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QCD phase diagram from chiral symmetry restoration: analytic approach at high
and low temperature using the linear sigma model with quarks
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aInstituto de Ciencias Nucleares, Universidad Nacional Autónoma de Ḿexico,
Apartado Postal 70-543, Ciudad de México, 04510, Ḿexico.
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We use the linear sigma model with quarks to study the QCD phase diagram from the point of view of chiral symmetry restoration. We
compute the leading order effective potential for high and low temperatures and finite quark chemical potential, up to the contribution of
the ring diagrams to account for the plasma screening effects. We fix the values of the model couplings using physical values for the input
parameters such as the vacuum pion and sigma masses, the critical temperature at vanishing quark chemical potential and the conjectured
end point value of the baryon chemical potential of the transition line at vanishing temperature. We also make the analysis for the same input
parameters but with vanishing pion mass. We find that the critical end point (CEP) is located at low temperatures and high quark chemical
potentials(315 < µCEP < 349 MeV, 18 < T CEP < 45 MeV).
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1. Introduction

Among the important subjects of study in the realm of high-
energy/nuclear physics, both from the theoretical and exper-
imental points of view, are the properties of strongly inter-
acting matter under extreme conditions of temperature and
baryon density. Of particular interest is the location of the
Critical End Point (CEP) in the QCD phase diagram. To
this aim, the STAR BES-I program has recently analyzed
collisions of heavy-nuclei in the energy range 200 GeV
>
√

sNN > 7.7 GeV [1]. Future experiments [2–4] will
keep on conducting a thorough exploration of the transition
from confined/chiral-symmetry broken hadron matter to the
deconfined/chiral-symmetry restored state, varying the tem-
perature and baryon density by changing the collision en-
ergy down to about

√
sNN ' 5 GeV and the system size

in hadron and heavy-ion reactions. From the theoretical side,
efforts to locate the CEP employing a variety of techniques
such as Schwinger-Dyson equations, finite energy sum rules,
functional renormalization methods, holography, and effec-
tive models, have produced a wealth of results [5–16] rang-
ing from low to large values of the baryon chemical potential
(µB) and temperature (T ). Recent lattice QCD (LQCD) anal-
yses [17] have resorted to using the imaginary baryon chem-
ical potential technique, to later extrapolate to real values, to
study the chiral transition near theT -axis. Albeit with still
large uncertainties, this technique has shown that the transi-
tion keeps being a smooth crossover [18]. The Taylor ex-
pansion LQCD technique has also been employed to restrict
the CEP’s location to valuesµB/T > 2 for the temperature
range 135 MeV< T < 155 MeV. Its location for temper-
atures larger than0.9 Tc(µB = 0) seems to also be highly
disfavored [19] (see also [20]).

Effective models have proven to be useful tools to gain
insight into the phase structure of QCD. Given the dual na-
ture of the QCD phase transition, at least for low values of
µB , one can ask whether models that incorporate both chi-
ral symmetry breaking and deconfinement are better suited
to describe the transition features. However, since LQCD re-
sults show that for 2+1 light flavors, the crossover chiral and
deconfinenent transitions are indistinguishable [21], one may
resort to a simplified analysis whereby one or the other fea-
ture is emphasized. Recently, we have made use of the linear
sigma model coupled to quarks [22,23]. We have shown that
this tool can be successfully employed provided one accounts
for the screening properties of the plasma, which makes the
analysis effectively go beyond the mean field approximation,
and one finds the values of the couplings from the physical
values of the model parameters.

In this work we use the linear sigma model coupled to
quarks, including the plasma screening effects, to explore the
effective QCD phase diagram from the point of view of chi-
ral symmetry restoration. Our strategy is to fix the coupling
constants using the physical values of the model parameters,
such as the vacuum pion and sigma masses, the critical tem-
peratureT c at µB = 0 and the conjectured end point value
of µB (' 1 GeV) of the transition line atT = 0. For the
present purposes we compute an analytical, leading order in
T approximation for the effective potential, both at high and
low temperatures, for finite values of the baryon chemical po-
tential. We show that this strategy can be used to locate the
CEP. The work is organized as follows: In Sec. 2. we intro-
duce the linear sigma model coupled to quarks. In Sec. 3. we
compute the effective potential up to the contribution of the
ring diagrams. We work out the high and low temperature
analytical approximation for the effective potential and show
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explicitly how in the high temperature domain, the ring dia-
grams contribution cures the non-analyticities that appear at
one-loop order. In Sec. 4. we spell out the conditions that
give rise to the equations to find the values of the model cou-
pling constants. In Sec. 5. we use these couplings to compute
the criticalT andµB values that define the transition curves
and locate the CEP. In Sec 6. we finally summarize and con-
clude. We reserve for the appendices the calculation details
for the boson and fermion contributions to the one-loop ef-
fective potential. In a sequel, to be reported elsewhere, we
will study the case where the analytical approximation is ex-
tended to cover a larger set of possibleµB andT values as
well as to include the case where the couplings are allowed
to bear the dependence onµB andT .

2. Linear Sigma Model coupled to quarks

In order to explore the QCD phase diagram, we study the
restoration of chiral symmetry using an effective model that
accounts for the physics of spontaneous symmetry breaking
at finite temperature and density, theLinear Sigma Model. In
order to account for the fermion degrees of freedom around
the phase transition, we also include quarks in this model.
The Lagrangian for the linear sigma model when the two
lightest quarks are included is given by

L =
1
2
(∂µσ)2 +

1
2
(∂µ~π)2 +

a2

2
(σ2 + ~π2)− λ

4
(σ2 + ~π2)2

+ iψ̄γµ∂µψ − gψ̄(σ + iγ5~τ · ~π)ψ, (1)

whereψ is an SU(2) isospin doublet,~π = (π1, π2, π3) is an
isospin triplet andσ is an isospin singlet.λ is the boson’s
self-coupling andg is the fermion-boson coupling.a2 > 0 is
the mass parameter.

