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QCD phase diagram from chiral symmetry restoration: analytic approach at high
and low temperature using the linear sigma model with quarks
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We use the linear sigma model with quarks to study the QCD phase diagram from the point of view of chiral symmetry restoration. We
compute the leading order effective potential for high and low temperatures and finite quark chemical potential, up to the contribution of
the ring diagrams to account for the plasma screening effects. We fix the values of the model couplings using physical values for the input
parameters such as the vacuum pion and sigma masses, the critical temperature at vanishing quark chemical potential and the conjectured
end point value of the baryon chemical potential of the transition line at vanishing temperature. We also make the analysis for the same input
parameters but with vanishing pion mass. We find that the critical end point (CEP) is located at low temperatures and high quark chemical
potentials(315 < % < 349 MeV, 18 < TP < 45 MeV).
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1. Introduction Effective models have proven to be useful tools to gain
insight into the phase structure of QCD. Given the dual na-

A the i tant subiects of studv in th Im of hi hture of the QCD phase transition, at least for low values of
mong the important Subjects of study in the reaim ot high- B, one can ask whether models that incorporate both chi-

energy/nuclear physics, both from the theoretical and expe'ﬁtal symmetry breaking and deconfinement are better suited
imental points of view, are the properties of strongly inter-

. d diti f tgo describe the transition features. However, since LQCD re-
Egtr?gnrgzt;iirt;n O?‘rpeaxrttirsmaer (i:r?tr;rle“s(:r}z toh;ekr)zgfiga;u(;fe tﬂz ults show that for 2+1 light flavors, the crossover chiral and

.2 " ! . deconfinenent transitions are indistinguishable [21], one ma:
Critical End Point (CEP) in the QCD phase diagram. To 9 [21] y

. esort to a simplified analysis whereby one or the other fea-
th'S. am, the STAR BES'.I program has recently analyzet{ure is emphasized. Recently, we have made use of the linear
collisions of heavy-nuclei in the energy range 200 GeV

sigma model coupled to quarks [22,23]. We have shown that
. this tool can be successfully employed provided one accounts
Yor the screening properties of the plasma, which makes the

from confined/chiral-symmetry broken hadron matter to theanalysis effectively go beyond the mean field approximation,

deconfined/chiral—symmetry restored stgte, varying.tr.\e temémd one finds the values of the couplings from the physical
perature and baryon density by changing the collision en:

.~ values of the model parameters.
ergy down to about/syny ~ 5 GeV and the system size
in hadron and heavy-ion reactions. From the theoretical side, In this work we use the linear sigma model coupled to
efforts to locate the CEP employing a variety of techniquegjuarks, including the plasma screening effects, to explore the
such as Schwinger-Dyson equations, finite energy sum rulegffective QCD phase diagram from the point of view of chi-
functional renormalization methods, holography, and effecral symmetry restoration. Our strategy is to fix the coupling
tive models, have produced a wealth of results [5—16] rangeonstants using the physical values of the model parameters,
ing from low to large values of the baryon chemical potentialsuch as the vacuum pion and sigma masses, the critical tem-
(1) and temperaturél(). Recent lattice QCD (LQCD) anal- peraturel™ at up = 0 and the conjectured end point value
yses [17] have resorted to using the imaginary baryon chenmsf up (~ 1 GeV) of the transition line ai’ = 0. For the
ical potential technique, to later extrapolate to real values, tpresent purposes we compute an analytical, leading order in
study the chiral transition near thé-axis. Albeit with still T approximation for the effective potential, both at high and
large uncertainties, this technique has shown that the trandiew temperatures, for finite values of the baryon chemical po-
tion keeps being a smooth crossover [18]. The Taylor extential. We show that this strategy can be used to locate the
pansion LQCD technique has also been employed to restri€€EP. The work is organized as follows: In Sec. 2. we intro-
the CEP’s location to valugsg /T > 2 for the temperature duce the linear sigma model coupled to quarks. In Sec. 3. we
range 135 MeV< T < 155 MeV. Its location for temper- compute the effective potential up to the contribution of the
atures larger thaf.9 T.(up = 0) seems to also be highly ring diagrams. We work out the high and low temperature
disfavored [19] (see also [20]). analytical approximation for the effective potential and show
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explicitly how in the high temperature domain, the ring dia-  Equation (4) describes the interactions amongdhe’

grams contribution cures the non-analyticities that appear and fields after symmetry breaking. From Eq. (3) one can

one-loop order. In Sec. 4. we spell out the conditions thatee that the sigma, the three pions and the quarks have masses

give rise to the equations to find the values of the model cougiven by

pling constants. In Sec. 5. we use these couplings to compute

the critical 7" and . values that define the transition curves mf, = 3\” — d?,

and locate the CEP. In Sec 6. we finally summarize and con- 2 _ \y2 2
. . . = A" —a”,

clude. We reserve for the appendices the calculation details T

for the boson and fermion contributions to the one-loop ef- ms = gv, (5)

fective potential. In a sequel, to be reported elsewhere, we

will study the case where the analytical approximation is exrespectively.

m

tended to cover a larger set of possiplg andT" values as In order to determine the chiral symmetry restoration con-
well as to include the case where the couplings are alloweditions as function of temperature and quark chemical poten-
to bear the dependence pg andT. tial, we study the behavior of the effective potential, which

we now proceed to deduce in detail.

