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This review article has the antecedents of Jaskolski's 1996 Physics Report on “Confined Many-electron Systems”, the fifteen chapters on the
“Theory of Confined Quantum Systems” in Vols. 57 and 58 of 2009 Advances in Quantum Chemistry, and the nine chapters of the 2014
Monograph “Electronic Structure of Confined Quantum Atoms and Molecules”. In this contribution, the last two sets of reviews are taken

as points of reference to illustrate some advances in several lines of research in the elapsed periods. The recent progress is illustrated on
the basis of a selection of references from the literature taking into account the confined quantum systems, the confining environments and
their modelings; their properties and processes, emphasizing the changes due to the confinement; the methods of analysis and solutions,
their results including confiability and accuracy; as well as applications in other areas. The updated and current works of the Reviewer are
also presented. The complementary words in the title apply to the simplest atom in its free configuration and to the harmonic oscillator
quantum dot, because they admit more exact solutions than the number of their degrees of freedom; and to their many-electron and confined
counterparts, due to their additional interactions and changes in boundary conditions.

Keywords: Confined quantum systems; confining environments; changes in physical properties and processes; modelings of confinements;
methods of analysis and solution; confiability and accuracy; applications.
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1. Introduction In the Monograph, its Editor pointed out in the Preface
that, it deals with the simplest among the quantum confined
model systems, recording the significant developments in the

This invited review article is written against the background,. . .
of W. Jaskolski’s 1996 Physics Report on “Confined many_fleld subsequent to the two published volumes of Advances in

electron systems” [1], the fifteen chapters of “Theory of Con-Quantum Chemistry The titles and authors can be identified

fined Quantum Systems” in Advances in Quantum Chemistri [17-25], recognizing common topics and Contributors in

(AQC) 2009 Vols. 57 [2-10] and 58 [11-16], with S.A. Cruz 1-/-20] and [24] from the previous set of reviews; here we
as Special Editor, and the nine chapters of “Electronic Struc§pen out the other titles [21] “Confined Quantum Systems

ture of Quantum Confined Atoms and Molecules” [17-25],[Uf.Ing I:/Ih ethF'g'I? Ezlgrrl%nt ar;d Dés;rete Vartlast;)tlet Re'precsen-
edited by K. A. Sen in 2014. It is interesting to contrast [1] a ation Methods®, [27] “Bound and Resonant States in Con-

review of the state-of-the-art in that year by a single author]clneOI Atoms’, [23] "Spatial and Shell-Confined One Electron

with the two sets of reviews of specific topics in the field, Atomic and Molecular Systems: Structure and Dipole Polar-

twenty two and twenty six years later, illustrating advance zability, and [25] *Study of Quantum Confinement of;H

and the diversification of the field in the respective periods. on and H Molecule W'.th Mo.nte Carlf).. Respep‘uve Role of
the Electron and Nuclei Confinement”, illustrating new meth-

The readers can get an idea on the physical systems anfdis of solution, new physical effects, and new ways of mod-
confinement conditions in each review from their respectivesjing the confinement.

titles in the references. Notice that [2-8] are restricted to one

and two electron atoms, [9] and [11] to many-electron atoms, Concerning the use of the words superintegrability and
while [10] treats confined atoms as open systems, [12] resymmetry breakings in the title of this contribution, the reader
ports on the photoionization of atoms encaged in sphericahay find in [4], and in [26] of [17] these respective uses for
fullerenes while [13] a Density Functional Theory Study of the one-electron hydrogen atom and quantum dot, in their
Molecules confined inside fullerene and fullerene-like cagesfree and confined configurations. In fact, the Sclinger

