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Recovery of transit times and frequencies of multiple
pulses via the short-time Fourier transform
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In this work, we present a study to determine the transit times and frequencies of pulses by using the Short-Time Fourier Transform (STFT).
We consider the case of an acoustic signal composed of five Gaussian pulses that have a high overlapping in time but oscillate at different
frequencies. We proceeded in three steps. First, we illustrate how the STFT calculated through a sliding window produces a spectrogram
where transit time is on one axis and frequency on the other. Second, we derive an exact analytical solution of the STFT to develop an
intuitive vision of the mathematical technique. Finally, in a third step, we present an experiment to demonstrate that the STFT is a useful
technique to characterize a complex acoustical signal.
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1. Introduction Recently, we have revisited this problem investigating the

transit times of high-order modes on SLS waveguides by us-
In physics exist many pulsed signals which have a brief osing the Short-Time Fourier Transform (STFT) [5]. During
cillation in time and carry a finite amount of energy. The this study, some of us that did not know the STFT technique
analysis and characterization of these transient oscillationgere surprised by all the information that could be extracted
are essential for the fundamental and applied science [1]. Thef a pulse that at a first view looks only like a noisy signal [5].
propagation of pulses is a complex phenomenon, especially i this work, we present a way to understand how the STFT
the signals are traveling through dispersive media where eacillows determining the transit times of multiple pulses trav-
frequency propagates with different phase velocity. In theseling simultaneously.

systems, the pulse waveform undergoes a distortion related . . . .
to the various reshaping delays as well as to the broadenin]g The STFTisa mathgmancal tool derived from the Fou_ner
ransform. In the traditional background of Mathematical

and absorption. Methods in Phvsics. th sis of t ient sionals i i
In traditional textbooks, the transit time)(of a pulse is €thods In FhysIcs, the analysis ot transient signa’s Is not a
usual theme [6]. Some books have recently been devoted to

defined as the time to travel between two points [2]. How- .
ever, when multiple pulses travel simultaneously, they inIhe STFT and other related techniques as the wavelets, Ga-

terfere and produce a complicate waveform where become%or or Wigner-Ville. These methods are widely used by the

challenging to determine the transit times. One area of rengineering community in areas such as the digital analysis,

search where pulses are actively investigated is the transmigEl) eqtrzilhanaht/)&s,kspeechtrzgogmﬂon, and r];adars [t7 8]. Us_u-
sion through waveguides. In these structures exist a discref’gy In these books are studied changes of a continues sig-

number of allowed frequencies. If only a mode is excited, i'[nal [7_111'. In _contrast, here we m_trodu_ce the study of the
is relatively easy to detect the transit time by measuring be-STFT considering the case of transient signals.
tween peaks. This strategy was explored experimentally by The main idea of the STFT is to produce a spectrogram
Wanget al. many years ago is the case of an elastic wavegwhere the transit time is on one axis and the frequency on the
uide [3]. They reported the characterization of the transit timeother [9]. In 1998, W. C. Lang and K. Forinash published
of a single pulse traveling in a thin fluid layer embedded be-a work on spectrograms where in their abstract presented an
tween two elastic solids. However, some years later, Thomagaluable observation: [12While this technique is commonly

et al. [4]. demonstrated that if multiple pulses are excited inused in the engineering community for signal analysis, the
a thicker Solid-Liquid-Solid (SLS) waveguide, the interfer- physics community has, in our opinion, remained relatively
ence between them causes an undesirable deformation thataware of this development. Indeed, some find the very no-
makes difficult to identify the transit time by comparing the tion of frequency as a function of time troublesdnadter 20
waveforms. years, the situation is different. Nowadays exist a broad ap-
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plicability of spectrograms to analyze signals that change ir2. What is the Short-Time Fourier Trans-
time. For example, in areas such as gravitational waves [13], form?