To allow for an spontaneous breaking of symmetry, we
let theσ field to develop a vacuum expectation valuev

σ → σ + v, (2)

which can later be taken as the order parameter of the theory.
After this shift, the Lagrangian can be rewritten as

L = −1
2
[σ∂2

µσ]− 1
2

(
3λv2 − a2

)
σ2

− 1
2
[~π∂2

µ~π]− 1
2

(
λv2 − a2

)
~π2 +

a2

2
v2

− λ

4
v4 + iψ̄γµ∂µψ − gvψ̄ψ + Lb

I + Lf
I , (3)

whereLb
I andLf

I are given by

Lb
I = −λ

4

[
(σ2 + (π0)2)2

+ 4π+π−(σ2 + (π0)2 + π+π−)
]
,

Lf
I = −gψ̄(σ + iγ5~τ · ~π)ψ. (4)

Equation (4) describes the interactions among theσ, ~π
andψ fields after symmetry breaking. From Eq. (3) one can
see that the sigma, the three pions and the quarks have masses
given by

m2
σ = 3λv2 − a2,

m2
π = λv2 − a2,

mf = gv, (5)

respectively.
In order to determine the chiral symmetry restoration con-

ditions as function of temperature and quark chemical poten-
tial, we study the behavior of the effective potential, which
we now proceed to deduce in detail.

3. Effective potential

Chiral symmetry restoration can be identified by means of
the finite temperature and density effective potential, which
in turn is computed order by order. In this work we include
the classical potential or tree-level contribution, the one-loop
correction both for bosons and fermions and the ring dia-
grams contribution, which accounts for the plasma screening
effects.

The tree level potential is given by

V tree(v) = −a2

2
v2 +

λ

4
v4, (6)

whose minimum is given by

v0 =

√
a2

λ
, (7)

sincev0 6= 0, we notice that the symmetry is spontaneously
broken. We also notice that

d2V tree

dv2
= 3λv2 − a2 = m2

σ, (8)

which means that the curvature of the classical potential is
equal to the sigma mass squared. This property is maintained
even when corrections due to finite temperature and density
are included in the effective potential.

However, in order to make sure that the quantum correc-
tions at finite temperature and density maintain the general
properties of the effective potential, we need to add counter-
termsδa2 andδλ to the bare constantsa2 andλ, respectively,
and write

V tree = −a2

2
v2 +

λ

4
v4

→ − (a2 + δa2)
2

v2 +
(λ + δλ)

4
v4. (9)

These counter-terms are needed to make sure that the phase
transition at the critical temperatureTc for µB = 0 is sec-
ond order and that this transition is first order at the critical
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baryon densityµc
B for T = 0. We will come back to these

conditions when we introduce the analysis to determine the
parameters of the model.

To include quantum corrections at finite temperature and
density, we work within the imaginary-time formalism of
thermal field theory. The general expression for the one-loop
boson contribution can be written as

V (1)b(v, T ) = T
∑

n

∫
d3k

(2π)3
ln D(ωn,~k)1/2, (10)

where
D(ωn,~k) =

1
ω2

n + k2 + m2
b

, (11)

is the free boson propagator withm2
b being the square of the

boson’s mass andωn = 2nπT the Matsubara frequencies for
boson fields.

For a fermion field with massmf , the general expression
for the one-loop correction at finite temperature and quark
chemical potentialµq is

V (1)f(v, T, µq) = −T
∑

n

∫
d3k

(2π)3

× Tr[lnS(ω̃n − iµq,~k)−1], (12)

where
S(ω̃n,~k) =

1
γ0ω̃n + /k + mf

, (13)

is the free fermion propagator and̃ωn = (2n + 1)πT are the
Matsubara frequencies for fermion fields.

The ring diagrams term is given by

V Ring(v, T, µq) =
T

2

∑
n

∫
d3k

(2π)3

× ln(1 + Π(mb, T, µq)D(ωn,~k)), (14)

whereΠ(mb, T, µq) is the boson’s self-energy.

FIGURE 1. Feynman diagrams contributing to the one loop bosons’
self-energies. The dashed line denotes the charged pion, the con-
tinuous line is the sigma, the double line represents the neutral pion
and the continuous line with arrows represents the fermions.

3.1. Self-energy.

We start by computing the self-energy for one boson field.
For this purpose we need to include all the contribution from
the Feynman rules in Eq. (4). The diagrams representing the
bosons’ self-energy are depicted in Fig. 1. Each boson has
a self-energy with two kinds of terms, one corresponds to a
loop made by a boson field and other one corresponding to
a loop made by a fermion anti-fermion pair. Therefore, the
self-energy is written as

Π(T, µq) =
∑

i=σ,π0,π±
Πi(T ) +

∑

j=u,d

Πj(T, µq), (15)

where

Πσ(T )=
λ

4

[
12I

(√
m2

σ + Πσ

)
+4I

(√
m2

π0 + Ππ0

)

+ 8I

(√
m2

π± + Ππ±

)]
,

Ππ±(T ) =
λ

4

[
4I

(√
m2

σ + Πσ

)
+4I

(√
m2

π0 + Ππ0

)