[14] deals with the Spectroscopy of Confined atomic Sys-equation for the hydrogen atom can be separated and in-
tems: Effect of Plasma, [15] characterizes the Energy Levelegrated in spherical, spheroconal, prolate spheroidal and
Structure of Low-dimensional Multi-electron Quantum Dots, parabolic coordinates; and for the harmonic oscillator mod-
and [16] is about Engineering Quantum Confined Siliconeling one-electron quantum dots in cartesian, cylindrical and
Nanostructures: Ab-Initio Study of the Structural, Electronicalso spherical and spheroconal coordinates. That situation
and Optical properties. We may add that in [2,3], [5-8] extends to the respective quantum systems confined by natu-
and [12] the atoms or molecules are confined inside spheregl boundaries corresponding to fixed values of the respective
while in [4] the confining boundaries are conoidal, and in [9] coordinates. For the free systems, their solutions in the dif-
they are spherical, prolate spheroidal, and plane. ferent coordinate systems share the same degeneracies; due to



RECENT PROGRESS IN CONFINED ATOMS AND MOLECULES: SUPERINTEGRABILITY AND SYMMETRY BREAKINGS 327

their respective O(4) and SU(3) symmetries. In contrast, th@.2 respectively. The first set identifies the key concepts and
systems confined in the successive natural boundaries exhibitethods in each Review, recognizing some connections and
the corresponding symmetry breakings due to the changes tifferences among some of the Reviews, thus establishing the
the boundary conditions, with different energy eigenvaluesoints of reference and the threads guiding the writing and
and eigenfuctions, and reduced degeneracies. The title amdading of this contribution. The second set follows the same
contents of [18] also illustrate these effects. ideas, connecting first the contributions with common topics

In the case of the hydrogen atom, the superintegrability i Authors from the previous set, and going on with the new

subject to the condition of the position of the nucleus at the’"es:

center of the sphere, at one of the foci in the prolate spheroid,

at the common focus of the paraboloids, each one with thei 1 Theory of Confined Quantum Systems 2009
respective set of constants of motion; if the nucleus occupies

other positions, the separability of the Satlinger equation  This section identifies some common features and differences

does not hold any longer: the original constants of motionin the reviews in Advances in Quantum Chemistry [2-16] in

energy eigenvalues and eigenfunctions. cease to be such. order to illustrate the diverse ways of modeling and analyzing
In going from the one-electron systems to the rnany_the confined quantum systems, and how the results on some

electron counterparts, the presence of the additional electro®f their properties compare. The identification follows the or-
electron Coulomb interaction breaks the respective O(4) anfler of the references covering the atoms with increasing num-
SU(3) symmetries. Upon confining them, there are additionaPer of electrons. Their common features and differences are

symmetry breakings dependent on the characteristics of thePMe of the elements to follow in the successive sections in
confinement. order to recognize the further advances and recent progress.

In the process of planning the writing of this contribu-
tion, the author has considered the alternatives of reviewing.1.1.
the field at large a la Jasholski, or following the example of
the AQC and Monograph individual reviews. Given the time“Properties of Confined Hydrogen and Helium Atoms” [2]
constraints of the invitation, the decision has been to make analyzes the solutions for the Soédinger equation for the
conceptual and connecting review, which is intended to servbydrogen atom confined in a spherical box with the bound-
the readers as a guide to become familiar with the varietyary condition of vanishing at the radius of the box R, as well
of works in the literature illustrating the progress in recentas the polarizability of the atom. In this way model wave
years; and also sharing the recent results of our own workiunctions are constructed for the entire rangeRof [0, o]
and the problems which we are currently investigating. interpolating between those of the free atom for— oo

This article is organized as follows: Section 2.1 identi- f"md those of the free electron in a box fér— 0, provid-