2. Linear Sigma Model coupled to quarks

3. Effective potential
In order to explore the QCD phase diagram, we study the
restoration of chiral symmetry using an effective model thatChiral symmetry restoration can be identified by means of
accounts for the physics of spontaneous symmetry breakinie finite temperature and density effective potential, which
at finite temperature and density, thieear Sigma Modelln  in turn is computed order by order. In this work we include
order to account for the fermion degrees of freedom arounthe classical potential or tree-level contribution, the one-loop
the phase transition, we also include quarks in this modelcorrection both for bosons and fermions and the ring dia-
The Lagrangian for the linear sigma model when the twograms contribution, which accounts for the plasma screening

lightest quarks are included is given by effects.
The tree level potential is given by
1 9, 1 2 a? 2, 22 A9 a2
£:§(aua) +§(6ﬂw) +?(a +7 )—Z<U +7) a2 A
i ~ Vtree(v) — _?UQ + Z1}47 (6)
+ iy 0 — g (o +iysT - ), 1)

whose minimum is given by
where) is an SU(2) isospin doublef, = (1,72, 73) is an
isospin triplet andr is an isospin singlet.\ is the boson’s oo — a? )
self-coupling ang is the fermion-boson coupling? > 0 is 0 A’
the mass parameter. . . .
. sincevy # 0, we notice that the symmetry is spontaneously
To allow for an spontaneous breaking of symmetry, we :

. . broken. We also notice that

let theo field to develop a vacuum expectation vatue

d2vtree 9 5 9
o— 0o+, (2) dv2 = 3\” —a” =my, (8)
which can later be taken as the order parameter of the theorwhich means that the curvature of the classical potential is
After this shift, the Lagrangian can be rewritten as equal to the sigma mass squared. This property is maintained
1 1 even when corrections due to finite temperature and density
L= 77[0330} - (3/\1;2 — a2) o2 are included in the effective potential.
2 2 However, in order to make sure that the quantum correc-
_ 7[7?827‘7’} 1 (/\UQ B a2) 724 CLUQ tions at_ finite temperat_ure and o!ensny maintain the general
2 TH 2 2 properties of the effective potential, we need to add counter-
A, _ ) f termsda? andd ) to the bare constantg and)\, respectively,
=7V T WOy — gub + L7 + L, (3)  and write
b f ; a® A
whereL; and£; are given by tree _ _?UQ + ZU4
A 2 2
b _Myo2 0122 a® +da A+6A
=3[+ oo et pen
+dntr (0 + (n°) + 7F+7T*)}7 These counter-terms are needed to make sure that the phase
f _ oL transition at the critical temperatufe. for ug = 0 is sec-
Ly = —gi(o +ivsT - 7). (4)  ond order and that this transition is first order at the critical
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baryon density:% for T = 0. We will come back to these 3.1.

A. AYALA, S. HERNANDEZ-ORTIZ AND L.A. HERNANDEZ

Self-energy.

conditions when we introduce the analysis to determine the

parameters of the model.

We start by computing the self-energy for one boson field.

To include quantum corrections at finite temperature andor this purpose we need to include all the contribution from
density, we work within the imaginary-time formalism of the Feynman rules in Eq. (4). The diagrams representing the
thermal field theory. The general expression for the one-loofp0sons’ self-energy are depicted in Fig. 1. Each boson has

boson contribution can be written as
Vb, T) = TZ/dSklnD(w E)'2, (10)
) ~ (271_)3 ns 9

where
. 1

D(wn, k) = m7 (11)

a self-energy with two kinds of terms, one corresponds to a
loop made by a boson field and other one corresponding to
a loop made by a fermion anti-fermion pair. Therefore, the

self-energy is written as

>, D)

i=o,m0, 7t

ZHJTMQ

j=u,d

(T, pg) = (15)

is the free boson propagator with? being the square of the Where

boson’s mass and,, = 2nxT the Matsubara frequencies for

boson fields.

For a fermion field with mass: ¢, the general expression
for the one-loop correction at finite temperature and quark

chemical potentigl, is

3
V()(UTNq TZ/dk
X Trn S(@p —ipg, £) 7, (12)
where 1
S(n, k) = —_— 13
( ) Yown + K+ my 43

is the free fermion propagator aag, = (2n + 1)7T are the
Matsubara frequencies for fermion fields.
The ring diagrams term is given by

Z/ d3k

X In(1+ T(mp, T, 1) D, K)),

VRlng(U T //Lq

(14)

wherell(my, T, 114) iS the boson’s self-energy.

O O

(a) (b) (c)

FIGURE 1. Feynman diagrams contributing to the one loop bosons’

I, (T):

A
4{121 («/mg+n(,) 41( mi0+Hﬂo>

H,TO(T):% {4[ (Vimz +10,) +121 (M)

Yy <,/m72Ti +Hﬂi)], (16)
with
1 k?

andn(z) being the Bose-Einstein distribution.
The leading temperature approximation to the boson self-
energy is given by

A
o (T) = s (T) = To (T) = [241(0)]
6)\ 1 \T?