+16I
(√

m2
π± + Ππ±

)]
,

Ππ0(T )=
λ

4

[
4I

(√
m2

σ + Πσ

)
+12I

(√
m2

π0 + Ππ0

)

+ 8I

(√
m2

π± + Ππ±

)]
, (16)

with

I(x) =
1

2π2

∫
dk

k2

√
k2 + x

n
(√

k2 + x
)

, (17)

andn(x) being the Bose-Einstein distribution.
The leading temperature approximation to the boson self-

energy is given by

Πσ(T ) = Ππ±(T ) = Ππ0(T ) =
λ

4
[24I(0)]

=
6λ

2π2

∫
dkk

1
ek/T − 1

=
λT 2

6
. (18)

This approximation, where the boson’s mass is neglected
with respect to the temperature, is a good approximation
around the phase transition where the boson’s mass (includ-
ing its thermal correction) vanishes, namely,m2

i + Πi = 0.
On the other hand, the fermion contribution is given by

Πj(T, µq) = −g2T
∑

n

∫
d3k

(2π)3
Tr[S(ω̃n − iµq,~k, mf )

× S(ω̃n − iµq − ω̃m,~k − ~p,mf )]. (19)

Equation (19) can be computed without resorting to as-
suming a hierarchy betweenT andµq. Also, since we work
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close to the phase transition, we takemf = 0. The fermion
self-energy contribution becomes

Πj(T, µq) = −Ncg
2 T 2

π2
[Li2(−eµq/T )

+ Li2(−e−µq/T )]. (20)

With Eqs. (18) and (20), the total self-energy for one bo-
son is

Π(T, µq) = −NfNcg
2 T 2

π2

[
Li2

(
−eµq/T

)

+ Li2
(
−e−µq/T

) ]
+

λT 2

2
. (21)

With the boson self-energy at hand we can study the prop-
erties of the effective potential. In order to work with analyt-
ical expressions we turn to study two cases: first the high
temperature approximation,i.e. T À mb, µq and then the
low temperature approximationi.e. T ¿ mb, µq. In the
following we compute explicitly both regimes.

3.2. High temperature approximation

For smallµB and the transition temperature for chiral sym-
metry restoration found by LQCD computations [21], we ob-
serve thatT is the largest of the energy scales. Therefore, a
high temperature approximation is suited to study the chiral
symmetry restoration. Let’s start from Eq. (10), the one-loop
correction for boson fields. The first step is to compute the
sum over Matsubara frequencies. On doing so we obtain

V (1)b(v, T ) =
1

2π2

∫
dk k2

{√
k2 + m2

b

2

+ T ln
(
1− e−

√
k2+m2

b/T
) }

. (22)

Notice that Eq. (22) has two pieces, the first one is the
vacuumcontribution and the second one is themattercontri-
bution, namely, theT -dependent correction. In order to com-
pute the vacuum term, we need to regularize and renormalize
the former. For this purpose, we employ dimensional reg-
ularization and the Minimal Subtraction scheme (MS), with
the renormalization scalẽµ = e−1/2a. For the matter term,
we take the approximationmb/T ¿ 1 and we include only
the most dominant terms (for more details see Appendix A).
Taking all this into account, the one-loop contribution to the
effective potential from boson fields is given by

V
(1)b

HT (v, T ) =− m4
b

64π2

[
ln

(4πa2

m2
b

)
− γE +

1
2

]

− m4
b

64π2
ln

( m2
b

(4πT )2
)
− π2T 4

90

+
m2

bT
2

24
− m3

bT

12π
. (23)

For the case of the fermion one-loop contribution, we fol-
low the procedure outlined for the boson case. Thus, we start
by computing the sum over the Matsubara frequencies to ob-
tain

V (1)f(v, T, µq) = − 1
π2

∫
dk k2

{√
k2 + m2

f

− T ln
(
1− e−(

√
k2+m2

b−µq)/T
)

− T ln
(
1− e−(

√
k2+m2

b+µq)/T
)}

. (24)

As for the boson case, we find that Eq. (24) contains two
pieces, one corresponding to the vacuum contribution and the
other one to the matter contribution. The latter has the con-
tribution of the quark chemical potential and for this reason
we now have two terms corresponding to the particle and the
anti-particle contributions. The vacuum contribution is com-
puted exactly in the same manner for the boson case. For
the matter term, we compute the integral in momentum tak-
ing into account the approximation wheremf/T ¿ 1 and
µq/T < 1, and we consider only the dominant terms (for
more details see Appendix B). After we compute the momen-
tum integral in Eq. (24) we get

V
(1)f

HT (v, T ) =
m4

f

16π2

[
ln

(4πa2

m2
f

)
− γE +

1
2

]

+
m4

f

16π2

[
ln

( m2
f

(4πT )2
)
− ψ0

(1
2

+
iµ

2πT

)

− ψ0
(1

2
− iµ

2πT

)]
− 8m2

fT 2
[
Li2(−eµq/T )

+ Li2(−e−µq/T )
]

+ 32T 4
[
Li4(−eµq/T )

+ Li4(−e−µq/T )
]
. (25)

In order to go beyond the mean field (one-loop) approx-
imation, we need to consider the plasma screening effects.
These can be accounted for by means of the ring diagrams.
Since we are working in the high temperature approximation,
we notice that the lowest Matsubara mode is the most dom-
inant term [24]. Therefore we do not need to compute the
other modes and Eq. (14) becomes

V Ring(v, T, µq) =
T

2

∫
d3k

(2π)3
ln(1 + Π(T, µq)D(~k))

=
T

4π2

∫
dk k2

{
ln(k2 + m2

b + Π(T, µq))