' : ; . . g energy eigenvalues. The concept of the critical radius for
fies some connections between the different reviews in AQ%hiCh the energy eigenvalue vanisheB(R — R.) = 0,

dealing with the same physical systems one-electron, two- . ) : . ;
. . and the eigenfunctions are spherical Bessel functions, is also
electron and many-electron atoms, and harmonic oscillators : .
) . . ._dnalyzed and approximated with a WKB approach, and nu-
under the same or different confinement conditions, takm%ericall illustrated by Eq. (3.58)
into account their respective methods of solution, and their y Y EQ. (5.99).
results, on specific properties. Section 2.2 starts by analyzing Table 1 provides a comparison of the energies of the con-
the further advances in the common topics in the reviews ofined hydrogen atom in the staite, 2s, 2p, 3p, 3d and the po-
the Monograph and those of AQC, and goes on to the remairarizability of the ground state from numerical calculations,
ing four new topics. Section 3 includes a selection of ref-model wave functions and the simple approximation of Eq.
erences from the literature illustrating recent progress in th¢3.39) for confining radii [.2,10]. The agreement between the
field, taking into account the novelty of the confined quantunfirst two entries is quite good for all states and radii, while
systems, the confining environments and their modelings, thtéhe differences of the third entry increase as the radius is de-
properties of such systems, and their connections with othegreased and the excitations are higher.

fields of materials science. In Section 4, the Author updates 1o helium atom confined in a spherical box is ana-

the progress in his own and collaborators’ works, and giveﬁ,zed in terms of the effective Hamiltonian of Eq. (3.65)
a.previe_w on current.investigations. Section 5 consists of fising screening factoi$(R) depending on the radius of con-
discussion on the reviewed recent progress. finement, and also interpolating between its asymptotic and

small values for the statgds?) 1S, (1s2s)3S9, (1s2p) 1P

and (1s2p)3P. Table 2 illustrates the results for the ener-
2. Background Reviews gies from Egs. (3.72), (3.77) and (3.79), respectively, for

R = [1,6], reported previously by the authors, compared
This section includes brief comments about the Reviews itwith those of high accuracy from its Refs. [29] and [39].
AQC2009 and in the Springer Monograph 2014, in 2.1 and
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There are also two sections on the hydrogen atom, cenb(1 + Inw) according to its Ref. [110]. Figure 5 illustrates
tered in a sphere and at a focus in prolate spheroidal coords(R) versusR for the confined hydrogen-like atoms.
nates, confined by a centered harmonic oscillator potential,
respectively. 213

2.1.2. The hydrogen atom confined in semi-infinite spaces limited
by Conoidal boundaries [4] is different from the other chap-
“Exact Relations for Confined One-Electron Systems” [3]ters in the open versus closed regions of confinement and the
deals with the spherical confinement of the hydrogen atom ifespective boundaries of confinement. As already mentioned
Sections 1-6, the isotropic harmonic oscillator in Section 7,n the Introduction, most of the chapters deal with confine-
and information theoretical uncertainty-like relations in Sec-ment inside a sphere or spheroid, and one of them in a semi-
tion 8. Its bibliography is very detailed and complete, prov-jnfinite space with a plane boundary. This chapter reports on
ing very useful for the reader. Additionally, some of its re- 5 series of works with paraboloidal, hyperboloidal, and circu-
sults are very graphical and their validity goes beyond th&ay conical boundaries confining the hydrogen atom. The re-
specific topic. Since its Section 2 has a good overlap withjiew led to recognize the complementary possibilities of con-
the previous chapter, we go on to its Section 3 on “Commufinement by dihedral angles and by elliptical cones. Exact so-
tation Relations and Hypervirial theorems”. In order to con-| tions of the Schisdinger equation in spherical, spheroidal,
nect some of the basic concepts, we start by pointing out thgarapoloidal and spheroconal coordinates for the free hydro-
difference between the boundary conditions of the Dirichletgen atom are known; the presence of the natural boundaries
Neumann and Robin types of vanishing wavefunction, vanyith a fixed value of the respective coordinates lead also to
ishing normal derivative of the wavefunction and logarithmic ey act solutions for the hydrogen atom confined in the corre-
derivative of the wavefunction equal to a real-valued functionsponding closed or open space. The latter exhibit symmetry
P(r), respectively; the last one becomes the second one fgreakings in comparison with the free system; the confine-