This approximation, where the boson’s mass is neglected
with respect to the temperature, is a good approximation
around the phase transition where the boson’s mass (includ-
ing its thermal correction) vanishes, nameh? + I1; = 0.

On the other hand, the fermion contribution is given by

dk

H (T Uq —iuq,E, mf)

xS(&nfiuquJm,k‘fﬁ,mf)]. (19)

self-energies. The dashed line denotes the charged pion, the con-

tinuous line is the sigma, the double line represents the neutral pion

and the continuous line with arrows represents the fermions.

Equation (19) can be computed without resorting to as-
suming a hierarchy betwednandy,. Also, since we work
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close to the phase transition, we takg = 0. The fermion
self-energy contribution becomes

T
15(T, ) = =Nog? 5 [Lin(—e"s/T)

+ Lig(—e Ha/T)].

sonis

(T, pg) = —Nchg2g |:Li2 (—e“q/T>
+Lia (—e/T) | + ATTQ (21)

305

For the case of the fermion one-loop contribution, we fol-
low the procedure outlined for the boson case. Thus, we start
by computing the sum over the Matsubara frequencies to ob-
tain

1
@) VOl Ty = - /dk kQ{\ [k2 +m2

With Egs. (18) and (20), the total self-energy for one bo-

Tl (1 - e—<\/k2+mi—uq>/T)

—Tln (1 —e (v k2+m§+’*‘I)/T) } (24)

As for the boson case, we find that Eq. (24) contains two

With the boson self-energy at hand we can study the proppieces, one corresponding to the vacuum contribution and the
erties of the effective potential. In order to work with analyt- other one to the matter contribution. The latter has the con-
ical expressions we turn to study two cases: first the highribution of the quark chemical potential and for this reason

temperature approximationg. 7' > my, 4 and then the
low temperature approximatiare. 7" < my, pg. In the
following we compute explicitly both regimes.

3.2. High temperature approximation

we now have two terms corresponding to the particle and the
anti-particle contributions. The vacuum contribution is com-
puted exactly in the same manner for the boson case. For
the matter term, we compute the integral in momentum tak-
ing into account the approximation whewe; /T’ < 1 and

uqe/T < 1, and we consider only the dominant terms (for

For smallpp and the transition temperature for chiral sym- e details see Appendix B). After we compute the momen-
metry restoration found by LQCD computations [21], we ob-{, 1, integral in Eq. (24) we get

serve thafl" is the largest of the energy scales. Therefore, a
high temperature gpproximation is suited to study the chiral D m;% A 1
symmetry restoration. Let’s start from Eq. (10), the one-loop Vi7 (v,T) = — [hl (72) —VE+ *}
. . . N 167 m 2
correction for boson fields. The first step is to compute the f
sum over Matsubara frequencies. On doing so we obtain m;& m? 1 i
M [hl ((47rT)2) - 1/10(5 + QWT)
(1)b 1 o) VR +mp
VP, T) = — [ dk k*{ ——— 1 i
272 2 — g0 (, _ e
2 2T
+ Liz(_e—uq/T)} + 327" [Li4(_e~«/T)

) — 8m2T? [Lig(—e“‘?/T)
+Th (1 - e*vk“mi/T) } (22)

+ Li4(—e*“q/T)}. (25)

Notice that Eq. (22) has two pieces, the first one is the
vacuumcontribution and the second one is thattercontri- ]
bution, namely, th&-dependent correction. In order to com- !N order to go beyond the mean field (one-loop) approx-

pute the vacuum term, we need to regularize and renormalizZg'ation. we need to consider the plasma screening effects.
the former. For this purpose, we employ dimensional reg_'I'hese can be accounted for by means of the ring diagrams.

ularization and the Minimal Subtraction scheme (MS), with Since we are working in the high temperature approximation,
the renormalization scalg = e~'/2a. For the matter term, W€ notice that the lowest Matsubara mode is the most dom-
we take the approximatiom; /T < 1 and we include only inant term [24]. Therefore we do not need to compute the
the most dominant terms (for more details see Appendix A)°ther modes and Eg. (14) becomes

Taking all this into account, the one-loop contribution to the T P

effective potential from boson fields is given by VRing(U’ T, 1g) = f/

In(1 + TI(T, 12) D())

2 ) (2m)3
4 2
(1)b _my, dma”y 1 T
Vi (0, 1) == -5 [ln (T@g ) Ve + 2} =15 | dk k2{ In(k? + mj + I(T, p1g))
7
4 2 24
omy, ( my ) T T _ 9 9
642 "\ (4xT)2) ~ 00 Il + ) } (26)
miT?  miT (23) FTom EQ. (26), we see that both integrands are almost the
24 127 same except that one is modified by the self-energy and the
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other one is not. Thus, after integration, we obtain that thejuark chemical potential approaches the pion mass. There-
ring diagrams contribution is fore, the one-loop contribution for boson fields after the sum
over Matsubara frequencies is

