )
travels between the starting and the ending points of fractal

(tortuous) path (see Fig. 1). Hence the diameters of capillaif the gravitational force is negligible, Eq. (10) is reduced to:
ies are analogous to the length scal@5,26] and the fractal d K p
scaling relationship between the diamebesind the length of = = S
capillariesr andx.- in a porous medium can be written as: i pd &332 g2

1), )

T

(10)

X

(11)

with the initial conditionst = 0, ¢ = 0. Integration leads to

2\ dr-—1
Tr=2x (5> ; (®)  Lucas-Washburn-Cai Equation [5]:
where okkP. \ T .,
In7 z(t) = () 0= 7 (12)
1<d, =1 2. 6 —2d, )
> Gr + ln(fL'/(P) < ( ) @2 2 1%
When d. = 1 the capillary tube is straight and the and wheni, = 1 the last expression is reduced to the classi-

one-dimensional Euclidean case is presented, meanwhile faral of Lucas-Washburn equation.
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FIGURE 2. Capillary tubes with deterministic fractal geometries for first 6 iterations. a) Modified Koch curve [27]; b) Classic Koch curve;
¢) Carpintieri curve; d) Cuadratic Koch curve or “Minkowski sausage”.

o Vé\w“&

TABLE |. Properties of capillary tubes with deterministic fractal . — G-l (14)
geometries, unitary porosity, constant diamaeg 0.001 cm and T 39gd-—17
vertical heightr = 64 cm. and for capillary tubes with unitary porosity,= 1. Where
Parameter Fractal curve K., is a permeability ratio for permeable media with scale
N o . . invariance in materials where a pre-fractal pore network ex-
Koch MK Carpintieri ~ Minkowski ists [32]
dy 001.261  001.161 001.340 0001.500 It was shown that the equilibrium height, is the same
drg 001.000 001.000  001.000 0001.000  for both, straight tubes and tubes with tortuous path. Substi-
d-, 001.025 001.020  001.036 0001.062  tutingz.,, 7 @andkC; in Eq. (10) and the following expression
dr, 001.051 001.040 001.073 0001.125 that describes the capillary rise by spontaneous imbibition in
dr, 001.077 001.060  001.109 0001.187 tubes with fractal geometry is obtained:
dr, 001.103 001.090 001.146 0001.250 dz Krpg Teq
drg 001.129 001.100 001.183 0001.313 dt - udedf*1CI>1*df ( r 1) (15)
Trg 064.000 064.000 064.000 0064.000 .
085330  080.000 096,000 0128.000 Whend, = 1, Eq. (15) reduces to Eg. (2). In the first
T : ' ' ' stage of imbibition the liquid rise in the capillary tube is given
Ty 113.770  100.000 ~ 144.000 ~ 0256.000  py 4 (¢)  t* where the time exponemt = 1/2d, and the
T 151.703 125.000  216.000 0512.000  second stage of imbibition can be found solving numerically
Ty 202.271 156.250  324.000 1024.000 EQ. (15). The fractal dimension of flow tortuosity increases
s 269.695 195310  486.000 2048.000 With the increase of the capillary tubes tortuosity, meanwhile

in the case of tubes with a shape similar to linear fractals
shown in Table I, the tortuosity increases with the increase of
the fractal curve iteration (see Fig. 3) as described in Eq. (6),
or it can be calculated by the following relation:

a Modified Koch curve.

3. Capillary rise on the linear fractals

Fractal propierties of capillary tubes with deterministic frac- dr =i In7+1, (16)

tal geometries are obtained (see Fig. 2) for the first six itera-

tions of each linear fractal including their fractal dimension,

d;, as it is shown in Table I. E gt.h3 where Ithe slopg; depends on the capillary diameter
The generalized permeability for a tortuous capillary tube y the power law).

is given by [28-31]:

where \; = 0.23277095250-1667743386 (see the insert of

9 (13) 4. Example in Koch’s curve-like capillary

o327 tubes
However, the fractal approach to capillary cylinder perme-
ability with fractal geometry is obtained inserting Eq. (5) in In this section an illustrative example to clarify the physical