P =0, and the first one in the limi” — oo. Also, the  ment by open boundaries has served to study surface effects
energy functional defined in Eq. (2.1) as the matrix elemengn atoms and molecules.

of the Hamiltonian between an initial stateand a final state
@ includes a surface integral term involvidgand the same
functions. While the constants of motion commute with the2-1-4-
Hamiltonian, a dynamical quantity not commuting with
the Hamiltonian, leads via their commutaféf, A] = B to
another dynamical quantity3. The virial theorem is gen-

“The Hydrogen and Helium Confined in Spherical boxes”
[5] overlaps in contents and methodologies with the previous

eralized to hypervirial theorems when the expectation Valughapters. Here we er_nphasme the review of the c_omplen_wen-
of B is calculated and the proper boundary conditions of thed’y methods of solutions and the higher accuracies attained

eigenfunctions are taken into account. The section under cof? thel numer:jcal calculatlgn:;.l Its blbllrc])grre]lpgy Is also ver);]
sideration goes on to consider scaling transformation and ggomplete and recommendable. For the hydrogen atom the

obtain the Kirkwood-Buckingham relation, including illus- exact. solutions are product§ 9f .the factors removing the sin-
trations of their applications. Sects 4) “Energy and Regiorﬁ'Jlarlty at the ongin ?”d atinfinity, a_nd the regular Kummer
Modifications”, 5) “The system in an external potential”, and ypergeo_metrlc funct|on:_s. Pertur_bat|o_n theory fpr very small
6) “On Mean Values and Other Properties of Confined SySpoxes using the free particle confined in a spherical box as the

tems” illustrate specific results for the different properties ofon perturbed syster_n and the nucleu.s-electron Coulomb en-
the confined systems for the different conditions of confine£19y as the perturbation leads to a series of powers of the con-
ment fining radius for the energy of the ground state. The method

of linear variational functions applied in its Ref. [12] uses the
Section 7 explains the degeneracy of the confined Dsuperposition of.s hydrogen orbitals with, = 1, 2, 3 impos-

dimensional harmonic oscillator and also the density at théng the boundary condition that the eigenfunction vanishes at
equilibrium point as investigated in its Ref. [105]. From the radius of confinement; the author himself in its Ref. [13]
the properties of the confluent hypergeometric functions, theised the basis of the spherically confined isotropic harmonic
interdimensional state degeneracy under the transformatiopscillator; he also reports the variational boundary perturba-
given by (n, ¢, D) — (n,£ + 1, D F 2) can be also estab- tion theory, on its Ref. [86], using B-splines functions. Other
lished. variational methods include the variational boundary pertur-

Section 8 defines the one-electron Shannon informatiort?ation theory Refs. [14,15], and variational trial functions
with a linear cut-off factor £ = () in order to satisfy the

entropy S, of the electron density in coordinate space, an "
the corresponding momentum space entrSpyrespectively. dboundary condition [16-18].
A stronger version of the Heisenberg uncertainty principle  Concerning the increasing accuracy of the computed re-
was derived in its Ref. [109]. The total entropy as the sunsults, Tables 5-8, Figs 1-2, with their associated discussions
of St = S, + S, in D-dimensions is larger than or equal to and references are very illustrative and impressive.
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The investigations on the helium atom confined in aboundary condition of vanishing at= R leads to Eq. (84),
spherical box started fifteen years later after those on th&fom which o and the energy eigenvalue can be evaluated.
hydrogen atom. Ref. [49] did it by using a Hylleraas trial For the free atom, the series must truncate and the eigenen-
wave function for the ground statés)?, and Refs. [101], ergy with integer quantum numbers of Eq. (86) are obtained.
[103], [105], [108], [117] and [118] followed in the succes- The interior confinement involves a short range potential for
sive decades. Table 10 illustrates the comparison of theid < » < R and a Coulomb potential foR < r < oo,
respective results foR[2,7] and the free atom. The last with the matching of the interior solution and the asymptot-
two References also included the lowest triplet stets, ically well behaved hydrogenic wave function involving the
Ref. [105] was one of the pioneering applications of the Dif-U Kummer function and their derivatives at the boundary.
fusive Monte Carlo type, including those forHand Li".
Correlation energies could also be evaluated by comparinﬂn
with the Hartree-Fock results in Refs. [102], [104], [16], [18],
and others illustrating simple variational calculations.