: T
VR0, T, 1g) = (i — (m} + TU(T, ))*/?). (27)
™
. . _ _ Vi, T, /dkk2 k2
With these pieces at hand, we can write the effective po- T (v, T ) +my
tential up to the ring diagrams contribution in the high tem-
perature approximation. This is given by LT (1 - ng*%)/T) } (29)
24 6a? A+ oA
Vﬁ?(v,T,uq)=—(a o) o AEON
2 4 In this approximation, it is not necessary to compute the vac-
a2 1 uum and matter contributions separately, in fact the full ex-
+ Z 64772 [ (MTQ) —7E + 5} pression can be computed at once. In this work, we follow
b=o,7 the procedure used in Ref. [27]. The general idea consists

R 2T (md 4 (T, )T on deve!oplng a Taylor series arouid= 0 of the following
_ + — expression
90 24 127
4 2 ()b
m} a 1 V(. T, ) / Vv, jiy + 2TV (x)dz,  (30)
1 - - LT 0 )
- f_zd { 62 18 () ~ 72+ 3 .
—u, By
1 [ _ , - o
—° (5 + 2”—%) P? (f - Q'M—QT” whereh () is the first derivative of the Bose-Einstein distri-
T T bution andV?(v, s+ T') is the one-loop boson contribution
— 8m3T? [Li2(—e“q/T) + Li2(fe*“q/T)] evaluated af’ = 0, which is given explicitly by

4 4dra’?
il o )T )T S _ My 1
+ 327 [L|4( eHa )_|_|_|4( e Ha )}} (28) 0 (Uaﬂb) 642 n (/tb+\/m)2
yR—)
@(gug_mlg), (31)

9672

Notice that the potentially dangerous pieces coming from 1
linear or cubic powers of the boson mass, that could become “Et 2
imaginary for certain values ef are removed or replaced by
the contribution of the ring diagrams [25]. Notice that the one loop contribution from boson fields

in the limit 7' = 0, that appears in Eq. (30), is evaluated
3.3. Low temperature approximation atp, — w + «T. Then the expression of one-loop mat-
ter contribution from one boson field in the low temperature
5$proximation becomes

+

To have access to the region in the QCD phase diagram whe
up is large andl’ is small, we compute the effective poten-

tial in the approximation wher€ is the soft scale in the sys- 0.03

tem. We call this the low temperature approximation. The T P
approximation is applied both to the contribution of boson 002t~ VF P
and fermion fields. — Jeft -7
- : . — Viree+ Viing+ Vi ~
In the case of boson fields, we include a boson chemical 0.01 ° _—"
potential. We relate this to the energy required to add or re- ® 0.00 =
move one boson to the system. We associate this term to the> T —
description of high density in the analysis, in other words,  _0.01 \\\
the bosons’ chemical potentigl,, is related to the conserva- ~~
tion of an average number of particles and not to a conservec  ~0.02 \\\
charge. The introduction of the boson’s chemical potential ~0.03
is used to account for the possible onset of meson conden: 0 10 20 30 40 5 60 70
sates as the quark chemical potential increases. This phe v[MeV]

nomenon has been described since long ago in the context @fsyre 2. Fermion and boson contributions to the effective poten-
processes taking place in the core of neutron stars, where af| at the phase transition at high temperature near the minimum at
excess of negative pions appears when the electron chemical= 0. Notice that the sum of the two contributions offset each
potential approaches the pion rest mass [26]. In the presemwther making the potential to be flat. This is tantamount of a sec-
context, since the relevant interactions are between mesomd order phase transition.

and quarks, an excess of pions is bound to appear when the
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0.03 — becomes
- Vr -7 1)f f
Q.02 Vet _ ~7 VL(T) (v, T\paq) = Vo (v, pg + 2T ‘T:O
~
0.01t|— Viree+ Viing+ Vi - - 2272 92
-
~ —_ + — W T ’
< 0.00 — 6 O(aT)? (v ta T
S —— _
~ -~ 7T4T4 84
~0.01 ~ _<_y, T ’ . (35
S~ T 360 07" 0w pg o) (35)
-0.02 " For more details see Appendix D.
-0.03 ~ Equations (6), (9), (32) and (35) provide the full expres-
6 10 20 3 40 50 60 70 sion for the effective potential in the low temperature approx-
v[MeV] imation, which is given by

FIGURE 3. Fermion and boson contributions to the effective poten-
tial at the phase transition for low temperature. Notice that the sum
of the two contributions produce a barrier between each of the two

(a® + 6a?) o n A+ (5)\)v4

VLT( >T7Mq>/1b):_ 2 v 4

degenerate minima at the transition. This is tantamount of a first
order phase transition. _ Z A
=0, 6471-2 (/j’b+ \/Iu’g_mzz)2
1 o/ i —m?
(1 b —Et G| T T g (26— 5my)
V(0. T ) = V(s +2T)|
T2
w272 9?2 I o2 e
T ‘ Hp i
12 00T )VO(UMb+$ ) _ 12
7HATA 9 . _ 7T2T4Mb (QUzQ; - 3m2) }
mr 9 yb, T ‘ . @2 232
1260 8(zT)1 "0 (0 +2T)| (32 180  (u2 —m32)3/
2.2
For more details see Appendix C. +N. Y { T lln ( ima )
For fermion fields, we start from Eq. (24), such that we f=u.d m (g + A/ 1 — m?)2
implement the low temperature approximation in the same
way as we did for boson fields. We now develop a Taylor tiq\/ 12 —m3
Y > ¢ 1 q f 9 9
series around’ = 0 of the following expression —7E+ 9~ Y (2ug — 5mj)
1 i N e
V5 (v, T, pg) / Vi(v, g + 2T)hp(x)dz, (33) 6 VHa— s
g — nlf 77T.2T4qu (2#% _ 3m?) (36)
360 (u2— mft)?’/2