radio astronomy [14, 15], nuclear dynamics [16, 17], or sens-
ing of cancerous cells [18]. An example that illustrates the importance of the analy-

sis of transient signals is the detection of the Gravitational

Nonetheless, while these techniques are widely used i§/aves that recently proved the existence of a Binary Black
various areas of physics research, they are not so widel{#0'€ [14]. In Fig. 1(a) we present a transient sigs(@) that
taught. In the context of the literature of physics, we haveS similar to the waveform received at the Laser Interferom-
found only a few papers presenting an introductory analysi§t€r Gravitational-Wave Observatory (LIGO) [14, 15]. It is

of the use of spectrograms [12, 19]. In this work, we proposé)bserved that in the intervdlr, there are fewer oscillations
a theoretical treatment of the STFT where it is possible tgh@n in the intervalA7,, which means that the frequencies

obtain an analytical formula for the case of a Gaussian funcl these ranges are different. How can these frequencies be
tion. We demonstrate that this technique allows the characneasured? _ ,
terization of a complex signal composed by the superposition 1€ analysis of frequencies based on the Fourier Trans-
of five pulses strongly overlapping in time. To test in the form defined by the relation
laboratory our analysis, we present an experiment where the Lo
transit time and frequency of each one of the components of s(w) = 1 / s(t)emdt )
a complex signal can be identified in a spectrogram. Vor
— 00

The rest of the paper is organized as follows. In Sec. 2is beyond reproach. However, it is not appropriate to charac-
we propose a succinct introduction to the STFT. In Sec. 3, weerize the transient signal(¢). The Fourier Transform is de-
present a theoretical analysis for Gaussian pulses. In Sec. digned to detect the frequency components of the sigal
is shown an experiment that demonstrates the utility of spedor an infinite temporal domain but does not allow to identify
trograms. Finally, in Sec. 5 we have the conclusions. the localfrequencies. Additionally, the Fourier Transform
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FIGURE 1. In panel (a) is presented a chirped sigs@l). Panel (b) illustrates a window functidr(t — 7) centered at, [»] using a dashed
[dotted] line. In panel (c) we present the sigrél) viewed through the temporal windaw(t — 7)) [2(t — 75)] using a dashed [dotted] line.

h(t-T)s(t)
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cannot to determine the time-of-flight. As consequence, it is i
convenient to introduce a variation of the Fourier Transform  os| - {@
to analyze transient signals. 04l ” ]
The basic idea of the STFT is to slice the signal through < iy
a temporal window and then to determine the frequencies
contained in each segment. For this reason, we introduce ¢ ¢ o
window that glides performing time-localized Fourier Trans- B

pi (0.9
SRoR
vy

|
_—
—

. . 107 s
forms. To illustrate how the spectrum changes over time, we . i
introduce a functiork(t — 7) that defines a temporal window o8y j“’>
centered around the timeand zero-valued elsewhere. Itis o o ]
convenient to introduce the normalization of this equation as = O'g ﬂ ﬁ
04 1
+oo 06 - 4
— hit — )d 2) e 1 2 s s
1= (t —T)dr. (107 s) o
— 00

FIGURE 2. In panels (a) and (b) are presented the time-dependent
In Fig. 1(b) we present two examples of the window func-amplitude of the pulse:(z,t) detected at the positions = 0

tion h(t — 7). Using a dashed [dotted] line, we present theandz = d, respectively. The transit time is me:asured between'
window functionsh(t — 7,) [A(t — 7,)] centered atr, [t;)]. peaks. Panel (c) shows the spectrogram defined by the function

2
In Fig. 1(c) are presented two transient signals that represeﬂfl(d’ £l

the functions(#) viewed through each window. The role of other sinusoidal. The width of the Gaussian component is de-

the window function is to isolate a temporal segment where i%ined byo; andz; is a spatial displacement. The wave vector

is possible to identify the local frequencies. To obtain a time-(
. k;) and the angular frequency,) are related by; = w; /¢,
frequency spectrogram, we multiply the Egs. (1) and (2) towherec — 343 m/s is the speed of sound.

obtain N
1 .
s(w) = ) /dTS(w,T), 3 31 Asinglepulse
T In Figs. 2(a) and 2(b) we present the acoustic pulse for the
where is defined the STFT as the function time-dependent amplitude at the spatial points= 0 and

x = d, respectively. The parameters for the case 1 are

e . o1 =0.1m,z; = 0andf, =2 kHz We observe that for
S(w, ) = / h(t —7)s(t)e™"dt. (4)  asingle pulse, it is possible to determine the transit tiras
—o0 the interval between peaks. Alternatively, the transit time can

o be found using the relation
This integral can be understood as follows. The func-

tion h(t — 7) is a sliding window centered atwhich glides °
along the time to define local Fourier Transforms. In this Pi(z, f,7) = / pi(x, )h(t — 7)e2 Tt dt. (6)
manner, the STFT decomposes a time domain signal into a e

two-dimensional representation, where the frequency content

of the transient signal is revealed inside the temporal window. ~ The choice of the function(¢ — 7) is an important de-
Usually this integral is solved numerically, in some cases uscision because this window affects the spectral estimation of
ing sophisticated numerical algorithms [11]. To have an infrequencies. There are different choices of windows func-

tuitive insight of the STFT, in the next section we present arfions as the triangular, Hann, Hamming or Gaussian. [20, 21]