Sections 4, 5 and 6 give examples of the different con-
ements for the successive potentials.

2.1.6.

2.15.
“Perturbation theory for a Hydrogen Atom Confined Within

“Exact solution for Confined Model Systems Using Kummeran Impenetrable Spherical Cavity” [7] is implemented for
Function” [6] shows applications to the hydrogen atom in 3large, small and intermediate values of the radius of the cav-
and 2 dimensions, and to the Harmonic Oscillator in 2 di-ity evaluating accurately the energies, oscillating strengths,
mensions; as well as to the constant potential, for the fredipole polarizabilities and nuclear shielding factors for the
particle inside an impenetrable spherical wall, and for thedifferent eigenstates. The asymptotic expansions for the en-
exterior solutions for soft confinement. Section 2 presentergy, Egs. (24), for the eigenfunctions in terms of the oscil-
the different forms of the Kummer confluent hypergeometriclator strengths, Eq. (28), were developed by the Author in
functions in their M and N forms, regular near the origin andits Ref. [25]. Table | shows the comparison of the precise
in the U form regular at infinity; including their relationships numerical and asymptotic values of the energies of the states
Eqg. (20), other alternatives Eqg. (23), for the first two; andls, 2s and 2p for [4,40], illustrating their improved agree-
also the last one, Eq. (41) and its alternatives Eq. (58). Thenent for larger radii. On the other hand, the same Author in
derivative of M Eq. (19) and that of U Eq. (43) lead to the its Ref. [31] obtained expressions for the oscillator strength
same type of functions with their parameters shifted by onef,,_,,, the ground state polarizability, Egs. (29)-(30), and
unit are also important. The analysis of the exceptional soluthe nuclear shielding factor, Eq. (31). Tables 2 and 3 report
tions, and the examples of taking the limits to arrive at two in-these asymptotic values compared also with precise numeri-
dependent solutions Egs.(39) and (40), are also illuminatingzal values and others by authors dealing with the same top-
The applications to the K-dimensional hydrogen atom in itsics in the previous subsections 2.1.1, 2.1.2, 2.1.4 and 2.1.5,
free configuration lead to its polynomial eigenfunctions andand its Refs. [12], [29], and [33-37]. The small size boxes
eigenvalues Egs. (65) and (66), and likewise for the harmoniare based on perturbation theory taking the free electron in
oscillator, Egs. (70). In the case of the constant potential, thehe spherical box as the unperturbed system and the nucleus
situation for the solution in Eq. (73) is different, because theelectron coulomb energy as the perturbation Tables 4, 5, 6
M function does not truncate for the good behavior at bothshow the comparisons of the small-box perturbation and pre-
r — 0 andr — oo, however, for the example of the po- cise numerical energies for the ns, np lower energies and for
tential confined in the intervadd, R], the eigenfunctions and the 3d, 4d, 5d and 4f, 5f, 6f eigenstates for the successive
eigenvalues follow from the solutions of Eq. (74) for M. ranges of the confining radius and the respective estimated
Section 3 defines the confinement in terms of bound{adius of convergence. Table 7 shows the perturbation theory
ary conditions, including examples of exterior confinementexpansion coefficients for the expansion of energies in pow-
Egs. (75) and (76). Another exterior confinement with reduc-ers of the confining radius for the 1s, 2p, 3d, 4f and 5g levels
tion of the dimensionality of the system, Eq. (77), describes 40 order 31.
3-dimensional system which is separable in its transverse and \ye go on to discuss the intermediate box size pertur-