− ln(k2 + m2
b)

}
. (26)

From Eq. (26), we see that both integrands are almost the
same except that one is modified by the self-energy and the
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other one is not. Thus, after integration, we obtain that the
ring diagrams contribution is

V Ring(v, T, µq) =
T

12π
(m3

b − (m2
b + Π(T, µq))3/2). (27)

With these pieces at hand, we can write the effective po-
tential up to the ring diagrams contribution in the high tem-
perature approximation. This is given by

V eff
HT(v, T, µq) = − (a2 + δa2)

2
v2 +

(λ + δλ)
4

v4

+
∑

b=σ,π̄

{
− m4

b

64π2

[
ln

( a2

4πT 2

)
− γE +

1
2

]

− π2T 4

90
+

m2
bT

2

24
− (m2

b + Π(T, µq))3/2T

12π

}

+
∑

f=u,d

{
m4

f

16π2

[
ln

( a2

4πT 2

)
− γE +

1
2

− ψ0
(1

2
+

iµq

2πT

)
− ψ0

(1
2
− iµq

2πT

)]

− 8m2
fT 2

[
Li2(−eµq/T ) + Li2(−e−µq/T )

]

+ 32T 4
[
Li4(−eµq/T ) + Li4(−e−µq/T )

]}
. (28)

Notice that the potentially dangerous pieces coming from
linear or cubic powers of the boson mass, that could become
imaginary for certain values ofv, are removed or replaced by
the contribution of the ring diagrams [25].

3.3. Low temperature approximation

To have access to the region in the QCD phase diagram where
µB is large andT is small, we compute the effective poten-
tial in the approximation whereT is the soft scale in the sys-
tem. We call this the low temperature approximation. The
approximation is applied both to the contribution of boson
and fermion fields.

In the case of boson fields, we include a boson chemical
potential. We relate this to the energy required to add or re-
move one boson to the system. We associate this term to the
description of high density in the analysis, in other words,
the bosons’ chemical potentialµb, is related to the conserva-
tion of an average number of particles and not to a conserved
charge. The introduction of the boson’s chemical potential
is used to account for the possible onset of meson conden-
sates as the quark chemical potential increases. This phe-
nomenon has been described since long ago in the context of
processes taking place in the core of neutron stars, where an
excess of negative pions appears when the electron chemical
potential approaches the pion rest mass [26]. In the present
context, since the relevant interactions are between mesons
and quarks, an excess of pions is bound to appear when the

quark chemical potential approaches the pion mass. There-
fore, the one-loop contribution for boson fields after the sum
over Matsubara frequencies is

V
(1)b

LT (v, T, µb) =
1

2π2

∫
dk k2

{√
k2 + m2

b

+ 2T ln
(
1− e−(

√
k2+m2

b−µb)/T
)}

. (29)

In this approximation, it is not necessary to compute the vac-
uum and matter contributions separately, in fact the full ex-
pression can be computed at once. In this work, we follow
the procedure used in Ref. [27]. The general idea consists
on developing a Taylor series aroundT = 0 of the following
expression

V
(1)b

LT (v, T, µb) =

∞∫

µb−mb
T

V b
0 (v, µb + xT )hB(x)dx, (30)

wherehB(x) is the first derivative of the Bose-Einstein distri-
bution andV b

0 (v, µb+xT ) is the one-loop boson contribution
evaluated atT = 0, which is given explicitly by

V
(1)b
0 (v, µb) = − m4

b

64π2

[
ln

(
4πa2

(µb +
√

µ2
b −m2

b)2

)

− γE +
1
2

]
+

µb

√
µ2

b −m2
b

96π2
(2µ2

b − 5m2
b). (31)

Notice that the one loop contribution from boson fields
in the limit T = 0, that appears in Eq. (30), is evaluated
at µb → µb + xT . Then the expression of one-loop mat-
ter contribution from one boson field in the low temperature
approximation becomes

FIGURE 2. Fermion and boson contributions to the effective poten-
tial at the phase transition at high temperature near the minimum at
v = 0. Notice that the sum of the two contributions offset each
other making the potential to be flat. This is tantamount of a sec-
ond order phase transition.
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FIGURE 3. Fermion and boson contributions to the effective poten-
tial at the phase transition for low temperature. Notice that the sum
of the two contributions produce a barrier between each of the two
degenerate minima at the transition. This is tantamount of a first
order phase transition.

V
(1)b

LT (v, T, µb) = V b
0 (v, µb + xT )

∣∣∣
T=0

+
π2T 2

12
∂2

∂(xT )2
V b

0 (v, µb + xT )
∣∣∣
T=0

+
7π4T 4

1260
∂4

∂(xT )4
V b

0 (v, µb + xT )
∣∣∣
T=0

. (32)

For more details see Appendix C.