1 1
exp | ——=
ThV 2T P { 277

wherer;, defines a temporal width. The integral defined by
Eq. (6) can be solved analytically and the procedure is de-
scribed in Appendix A. The solution of the integral is

Wt — ) = (i - r>2] NG

3. Theory

We consider an acoustic pulse in the form

pila, ) = exp {—2}‘2 (2 — ) — ct]2}

, i
x cos[ki(x — x;) — wit]. (5) Pilz, fr) = 20, eXp{ +iki(z — i) - 2
The subscript allows identifying the pulse and its com- + %[% +i2n(f — fi)]Q}
ponents. The pulse is a solution of the acoustical wave equa- 20;

tion, and it is composed of two functions, a Gaussian and
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+ exp{ ki — ) — @ function generator to produce a customized time-dependent
207 2 voltage signab/(¢) using a software provided by the manu-
1 facturer. The signal(¢) is sent simultaneously to the oscil-

+ 23 [vi + 27 (f + fi)]Q}. (8) loscope (d) and the speaker (b). The speaker emits an acous-

tic pulsep(t). A Shure-SM57 unidirectional dynamic mi-
The functionsg?, ~; andd; are defined in Appendix A. crophone placed at a distanée= 0.40 m from the speaker

In Fig. 3(c) we show the absolute vallig, (d, f,7)|> con-  receives an acoustical signélt). The microphone produces

sideringr;, = 4210~* s. The spectrogram in the plafig 7)  an electrical signal that is sent to a Tektronik TDS2012 oscil-

determine the transit times and frequencies at the positioscope (d) that digitize the signal and send the information

z =d. to a personal computer (e).

3.2, Multiple pulses The transient voltage signal is defined as follows

In this section we analyze a transient signal composed of the j=5 1
superposition of five pulses in the form v(t) =) exp —%—Q(a:; —ct)? cos(Kjx; — wit) (11)
i=6 Jj=1 J
pt(ﬂf,t) :sz(xat) (9)
=2

_ The parameters are as follows, = o, = o = o) =
In Figs. 3(a) and 3(b) we show the pulsgz,t) atthe 5/ — .343 m. We also define:; = 0, z, = —0.0175 m,
pointsz = 0 andx = d, respectively. The parameters of ;. — 10.0175 m, z, = —0.0175 m andxs = +0.0175 m.

are as follows. The pulse widths asg = o3 = 04 =  The frequencies arg, = 2 kHz, f, = 4 kHz, f3 = 6 kHz,
o5 = 0 = 0.1372 m. The phase factors are, = 0,  f, = 8 kHz andf; = 10 kHz. The wave vectors are defined
z3 = —0.01715 m, z, = +0.01715 m, x5 = —0.01715 by the re|atiorkj — wj/c.

m andxzg = +0.01715 m. The frequencies arg = 2 kHz,

f3 = 6 kHz, fy = 9 kHz, f5 = 12 kHz andfs = 16 kHz.

We have chosen these parameters to have pulses with a stror
superposition in time. The pulsg(z,t) has an interference
pattern that looks like a noisy signal. It is evident that be-
comes impossible an identification of transit times compar-
ing waveforms. However, for this kind of transient signals

20

p1(0.,9

b Lo = ow A
T
|

the STFT is a very useful tool. For this case, the spectrogram “=2 - 5
can be obtained analytically using . §1°
i=6 sl
Pz, f,7) =Y Pi(x, f,7), (10 _2[ .
i=2 2,
In Fig. 3(c) we shown the functiof®;(d, f, 7)|*> where -
we have a spectrogram where it is possible to identify the jj i .
frequencies and transit times of each pulse. 21 3 115 2 25 3 35 4 45 5
t (107 s) t(10_3 s)
4, Experiment FIGURE 3. In panels (a) and (b) are presented the time-dependent

. o o ' amplitude of the pulsg:(z, t) detected at the positions= 0 and
The acoustic transmitting and receiving experimental setup: = d, respectively. Panel (c) shows the spectrogram defined by
is presented in Fig. 4. We used a Tektronix AFG3021Bthe function|P;(d, f, 7)|>.