with hg(z) is the first derivative of the Fermi-Dirac distri- , .
bution andV{ (v, sz, + 2T') is the one-loop potential for one We are now in position to explore the QCD phase tran-

fermion field evaluated aF — 0. This can be written as Sition in the regions of the QCD phase diagram where the
temperature is larger than the quark chemical potential and

follows ’ !
where the temperature is smaller than the quark chemical po-
tential. However, before exploring the phase diagram, we
Vi (v, 1q) need to determine the value of all the parameters involved in

16772 + p2 — mf)2 the linear sigma model, appropriate for the conditions of the
analysis. In the following section we proceed in this direction
to determine the values of those parameters and in particular

,LLq — mf .
2Mq — 5mf (34)  of the couplings\ andg.

e+ T oamz

2

4. Coupling Constants
Once again, we notice that the one-loop contribution from

fermion fields in the limitT" = 0 that appears in Eq. (33) is Regardless of the approximation to the effective potential that
evaluated aj, — pq + 27. The one-loop contribution for is being considered, Eq. (28) or Eq. (36), we observe that we
one fermion field in the low temperature approximation thenhave five free parameters which should be fixed. These are

Rev. Mex. Fis64(2018) 302-313



308 A. AYALA, S. HERNANDEZ-ORTIZ AND L.A. HERNANDEZ
200 200
150 150
% s
S 100 < 100
: — Second Order : — Second Order
—First Order — First Order
50r [ —CEP 50r [ —CEP
— Interpolation — Interpolation
G0 100 200 300 400 Go 100 200 300 400
Hq [MeV] Hq [MeV]

FIGURE 4. QCD phase diagram, using the physical vacuum pion FIGURE 6. QCD phase diagram, using the physical vacuum pion
mass, obtained_ from the solutions to the equations_ that ther'mass, obtained from the solutions to the equations that deter-
mine the coupling constants. These are pres_ented n the rangine the coupling constants. These are presented in the range
0.77 < A < 0.86 and1.53 < g < 163, with 13 = 1o (99 — N < 110 and1.50 < g < 1.59, with y1; = 0.5/

and the band's upper line computed wiflj(n, = 0) = 175 and the band’s upper line computed witlf (1, = 0) = 175

MeV and ug(T' = 0) = 350 MeV and the lower line with =0, onq pe(T = 0) = 350 MeV and the lower line with

T§ (ug = 0) = 165 MeV andus (T = 0) = 330 MeV. The second T (g = 0) 165 MeV andyc (T = 0) — 330 MeV. The second
order transitions are indicated by the shaded red areas and the fir derqtransitions are indicategi by the shaded red areas and the first
order transitions by the blue shaded areas. These areas represent Sler transitions by the blue shaded areas. These areas represent the
results directly obtained from our analysis. The intermediate greeny ;s directly obtained from our analysis. The intermediate green
shaded area is a Radpproximation that interpolates between the shaded area is a Padpproximation that interpolates between the
high and low temperature regimes. high and low temperature regimes.

200
200
150
S 150
()]
= 100 _
_ — Second Order >
()]
— First Order S 100
50} | = CEP — _Secogd Order
i — First Order
— Interpolation
P 50r [ —CEP
% 100 200 300 400 — Interpolation
Me
#q [MeV] % 100 200 300 400
FIGURE 5. QCD phase diagram, using the physical vacuum pion Lo IMeV]

mass, obtained from the solutions to the equations that deter-

mine the coupling constants. These are presented in the rang€IGURE 7. QCD phase diagram, in the chiral limiti, = 0), ob-

045 < A < 049 and1.59 < g < 1.68, with u; = 2us tained from the solutions to the equations that determine the cou-

and he band’s upper line computed witl§(n, = 0) = 175 pling constants. These are presented in the rarge< A < 1.13

MeV and ug(T" = 0) = 350 MeV and the lower line with  and1.78 < g < 1.89, with uq; = us and the band’s upper line

T5 (g = 0) = 165 MeV andug (T = 0) = 330 MeV. The second  computed withT (g = 0) = 175 MeV andpg (T = 0) = 350

order transitions are indicated by the shaded red areas and the firdfleV and the lower line with7§(u, = 0) = 165 MeV and

order transitions by the blue shaded areas. These areas representth(7" = 0) = 330 MeV. The second order transitions are indi-

results directly obtained from our analysis. The intermediate greencated by the shaded red areas and the first order transitions by the

shaded area is a Pa@dpproximation that interpolates between the blue shaded areas. These areas represent the results directly ob-

high and low temperature regimes. tained from our analysis. The intermediate green shaded area is
a Pa@ approximation that interpolates between the high and low

the two coupling constants and g, the square mass param- temperature regimes.