For fermion fields, we start from Eq. (24), such that we
implement the low temperature approximation in the same
way as we did for boson fields. We now develop a Taylor
series aroundT = 0 of the following expression

V
(1)f

LT (v, T, µq) =

∞∫

µq−mf
T

V f
0(v, µq + xT )hF (x)dx, (33)

with hF (x) is the first derivative of the Fermi-Dirac distri-
bution andV f

0(v, µq + xT ) is the one-loop potential for one
fermion field evaluated atT = 0. This can be written as
follows

V
(1)f
0 (v, µq) =

m4
b

16π2

[
ln


 4πa2

(µq +
√

µ2
q −m2

f )2




− γE +
1
2

]
−

µq

√
µ2

q −m2
f

24π2
(2µ2

q − 5m2
f ). (34)

Once again, we notice that the one-loop contribution from
fermion fields in the limitT = 0 that appears in Eq. (33) is
evaluated atµq → µq + xT . The one-loop contribution for
one fermion field in the low temperature approximation then

becomes

V
(1)f

LT (v, T,µq) = V f
0(v, µq + xT )

∣∣∣
T=0

+
π2T 2

6
∂2

∂(xT )2
V f

0(v, µq + xT )
∣∣∣
T=0

+
π4T 4

360
∂4

∂(xT )4
V f

0(v, µq + xT )
∣∣∣
T=0

. (35)

For more details see Appendix D.
Equations (6), (9), (32) and (35) provide the full expres-

sion for the effective potential in the low temperature approx-
imation, which is given by

V eff
LT (v, T, µq, µb) = − (a2 + δa2)

2
v2 +

(λ + δλ)
4

v4

−
∑

i=σ,π̄

{
m4

i

64π2

[
ln

(
4π2a2

(µb +
√

µ2
b −m2

i )2

)

− γE +
1
2

]
− µb

√
µ2

b −m2
i

24π2
(2µ2

b − 5m2
i )

− T 2µb

12

√
2µ2

b − 5m2
i

− π2T 4µb

180
(2µ2

b − 3m2
i )

(µ2
b −m2

i )3/2

}

+ Nc

∑

f=u,d

{
m4

f

16π2

[
ln

(
4π2a2

(µq +
√

µ2
q −m2

f )2

)

− γE +
1
2

]
−

µq

√
µ2

q −m2
f

24π2
(2µ2

q − 5m2
f )

− T 2µq

6

√
µ2

q −m2
f

− 7π2T 4µq

360
(2µ2

q − 3m2
f )

(µ2
q −m2

f )3/2

}
. (36)

We are now in position to explore the QCD phase tran-
sition in the regions of the QCD phase diagram where the
temperature is larger than the quark chemical potential and
where the temperature is smaller than the quark chemical po-
tential. However, before exploring the phase diagram, we
need to determine the value of all the parameters involved in
the linear sigma model, appropriate for the conditions of the
analysis. In the following section we proceed in this direction
to determine the values of those parameters and in particular
of the couplingsλ andg.

4. Coupling Constants

Regardless of the approximation to the effective potential that
is being considered, Eq. (28) or Eq. (36), we observe that we
have five free parameters which should be fixed. These are
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FIGURE 4. QCD phase diagram, using the physical vacuum pion
mass, obtained from the solutions to the equations that deter-
mine the coupling constants. These are presented in the range
0.77 < λ < 0.86 and 1.53 < g < 1.63, with µq = µb

and the band’s upper line computed withT c
0 (µq = 0) = 175

MeV and µc
q(T = 0) = 350 MeV and the lower line with

T c
0 (µq = 0) = 165 MeV andµc

q(T = 0) = 330 MeV. The second
order transitions are indicated by the shaded red areas and the first
order transitions by the blue shaded areas. These areas represent the
results directly obtained from our analysis. The intermediate green
shaded area is a Padé approximation that interpolates between the
high and low temperature regimes.

FIGURE 5. QCD phase diagram, using the physical vacuum pion
mass, obtained from the solutions to the equations that deter-
mine the coupling constants. These are presented in the range
0.45 < λ < 0.49 and 1.59 < g < 1.68, with µq = 2µb

and he band’s upper line computed withT c
0 (µq = 0) = 175

MeV and µc
q(T = 0) = 350 MeV and the lower line with

T c
0 (µq = 0) = 165 MeV andµc

q(T = 0) = 330 MeV. The second
order transitions are indicated by the shaded red areas and the first
order transitions by the blue shaded areas. These areas represent the
results directly obtained from our analysis. The intermediate green
shaded area is a Padé approximation that interpolates between the
high and low temperature regimes.

the two coupling constantsλ andg, the square mass param-
etera2 and the counter-termsδa2 and δλ. In order to de-
terminea2, we use that the vacuum boson masses, Eq. (5),
satisfy

a =

√
m2

σ − 3m2
π

2
. (37)

FIGURE 6. QCD phase diagram, using the physical vacuum pion
mass, obtained from the solutions to the equations that deter-
mine the coupling constants. These are presented in the range
0.99 < λ < 1.10 and 1.50 < g < 1.59, with µq = 0.5µb

and the band’s upper line computed withT c
0 (µq = 0) = 175

MeV and µc
q(T = 0) = 350 MeV and the lower line with

T c
0 (µq = 0) = 165 MeV andµc

q(T = 0) = 330 MeV. The second
order transitions are indicated by the shaded red areas and the first
order transitions by the blue shaded areas. These areas represent the
results directly obtained from our analysis. The intermediate green
shaded area is a Padé approximation that interpolates between the
high and low temperature regimes.

FIGURE 7. QCD phase diagram, in the chiral limit (mπ = 0), ob-
tained from the solutions to the equations that determine the cou-
pling constants. These are presented in the range1.02 < λ < 1.13
and1.78 < g < 1.89, with µq = µb and the band’s upper line
computed withT c

0 (µq = 0) = 175 MeV andµc
q(T = 0) = 350

MeV and the lower line withT c
0 (µq = 0) = 165 MeV and

µc
q(T = 0) = 330 MeV. The second order transitions are indi-

cated by the shaded red areas and the first order transitions by the
blue shaded areas. These areas represent the results directly ob-
tained from our analysis. The intermediate green shaded area is
a Pad́e approximation that interpolates between the high and low
temperature regimes.