Eqg. (13): implications of the introduced models is presented.
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FIGURE 5. Comparison between Euclidean case and fractal case in
FIGURE 3. Semi-log plotr vs. d, for different capillary di- the second stage of imbibition. Travel distance as function of time,
ameters of linear fractals with logarithmic fittings, whete = for different iterations of the basic Koch’s curve-like capillary tube.

slope In(7) 4 1 represented by straight lines. Dashed line shows a
graph obtained from linear fractals (that is in agreement with Fig. 1
of Ref. 5. Insert shows data of Fig. v@rsuscapillary diameter,

fitted curve for linear regression analysis. 107 | R
% 108 L Hieg) — 1604, 124154410 |
T e - g
dr = 1.000 = L R?*=099 :
dr = 1.038 %0 107 S E
OE dr = 1.072 é) : :
dy = 1.109 kit B
S 17000 B dy = 1.144 ggizlz § 106 g £
= S g -
S 3 O10°F
S 500} s £ 10°E E
= &~ I
N I :
§ 10° ! L
E}‘; ’ 100 100.1 100.2 100.3
0 ™t xt 2 Fractal dimension of flow tortuosity
(I) 2‘0 4‘0 6‘0 FIGURE 6. Time equilibrium heightversusfractal dimension of

. flow tortuosity forl < d. < 2.
Time, (sec)

. . The flow behaviour in the second stage of imbibition, is
FIGURE 4. Comparison between the Euclidean case and fractal btained solving E 15 h th libri height i
case in the first stage of imbibition. Graph shows Washburn RegimeO ained solving Eq. (15), where the equilibrium heig . IS
in Euclidean cased = 1) while the fractal cased; > 1) evolves a_lways the same and d.oes not d.epend on the fractal dl|men—
slower then the Washburn regime. sion of the flow tortuosity (see Fig. 5). However, the time

that fluid requires to reach the equilibrium height depends di-

Consider a tortuous flow path, similar to a classic Kochr€ctly ond-, as:
curve, shown in Figure 1.b, with the following mechanical t(weq) o< d7, (17)
properties: 0§ = 0°, p = 0.998 g/lcm?, © = 0.01 dina  wherea = 18.44, as in Fig. 6.
sec/lcm, ¢ = 725 dina/cm andx = 64 cm for the first The previous results are common for ideal liquids, when
(« = 0,1,---,5) iterations. The results of the first stage the contact angle is equal to zero. The capillary rise is di-
of spontaneous imbibition, are in agreement with the timerectly affected by the hydrostatic effect depending on the con-
scaling exponend = 0.5d! as it is shown in Fig. 4. The tact angle. This effect is calculated with the information of
influence of the fractality is reflected only by the fractal di- Fig. 4 according to Lucas-Washburn Eq. (3) and such effects
mension of flow tortuosity, meanwhile the fractal dimensionare shown in Fig. 7. In an upcoming report the experimen-
of the deterministic fractal-like capillary tube does not influ- tal results of fractal imbibition in tortuous Koch’s curves-like
ence on the behaviour of the flow. capillary tubes will be given.
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lation was used in Eq. (10) (Jian Chao Cai Equation) to
describe the spontaneous fractal imbibition model given by
Eq. (15). Also it was found that the fractal dimension of flow
tortuosity increases, as the tortuosity and the capillary diam-
eters of the cylinders increases, and does not depend on the
fractal dimension of capillary tube (see Eq. (16)). An illus-
trative example of capillaries with the shape of linear fractal
of Koch curve was presented. Results obtained are in agree-
ment with the previously reported findings standard calcu-
lations and with the Lucas-Washburn-Cai equation, showing
that as the fractality increases the penetration distance de-
creases. Finally, it was found that the necessary time to reach
the equilibrium height of the tortuous capillary tube in the
second stage of spontaneous imbibition is a function of the
fractal dimension of flow tortuositsuch that (z.,) o« d<.

This results provide a more detailed description of the
physical phenomena of the spontaneous imbibition in linear
fractal-like capillary tubes.
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FIGURE 7. Contact angle as time function deduced from the Figure
4 data according to Eq.(3) and the parameters from Table I.
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