etera? and the counter-termé? and ). In order to de-

terminea?, we use that the vacuum boson masses, Eq. (5), We can fixa using the physical vacuum sigma and pion

satisfy masses. This analysis is shown in Figs. 4-6. Alternatively,

we can work in the strict chiral limit, taking:, = 0. This

my — 3m3 e - > ; :
- analysis is shown in Figs. 7-9. We notice that the two kinds

5 37)

a =
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200 200

S S
< 100 = 100
= — Second Order —

—First

50| _ CIIrESP Order 50 — Second Order
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FIGURE 8. QCD phase diagram, in the chiral limit. = 0), ob- FIGURE 9. QCD phase diagram, in the chiral limit; = 0), ob-
tained from the solutions to the equations that determine the coutained from the solutions to the equations that determine the cou-
pling constants. These are presented in the rarige< A < 0.64 pling constants. These are presented in the range< A < 1.30
and1.84 < g < 1.96, with u, = 2u, and he band’s upper line  and1.74 < g < 1.85, with i, = 0.5, and the band’s upper line
computed withl (ug = 0) = 175 MeV andpg(T" = 0) = 350  computed WithT§ (g = 0) = 175 MeV andu(T = 0) = 350

MeV and the lower line withTg(p, = 0) = 165 MeV and  MeV and the lower line with7§(u, = 0) = 165 MeV and

pq(T = 0) = 330 MeV. The second order transitions are indi- ,¢(7" = 0) = 330 MeV. The second order transitions are indi-
cated by the shaded red areas and the first order transitions by theated by the shaded red areas and the first order transitions by the
blue shaded areas. These areas represent the results directly oblue shaded areas. These areas represent the results directly ob-
tained from our analysis. The intermediate green shaded area igained from our analysis. The intermediate green shaded area is
a Pa@ approximation that interpolates between the high and low a pa@ approximation that interpolates between the high and low
temperature regimes. temperature regimes.

of phase diagrams obtained are very similar, in particular thg” — . Hereafter we refer to these extreme points of the
CEP's location changes very little. diagram as points4) and (B), respectively.

We now need to use two conditions to fix the values ofthe At point (4), the phase transition is second order, hence
coupling constants, the main idea is to use physical inputghe square of the pion thermal mass, evaluated-at0 and
such that the relations which satiskyand g are consistent 7 _ 79 s given by
with the realistic behavior of QCD matter around the phase ¢
transition in the high and low temperature domains. m2(0,TC, 11y = 0) = —a? + I(TE, g = 0) = 0. (38)

From LQCD computations [21], we know that @ = T 071

pp/3 = 0, the QCD phase transition is a crossover, hereb;i other words, Eg. (38) tells us that the curvature at 0
described as a second order transition, and happens for 2+ '

. . andT = T¢ is zero. Therefore the shape of the potential near
[ 0

light flavors at7 ~ 155 MeV and for only 2 light f."'?‘VorS v = 0 is flat both in thes and the pion directions. This is

at7T§ ~ 170 MeV. In a second order phase transition, thedepicted in Fig. 2

vacuum expectation valuedv) continuously transits from s

the broken phase to the restored phase and thus there is onl At point (B), the phase transition is_ first Ordef' therefore
one minimum. On the other hand, from the analysis usingﬁxa expect that ati, ~ mp/3 the effective potential devel-

effective models [28] it is found that at very low values of thpS;ttvr\:o ?ege.nerate T.'S'Ta' 'It'h|tsh|s d?fpmtt.ed n '?g't.?’ 'I I_\lotlce
T and high values of:, the transition is first order. From attne fermion contribution fo the efiective potential 1S re-

the analysis based on Hagedorn’s limiting temperature [29 .ponsi.ble for t'he prdgr of the phase transition. At low densi-
at finite . 5, we know that the critical value for the transition Hes, this contribution is not strong enough to produce a hump

curve to intersect the horizontal axis in the QCD diagram is'tn_;hte effectlt\j/e pmi?“‘;' whergaf at h'gh_ d_enS|t|te;shth|s_;:_onl-
1ip ~ my, wheremy; ~ 1 GeV is the typical value of the ribution produces the barrier between minima at the critical

baryon mass. Theewv transits from the broken phase to the tempgrature. . . .
restored phase in a discontinuous way. This means that at Since the analysis we carry out describes the transit from

the phase transition, the effective potential develops two delh€ broken to the restored phase, the minimum we are follow-
generate minima. In one or the other case, the thermal piof?d i the one with aev different from zero, which we call
mass evaluated at the minima of the potential always vant1- This last condition can be written as
ishes, since this field is a Goldstone mode.

In order to fix the coupling constants we use as inputs the m3(v1,0, pg) = Aoy —a® +10(0, ) =0, (39)
values of temperature and quark chemical potential in two
extreme points along the transition curve, namely, when the In Eq. (39), we notice that a new unknown appears:
restoration of chiral symmetry is g, = 0 and whenitisat  thatis, the value of the non-vanishing minimum. The set of
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conditions necessary to determine all the unknowns is CEP’s region at low temperatures and high quark chemical

et potential.

ov
ayeft 6. Summary and conclusions

ov (v=01,T=0,pq = MS) =0,

In this work we have used the linear sigma model with quarks

V(v =0,T=0,p, = ) = to explore the QCD phase diagram from the point of view

off B e of chiral symmetry restoration. We have computed the fi-

VI (v =01, T =0, ng = p1g)- (40) nite temperature effective potential up to the contribution of
The three expressions in Eq. (40) indicate that the effecthe ring di_agrams to account for the plasma scr_eening effe_cts
tive potential has two degenerated minima at the phase trang'd have introduced a quark and a boson chemical potentials.
tion and thus that the transition is first order wies= 0 and 1 ne latter is related to the high density of the system that is

the quark chemical potential is finite and equal to its criticall turn linked to the high baryon abundance at large values of
value. the quark chemical potential.