We can fixa using the physical vacuum sigma and pion
masses. This analysis is shown in Figs. 4-6. Alternatively,
we can work in the strict chiral limit, takingmπ = 0. This
analysis is shown in Figs. 7-9. We notice that the two kinds
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FIGURE 8. QCD phase diagram, in the chiral limit (mπ = 0), ob-
tained from the solutions to the equations that determine the cou-
pling constants. These are presented in the range0.58 < λ < 0.64
and1.84 < g < 1.96, with µq = 2µb and he band’s upper line
computed withT c

0 (µq = 0) = 175 MeV andµc
q(T = 0) = 350

MeV and the lower line withT c
0 (µq = 0) = 165 MeV and

µc
q(T = 0) = 330 MeV. The second order transitions are indi-

cated by the shaded red areas and the first order transitions by the
blue shaded areas. These areas represent the results directly ob-
tained from our analysis. The intermediate green shaded area is
a Pad́e approximation that interpolates between the high and low
temperature regimes.

of phase diagrams obtained are very similar, in particular the
CEP’s location changes very little.

We now need to use two conditions to fix the values of the
coupling constants, the main idea is to use physical inputs
such that the relations which satisfyλ andg are consistent
with the realistic behavior of QCD matter around the phase
transition in the high and low temperature domains.

From LQCD computations [21], we know that atµq ≡
µB/3 = 0, the QCD phase transition is a crossover, hereby
described as a second order transition, and happens for 2+1
light flavors atT c

0 ' 155 MeV and for only 2 light flavors
at T c

0 ' 170 MeV. In a second order phase transition, the
vacuum expectation value (vev) continuously transits from
the broken phase to the restored phase and thus there is only
one minimum. On the other hand, from the analysis using
effective models [28] it is found that at very low values of
T and high values ofµq the transition is first order. From
the analysis based on Hagedorn’s limiting temperature [29]
at finiteµB , we know that the critical value for the transition
curve to intersect the horizontal axis in the QCD diagram is
µB ' mB , wheremB ' 1 GeV is the typical value of the
baryon mass. Thevev transits from the broken phase to the
restored phase in a discontinuous way. This means that at
the phase transition, the effective potential develops two de-
generate minima. In one or the other case, the thermal pion
mass evaluated at the minima of the potential always van-
ishes, since this field is a Goldstone mode.

In order to fix the coupling constants we use as inputs the
values of temperature and quark chemical potential in two
extreme points along the transition curve, namely, when the
restoration of chiral symmetry is atµq = 0 and when it is at

FIGURE 9. QCD phase diagram, in the chiral limit (mπ = 0), ob-
tained from the solutions to the equations that determine the cou-
pling constants. These are presented in the range1.15 < λ < 1.30
and1.74 < g < 1.85, with µq = 0.5µb and the band’s upper line
computed withT c

0 (µq = 0) = 175 MeV andµc
q(T = 0) = 350

MeV and the lower line withT c
0 (µq = 0) = 165 MeV and

µc
q(T = 0) = 330 MeV. The second order transitions are indi-

cated by the shaded red areas and the first order transitions by the
blue shaded areas. These areas represent the results directly ob-
tained from our analysis. The intermediate green shaded area is
a Pad́e approximation that interpolates between the high and low
temperature regimes.

T = 0. Hereafter we refer to these extreme points of the
diagram as points (A) and (B), respectively.

At point (A), the phase transition is second order, hence
the square of the pion thermal mass, evaluated atv = 0 and
T = T 0

c , is given by

m2
π(0, T c

0 , µq = 0) = −a2 + Π(T c
0 , µq = 0) = 0. (38)

In other words, Eq. (38) tells us that the curvature atv = 0
andT = T c

0 is zero. Therefore the shape of the potential near
v = 0 is flat both in theσ and the pion directions. This is
depicted in Fig. 2.

At point (B), the phase transition is first order, therefore
we expect that atµq ' mB/3 the effective potential devel-
ops two degenerate minima. This is depicted in Fig. 3. Notice
that the fermion contribution to the effective potential is re-
sponsible for the order of the phase transition. At low densi-
ties, this contribution is not strong enough to produce a hump
in the effective potential whereas at high densities this con-
tribution produces the barrier between minima at the critical
temperature.

Since the analysis we carry out describes the transit from
the broken to the restored phase, the minimum we are follow-
ing is the one with avev different from zero, which we call
v1. This last condition can be written as

m2
π(v1, 0, µc

q) = λv1 − a2 + Π(0, µc
q) = 0, (39)

In Eq. (39), we notice that a new unknown appears:v1,
that is, the value of the non-vanishing minimum. The set of
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conditions necessary to determine all the unknowns is

∂V eff

∂v
(v = 0, T = 0, µq = µc

q) = 0,

∂V eff

∂v
(v = v1, T = 0, µq = µc

q) = 0,

V eff(v = 0, T = 0, µq = µc
q) =

V eff(v = v1, T = 0, µq = µc
q). (40)

The three expressions in Eq. (40) indicate that the effec-
tive potential has two degenerated minima at the phase transi-
tion and thus that the transition is first order whenT = 0 and
the quark chemical potential is finite and equal to its critical
value.

5. Results

The above set of conditions, Eqs. (38), (39) and (40), rep-
resent the five algebraic equations that determine the values
of λ andg. These equations provide four pairs of solutions,
out of which we pick the pair that corresponds to real posi-
tive solutions forλ andg. We are therefore in the position to
explore the QCD phase diagram.