G

FIGURE 4. Schematic of the experimental setup. A function generator (a) sends simultaneously asaltagehe the osciloscope (d) and
the speaker (b) which generates a time-dependent soundggt)s& he acoustic signal’(¢) is received by the microphone (c) which sends
a signal to the osciloscope (d) that digitize and sends the information to the personal computer (e)
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s @ Appendix
2
1 “““““ ‘M“‘\“ 10 A.
S M
e w\“ ‘\‘\“‘“ 8 The integral of Eq. (6) can be written in the form
-2
-3
-5(b)4 2 &187351) e §6 P( ) 1 7 ( at + ozf) dt (A 1)
= (T, w, T) = ——— e e .
< 24/ 27T
j “\M “\‘ | 4 hioo
2 o bibvmangong MRy where
Ll ,
o | “ ‘ 1 2, .
2 Ny . oy = 552 [(x — ;) —ct]” Lilki(x — ;) — wit]
5 4 3 2 1 0 1 2 3 4 5 K
t(10.3s) 5 4 -3 -2 41 O-3 12 3 4 5 1
t(10%) — (- 7)% + iwt (A.2)
Th

FIGURE 5. In panel (a) is presented the transient voltage signal

v(t) received by the speaker. In panel (b) is presented the time-  Taking the squares in the first and second terms in the
dependent amplitude (). Panel (c) shows the experimental STFT right side we obtain

of thep'(t) signal.

1 1 2
Figure 5(a) presents the voltage pulsg) that is sub- ot = D) {ﬁit "B i +ilwF wi)]}
mitted from the signal generator (a) into the speaker (b). In
Fig. 5(b) we present the acoustical sigpgl) measured by + iki(x — @) — = + % [vi +i(w Fw)]®  (A3)
the microphone (d). We observe that it exist a complicate in- 2 25;

terference pattern that is result of the speaker signal but alﬁﬁhere we define the following functions:
exist an additional noisy contribution from the environment.

In panel 5(c) we present the short time-Fourier transform of , 2 1
the signalp’(¢) which is obtained by using the Origin soft- pi = o2 + ?}3’ (A4)
ware. We observe that the STFT is able to identify the transit ’
time and frequencies of the five pulses components. v = w + %, (A.5)
i h
5. Conclusions and 5 (x — x;)? N 72 (A6)
In this work, we demonstrate that the transit times and fre- of Th
quencies of a transient signal with a complex waveform can ~ We can write
be recovered by using the STFT. The characterization is made 1 5
using a spectrogram where the transit time is on one axis andP;(z,w, 7) = exp { +iki(x — 1) — 3
the frequency on the other. This method of analysis has been 2v2m,
applied to study Gaussian pulses with a sinusoidal compo- 1 e ,
nent. For the case of a single pulse, we have found closed for- + ol +ilw— wi)]Q} / e vt
mulas for the STFT that allow understanding how this tech- 2/5; e
nique works. In the case of a pulsed signal formed by the
superposition of multiple pulses, we have demonstrated the- + 1 exp { —iki(z — z;) — 9
oretically and experimentally that it is possible to identify the 2V27T, 2
transit times and frequencies for each pulse component. +00
The analysis of transient signals permits the study of + L[’yi +i(w +wi)]2} / g (A7)
many physical phenomena that can not be understood using 267
the traditional Fourier theory. In our mathematical methods o
for physics, most of the work is devoted to the stationary casavhere
and the case of transient signals is rarely considered. How- 1 1
ever, as the measurement techniques have been improved, ut = — {ﬂzt ——mi+i(lwTF wi)]} (A.8)
nowadays are explored a vast number of ultrafast phenom- V2 Bi
ena. These signals are very important in various branches gfe identify
physics, as for example the interaction of waves with nano- o0 Nors
structures, nonequilibrium process , transient process in net- / P i (A.9)
works, seismological vibrations or the finding of black holes. e i
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