Our approach was to determine the model's couplings
using physical inputs such as the vacuum pion and sigma
masses, the LQCD value for the critical temperature,at
The above set of conditions, Egs. (38), (39) and (40), repg and the conjectured end point valueigf of the transfition'
resent the five algebraic equations that determine the valué'sr)e at™ - 0. We h_ave alsp performed the analysis using
of A andg. These equations provide four pairs of solutions,”'™ = 0 instead of its physical vacuum value. The set of

out of which we pick the pair that corresponds to real posi_condltlons that determine the couplings enforce the require-

. . : o ment that at high temperature the transition is second order
tive solutions for\ andg. We are therefore in the position to o ; .

. whereas at low temperature is first order. Of particular im-
explore the QCD phase diagram.

Fiqures 4-6 show the phase diaaram obtained for the Ca'\_)%ortance is the observation that at the minima of the effective
Whengthe mass parameferis comguted using the physi- potential, the pion thermal mass vanishes, since this particle

cal pion mass in vacuum. These are computed uging- 1S avc\iolft.js;otri:e tboion. ina the val — 0) and
{, 2up, 0.5, respectively. In each figure, the band's  Y'© 'mdtha v:)/ en varying the values 6f (11, = 0) an
upper line is computed Withi¢(u, = 0) = 175 MeV uq(T = 0) by 10% from the chosen central values, the pro-
and (T = 0) = 350 Me\(} a?ld the lower line with cedure allows to locate the phase transition lines in narrow
TC(MM‘L 0) = 165 MeV andu& (T = 0) = 330 MeV. These band. The CEP is however stable when varying the relation
0\Hg =Y) = 4 =Y)= . . .
ranges produce corresponding ranges to the solutions givé??twe?n“q anq # and even when the pion mass 'S set to
by (0.77 < A < 0.86, 1.53 < g < 1.63), (0.45 < A < 0.49, either its physical value or to zero. The CEP location cor-

150 < g < 1.68), and (.99 < A < 1.10, 1.50 < g < 1.59), respo_nds to Iow_temperatures and hl_gh values of the qL_|ark
respectively. chemical potential. Table | summarizes the CEP location

Figures 7-9 show the phase diagram obtained for théound in some recent works together with our findings.
case when the mass parametds computed setting, — In order to provide a more robust CEP’s location, we need
0. that is in the chiral limit. These are computeg usingto extend the analytical expansion of the effective potential to

le = i 2, 0.5, respectively. In each figure, the a larger temperature range. Perhaps even more important
band’s upper line is computed with§(, = 0) = 175
MeV and g (T = 0) = 350 MeV and the lower line with .
T¢(11g = 0) = 165 MeV andp(T = 0) = 330 MeV. These TABLE |. Summary of some recent results for the CEP location,
ranges produce corresponding ranges to the solutions givefcuding our results.

by (1.02 < A < 1.13,1.78 < g < 1.89), (0.58 < A < 0.64, Reference Teep JICEP
respectively. Notice that the CEP location does not change

(v=0,T=0,pu, =pg) =0,

5. Results

L . . G. A. Contreragt al.[11] 69.9 MeV 319.1 MeV
significantly regardless of weather we set the pion mass ei-
ther to its physical value or to zero. T. Yokota,et al. [30] 5.1 MeV 286.7 MeV
We find that at high (low) temperature and low (high) S. Sharma [31] 145-155MeV  >2Tcgp
quark chemical potential the phase transitions are second J. Knautegt al.[14] 112 MeV 204 MeV

(first) order. The second order transitions are indicated by N G Antoniouetal.[15] 119-162MeV  84-86 MeV
the shaded red areas and the first order transitions b)_/ the blue Z.F. Cui,etal.[12] 38 MeV 245 MeV
shaded areas. These areas represent the results directly ob- i

tained from our analysis. The intermediate green shaded area” KoVacs and G. Wolf [32] >133.3 MeV
is a Paé approximation that interpolates between the high R. Rougemontetal.[16] <130MeV ~ >133.3MeV
and low temperature regimes. In all cases, we locate the This work 18-45MeV  315-349 MeV

Rev. Mex. Fis64(2018) 302-313



QCD PHASE DIAGRAM FROM CHIRAL SYMMETRY RESTORATION: ANALYTIC APPROACH AT HIGH AND LOW...

311

will be to include the temperature and density modificationsB. One-loop effective potential for fermion
to the couplings which has been shown useful to describe thige|ds. High temperature approximation

inverse magnetic catalysis phenomenon [33].
for the future and will be reported elsewhere.