axial components, Eqs. (78) and (79); the transverse poteisation theory implemented around the radial nodes of the
tial V(z,y) confines the electron to the intervak< z < R, free hydrogen atom radial eigenfunctions. The Author in its
and the solutions of Eq. (78) via its eigenvaluesonvert  Ref, [25] derived the first order approximations to energy of
Eg. (79) into that of the one-dimensional hydrogen atomgqs. (89)-(91) in the vicinity of the indicated radius. Higher
The removal of the singularity at infinity in Eq. (80), with the grder corrections can naturally be also evaluated, as illus-
changes of the pargmeters and variable of Egs. (81) leads {gted by Egs. (98)-(99). Correspondingly, Egs. (100)-(101)
the Kummer equation of Eq. (82) [TYPO CORRECTION: give the corresponding expansions for the polarizabillity and
second derivative with respect to u], with= —1/a, b=0.  pyclear shielding factors, and Tables (14) and (15) illustrate

The boundary condition af(r = 0) = 0 cannot be sat- their numerical values, compared to precise values for the
isfied by M, but N in Eq. (83) using Eqg. (20) does. The otherdifferent radius of confinement.
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2.1.7. 2.1.8.

“Thomas-Fermi-Dirac-Weizgker Density Functional For-

“C tive Study Bet the Hartree-Fock and Koh X .
omparatve Stucy Beveen the rartree-rock and +o n]mallsm Applied to the Study of Many-electron Atoms” [9]

Sham Methods for the Lowest Singlet and Triplet States o ) . . "
provides references on calculations using ab-initio Hartree-

the Confined Helium Atom” [8] investigated the same phys- . .
ical system and states as in 2.1.4, in two alternative for—FOCk [67,63] and Dirac-Fock [61] procedures, density func-

malisms. Section 2 contains the basic Hartree-Fock equ ional theory [4,60] and Thomas-Fermi-Dirac-Weizker

tions for the energy of the helium atom in its ground state, TDFAW) statistical atomic model [64,65], for confined

considered as a close-shell system, and for its first excite§0Ms: The first th_ree ha_ve been restricted to <_:onfmement n
spherical box with an impenetrable wall, while the fourth

state considered as an open-shell system with the differené has b lied also t herical b ith t
that the latter contains the additional exchange integral co one has been applied aiso 1o spherical boxes with penetra-

tribution. The Kohn-Sham (K-S) equations are also presente le walls, prolate spheroids with impenetrable walls, and

for the respective states, and with the choice of the oppan Open space with a plane hard wall boundary. Section 2

KLI exchange-correlation functional for the open shell Sys_dlescrébss ths d_etalls_tr(])fl;[hi cztsl_lculatlorlls ffor(;:_?fnfmetmfnt b.y
tem. The Hartree-Fock (H-F) and K-S Egs. (15) and (18)C osed boundaries with illustrative results for different atoms:

Spherical hard box. Figure 2 for ground state energy of
eon versus HF values [4] in very good agreement. Table
for Carbon and Neon, also compared with [4], and values

reported in [64] including values of optimized orbital param-
8:[8[‘5(15,(25 and (2. For oxygen, neon, silicon and ger-