Figures 4-6 show the phase diagram obtained for the case
when the mass parametera is computed using the physi-
cal pion mass in vacuum. These are computed usingµq =
µb, 2µb, 0.5µb, respectively. In each figure, the band’s
upper line is computed withT c

0 (µq = 0) = 175 MeV
and µc

q(T = 0) = 350 MeV and the lower line with
T c

0 (µq = 0) = 165 MeV andµc
q(T = 0) = 330 MeV. These

ranges produce corresponding ranges to the solutions given
by (0.77 < λ < 0.86, 1.53 < g < 1.63), (0.45 < λ < 0.49,
1.59 < g < 1.68), and (0.99 < λ < 1.10, 1.50 < g < 1.59),
respectively.

Figures 7-9 show the phase diagram obtained for the
case when the mass parametera is computed settingmπ =
0, that is in the chiral limit. These are computed using
µq = µb, 2µb, 0.5µb, respectively. In each figure, the
band’s upper line is computed withT c

0 (µq = 0) = 175
MeV andµc

q(T = 0) = 350 MeV and the lower line with
T c

0 (µq = 0) = 165 MeV andµc
q(T = 0) = 330 MeV. These

ranges produce corresponding ranges to the solutions given
by (1.02 < λ < 1.13, 1.78 < g < 1.89), (0.58 < λ < 0.64,
1.84 < g < 1.96), and (1.15 < λ < 1.30, 1.74 < g < 1.85),
respectively. Notice that the CEP location does not change
significantly regardless of weather we set the pion mass ei-
ther to its physical value or to zero.

We find that at high (low) temperature and low (high)
quark chemical potential the phase transitions are second
(first) order. The second order transitions are indicated by
the shaded red areas and the first order transitions by the blue
shaded areas. These areas represent the results directly ob-
tained from our analysis. The intermediate green shaded area
is a Pad́e approximation that interpolates between the high
and low temperature regimes. In all cases, we locate the

CEP’s region at low temperatures and high quark chemical
potential.

6. Summary and conclusions

In this work we have used the linear sigma model with quarks
to explore the QCD phase diagram from the point of view
of chiral symmetry restoration. We have computed the fi-
nite temperature effective potential up to the contribution of
the ring diagrams to account for the plasma screening effects
and have introduced a quark and a boson chemical potentials.
The latter is related to the high density of the system that is
in turn linked to the high baryon abundance at large values of
the quark chemical potential.

Our approach was to determine the model’s couplings
using physical inputs such as the vacuum pion and sigma
masses, the LQCD value for the critical temperature atµq =
0 and the conjectured end point value ofµB of the transition
line at T = 0. We have also performed the analysis using
mπ = 0 instead of its physical vacuum value. The set of
conditions that determine the couplings enforce the require-
ment that at high temperature the transition is second order
whereas at low temperature is first order. Of particular im-
portance is the observation that at the minima of the effective
potential, the pion thermal mass vanishes, since this particle
is a Goldstone boson.

We find that when varying the values ofT c
0 (µq = 0) and

µc
q(T = 0) by 10% from the chosen central values, the pro-

cedure allows to locate the phase transition lines in narrow
band. The CEP is however stable when varying the relation
betweenµq andµb and even when the pion mass is set to
either its physical value or to zero. The CEP location cor-
responds to low temperatures and high values of the quark
chemical potential. Table I summarizes the CEP location
found in some recent works together with our findings.

In order to provide a more robust CEP’s location, we need
to extend the analytical expansion of the effective potential to
a larger temperature range. Perhaps even more important

TABLE I. Summary of some recent results for the CEP location,
including our results.

Reference TCEP µCEP

C. Shi,et al. [10] 0.85Tc 1.11Tc

G. A. Contrera,et al. [11] 69.9 MeV 319.1 MeV

T. Yokota,et al. [30] 5.1 MeV 286.7 MeV

S. Sharma [31] 145-155 MeV >2 TCEP

J. Knaute,et al. [14] 112 MeV 204 MeV

N. G. Antoniou,et al. [15] 119-162 MeV 84-86 MeV

Z. F. Cui,et al. [12] 38 MeV 245 MeV

P. Kov́acs and G. Wolf [32] >133.3 MeV

R. Rougemont,et al. [16] <130 MeV >133.3 MeV

This work 18-45 MeV 315-349 MeV
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will be to include the temperature and density modifications
to the couplings which has been shown useful to describe the
inverse magnetic catalysis phenomenon [33]. This is work
for the future and will be reported elsewhere.

Appendix

A. One-loop effective potential for boson fields.
High temperature approximation

To compute the vacuum and matter contributions to the bo-
son one-loop effective potential, we start from Eq. (22). The
vacuum contribution is computed using dimensional regular-
ization. Using the well known expression

∫
dDk

(2π)D

1
(k2 −m2

b)n
= i(−1)n

× (m2)2−ε−n

(4π)2−ε

Γ(n− 2 + ε)
Γ(n)

, (A.1)

with D = d− 2ε, this contribution can be written as

V (1)b
vac =

µ̃3−d

2

∫
ddk

(2π)d

√
k2 + m2

b . (A.2)

In Eq. (A.2), we have explicitlyd = 3 andn = −1/2.
Hence we have

V (1)b
vac = − m4

b

32π2
Γ(ε− 2)

(4πµ̃2

m2
b

)ε

, (A.3)

taking the limitε → 0, we finally obtain

V (1)b
vac = − m4

b

64π2

[
ln

(4πµ̃2

m2
b

)
− γE +

3
2

+
1
ε

]
. (A.4)

We use the Minimal Subtraction scheme (MS). After fix-
ing the renormalization scale tõµ = ae−1/2, the final expres-
sion for the vacuum contribution is given by

V (1)b
vac = − m4

b

64π2

[
ln

(4πa2

m2
b

)
− γE + 1

]
. (A.5)

On the other hand, the matter contribution from one bo-
son field is

V
(1)b

matt =
T

2π2

∫
dk k2 ln

(
1− e−

√
k2+m2

b/T
)
. (A.6)

Takingmb/T ¿ 1, we can make an expansion of Eq. (A.6)
in terms of powers ofmb/T . The first three terms of the se-
ries are given by

V
(1)b

matt = − m4
b

64π2
ln

(
m2

b

(4πT )2

)

− π2T 4

90
+

m2
bT

2

24
− m3

bT

12π
. (A.7)

For more details, see Appendix C in Ref. 25.