Appendix

A. One-loop effective potential for boson fields.

High temperature approximation

This is work

The one-loop fermion contribution to the effective potential
also contains two terms: the vacuum and matter contribu-
tions. The former can be computed following step by step
what is done for the boson case. We only notice that the
fermion case differs from the boson case by an overall factor
—4. Therefore if we multiply Eq. (A.4) by-4, we get the
vacuum one-loop contribution from one fermion field

To compute the vacuum and matter contributions to the bo-

son one-loop effective potential, we start from Eqg. (22). The (1f _ m‘} ) 4ra®
vacuum contribution is computed using dimensional regular- vac  16m2 ( )

ization. Using the well known expression

dPk 1 o
[ o g~

(m2)27efn F(TL — 2+ 6)

A.l
@ 1w 0 &
with D = d — 2e, this contribution can be written as
~3—d d
Db M d*k
Ve = £ / sr\E (A2

In Eq. (A.2), we have explicitlyl = 3 andn = —1/2.
Hence we have

4l
(Lb _ _ b i
Ve =—gate-(T5 ), B
taking the limite — 0, we finally obtain
Vs _ 1n(47”~‘2)— Sl A
vac 6472 m? Ty T '

We use the Minimal Subtraction scheme (MS). After fix-
ing the renormalization scale fo= ae~'/2, the final expres-

sion for the vacuum contribution is given by

4 2
Wb _ _ M |4 (47m ) _ 1
Viac a2 [ n mg Y +1].

(A.5)

On the other hand, the matter contribution from one bo-

son field is

Vet = / di k21 (1= eVEETET) (A )

Takingm,, /T < 1, we can make an expansion of Eq. (A.6)
in terms of powers ofn,/T. The first three terms of the se-

ries are given by

4 2
yb _ my 1 mp
matt = T6an2 N\ (472
2T le)T2 m‘ZT
127 °

90 + 21 (A.7)

For more details, see Appendix C in Ref. 25.

— e +1 (B.1)

my

The matter contribution from one fermion field is quite
similar to the boson case. The two significant differences are
(1) fermions obey the Fermi-Dirac distribution and (2) the
matter term has particle and anti-particle contributions. This
information is encoded in the quark chemical potential. To
compute the matter contribution from one fermion, we star

from
Vinatt = /dka{ln

+In (1 —e v kz*’"gﬂ”‘l)/T) }

\/ k2+mb l"q)/T>

(B.2)

In the high temperature approximatiom;/T" < 1 and
pqe/T < 1. This approximation allows us to explore the
phase diagram’s region where the temperature is larger than
baryon chemical potential. Proceeding in a fashion entirely
analogous to the boson case, one obtains

m m> 1 i
V(l)f — f 1 f VAN H
matt = 7672 | ((47TT)2) v (2 + 27TT)

-(3- 57)

o+ Lig(—e 0/ T)] 4 327 iy (—ere/T)

— 8m?cT2 [Lig(—e“‘?/T)

+ Li4(—e—“q/T)] (B.3)

For more details, see Appendix C in Ref. 25.

C. One-loop effective potential for boson fields.
Low temperature approximation

In the low temperature approximation, we work in the regime
where the quark chemical potential is the most important en-
ergy scale and temperature is the smallest one. In order to ob-
tain the one-loop contribution to the effective potential from
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one boson field, we expand Eq. (22) in a Taylor series aroundne-loop contribution from one fermion field in the low tem-
T = 0. For this purpose, we start from Eq. (30), namely perature approximation becomes

(1)b _ ra
/ Voo (v, + 2T () = / Vo(l)f(v, pg + 2T)hp(z)de =
% Hg—mg
T
oo
VY0, y + 2T ’ / hy(z)d T
o (v, py+ )T:O p(z)dx V(fl)f(v,,uquéﬂT)‘T / () d
Hp— T = g
PV o
) h d 2 (1)f
* O(xT)? ’T:O / vhp(z)d + (Vo (U’Mq;— xT))‘ / 22hp(x)dx
By O(zT) T=0
Hg—my
0o T
(Vg (v, po + 2T) / s o
+ : ’ 2 *hp(z)ds 4y Wf
a(zT)? =0 L PO g + wT))‘ / o hp(z)da
By O(zT) T=0
Hg—my
o (C.2) ’
. D.1
with L (B-1)
7 where we have substitutedh, — mys, yup — pg and
/ hp(z)dr =1 hg(z) — hp(z). We now obtain that
F"b;mb IS
% 2712 hp(z)dr =1
9 T / F
/ x*hp(x)dr = 3 ot
HBp—mp
s 22
[e'e) 2 T
77T4T4 / T hF(Z‘)dl‘ =
*h = : c.2 6
/ 2 hp(z)dx 1260 (C.2) pgam;
“b;mb T
Therefore, in the low temperature approximation, the one- T ap, d — T4 D2
loop contribution from one boson field is given by "hp(z)dr = 360 (®-2)
m2T? 92 ()b Lt

1)b 1)b
‘/Lgl') (U5T7 ,ub) = ‘/O( ) (vhub) + 12 ﬁvo (’U,,U,b)

T 0 (b
1260 974 °

Therefore, substituting Eq. (D.2) into Eq. (D.1), we fi-
(v, 1p).- (C.3) nally get Eq. (35).
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