B. One-loop effective potential for fermion
fields. High temperature approximation

The one-loop fermion contribution to the effective potential
also contains two terms: the vacuum and matter contribu-
tions. The former can be computed following step by step
what is done for the boson case. We only notice that the
fermion case differs from the boson case by an overall factor
−4. Therefore if we multiply Eq. (A.4) by−4, we get the
vacuum one-loop contribution from one fermion field

V (1)f
vac =

m4
f

16π2

[
ln

(4πa2

m2
f

)
− γE + 1

]
. (B.1)

The matter contribution from one fermion field is quite
similar to the boson case. The two significant differences are
(1) fermions obey the Fermi-Dirac distribution and (2) the
matter term has particle and anti-particle contributions. This
information is encoded in the quark chemical potential. To
compute the matter contribution from one fermion, we star
from

V
(1)f

matt =
T

π2

∫
dk k2

{
ln

(
1− e−(

√
k2+m2

b−µq)/T
)

+ ln
(
1− e−(

√
k2+m2

b+µq)/T
)}

. (B.2)

In the high temperature approximation,mf/T ¿ 1 and
µq/T < 1. This approximation allows us to explore the
phase diagram’s region where the temperature is larger than
baryon chemical potential. Proceeding in a fashion entirely
analogous to the boson case, one obtains

V
(1)f

matt =
m4

f

16π2

[
ln

( m2
f

(4πT )2
)
− ψ0

(1
2

+
iµ

2πT

)

− ψ0
(1

2
− iµ

2πT

)]
− 8m2

fT 2
[
Li2(−eµq/T )

+ Li2(−e−µq/T )
]

+ 32T 4
[
Li4(−eµq/T )

+ Li4(−e−µq/T )
]
. (B.3)

For more details, see Appendix C in Ref. 25.

C. One-loop effective potential for boson fields.
Low temperature approximation

In the low temperature approximation, we work in the regime
where the quark chemical potential is the most important en-
ergy scale and temperature is the smallest one. In order to ob-
tain the one-loop contribution to the effective potential from

Rev. Mex. Fis.64 (2018) 302-313



312 A. AYALA, S. HERNÁNDEZ-ORTIZ AND L.A. HERNÁNDEZ

one boson field, we expand Eq. (22) in a Taylor series around
T = 0. For this purpose, we start from Eq. (30), namely

∞∫

µb−mb
T

V
(1)b
0 (v, µb + xT )hB(x)dx =

V
(1)b
0 (v, µb + xT )

∣∣∣
T=0

∞∫

µb−mb
T

hB(x)dx

+
∂2(V (1)b

0 (v, µb + xT ))
∂(xT )2

∣∣∣
T=0

∞∫

µb−mb
T

x2hB(x)dx

+
∂4(V (1)b

0 (v, µb + xT ))
∂(xT )4

∣∣∣
T=0

∞∫

µb−mb
T

x4hB(x)dx

+ · · · , (C.1)

with
∞∫

µb−mb
T

hB(x)dx = 1

∞∫

µb−mb
T

x2hB(x)dx =
π2T 2

12

∞∫

µb−mb
T

x4hB(x)dx =
7π4T 4

1260
. (C.2)

Therefore, in the low temperature approximation, the one-
loop contribution from one boson field is given by

V
(1)b

LT (v, T, µb) = V
(1)b
0 (v, µb) +

π2T 2

12
∂2

∂T 2
V

(1)b
0 (v, µb)

+
7π4T 4

1260
∂4

∂T 4
V

(1)b
0 (v, µb). (C.3)

D. One-loop effective potential for fermion
fields. Low temperature approximation

Following a procedure in a fashion entirely similar to the bo-
son case, we make a Taylor expansion aroundT = 0. The

one-loop contribution from one fermion field in the low tem-
perature approximation becomes

∞∫

µq−mf
T

V
(1)f
0 (v, µq + xT )hF (x)dx =

V
(1)f
0 (v, µq + xT )

∣∣∣
T=0

∞∫

µq−mf
T

hF (x)dx

+
∂2(V (1)f

0 (v, µq + xT ))
∂(xT )2

∣∣∣
T=0

∞∫

µq−mf
T

x2hF (x)dx

+
∂4(V (1)f

0 (v, µq + xT ))
∂(xT )4

∣∣∣
T=0

∞∫

µq−mf
T

x4hF (x)dx

+ · · · , (D.1)

where we have substitutedmb → mf , µb → µq and
hB(x) → hF (x). We now obtain that

∞∫

µq−mf
T

hF (x)dx = 1

∞∫

µq−mf
T

x2hF (x)dx =
π2T 2

6

∞∫

µq−mf
T

x4hF (x)dx =
π4T 4

360
. (D.2)

Therefore, substituting Eq. (D.2) into Eq. (D.1), we fi-
nally get Eq. (35).
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