for the closed-shell system are the same. The correspondi
comparison of Egs. (17) and (19) for the open-shell syste
shows a difference. The results of the Table Il of a previou
work, in the common Ref. [19] here and [117] in 2.1.7, show
that for the closed-shell system there are discrepancies b i 2= .
tween the HF and KS-SIC-OEP-KLI methods. The aim of [g] Ma"um ground state energies in Table 2 and Figure 3. 2)
is two-fold: 1) recompute the ground state results by using a .Oft spherical box involving a constant potentlal for radial
optimized basis set and 2) compute the lowest triplet HF statg'StanceS larger .than the. radius of confinement. - For neon
by the HF method, and compare its results with those of thgonfme_d by barrler_ of height, = 0 and selected values
KS method. In this way a reliable comparison between HFOf conflneme_nt radius Table 3 reports t_he ground state en-
and KS is made for the confined He atom in both states. €9y and orbital parameters compared with the results of [65]
using exact electron-electron interaction versus Poisson so-
Table 1 shows the total energy and the exchange enerdition. This type of confinement allows the escape of the
for the singlet state as functions of the confining radius in KS-£lectrons through the box when the energy equals the height
LDA, KS-LDA-SIC and HF including a comparison for the ©f the barrier [46,65]. Table 4 shows the corresponding in-
latter in Ref. [4]. The comparison of the respective entrieformations for oxygen, silicon, and germanium for a barrier
in the last three shows a fairly good agreement among then®f height, = 1. 3) Hard prolate spheroidal box. Figure 5
while those of the first one are different in the first decimalillustrates the ground-state energy for the helium atom con-
figures. fined in such a box when the nucleus occupies the position of
a focus, as function of the volume of the box. Tables 5 and 6
Table 2 shows the correlation energies estimated as thshow the information for the ground states of the carbon and
difference between the precise values of the energy, based @ron atoms in the corresponding situations of confinement as
wave function expanded in a 40 Hylleraas basis set, and thiginctions of the eccentricity parameters and different focal
HF energies of this work and its Refs. [30] and [31], as func-distances.
tions of the confining radius. The first two entries show that  Section 3 deals with the confinement in the presence of
the correlation energy does not show appreciable changes {iplane hard wall boundary using prolate spheroidal coordi-
the third decimal figure. The Authors conclude that thesenates, corresponding to the equatorial plane- 0, for an
results can be used as bench marks for other correlated methtom with its nucleus placed at one focus. Results for the
ods. carbon, neon and helium are illustrated in Figs 6-10 and Ta-
. . ble 7 including discussions in the text and comparisons with
) Tablg 3 contains the corresppndlng results _for the COMrasults in Refs. [46,75]. This model is important for the atom-
fined helium atom in the lowest triplet state. Their respective : ;
X . S ; surface interactions.
entries differ significantly compared with the ground state.

The Authors conclude that this work shows the impor-2.1.9.
tance of exponent optimization in the Roothan approach to
solve the H-F equations for the singlet and triplet ground‘Confined Atoms Treated as Open Systems” [10] is concep-
states of the confined helium atom. The comparison of théually methodologically, and content-wise different from the
HF results and the KS-SIC-OEP-KLI results exhibits that theother chapters. The system of interest is bounded by surfaces
latter is inadequate for the description of the unpaired elecit shares with the atoms of the confining material: matter and
trons. momentum can be transfered across the surfaces. This is a
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problem of quantum mechanics of a proper open system a polar interaction, and the plane surface in ® a shared
bounded by a surfac8(Q2; ) of zero flux gradient vector interaction. Each interatomic surface intersects the bond path
field of the electron density, Eq. (1). This approach takes int@t the position of the bond critical point. The classification
consideration the interaction of the system of interest with itof the interactions is based on the values of the electron den-
environment; to what extent are the exchanges in the pressusity and its Laplacian at the bond critical point. For shared
volume product of the open system mediated by changes imteractionsp(7,.) < 0.2 and V2p(7.) < 0, while for the

the atoms of the confining surfaces? The gradient vector fieldlosed-shell interactions(7.) < 2 andV?2p(7.) > 0 and is

of the electron also provides a definition of the structure insmall in values as are the individual curvatures. The polar
terms of both paths, lines of maximum density linking neigh-interaction occurs in systems with significant charge transfer
boring atoms. Thus, the open system approach deals with the which the donor atom retains nonbounded valence den-
structure of the system and of its interactions with the sursity. Thusp(7.) > 0.2, as for the shared interactions, and
rounding, and these change with changes impth@roduct.  V2p(7.) = 0 for the polar interaction. Because of the re-
Section 2 describes the mechanics of an open system, defimaining valence density in the donor atom, this interatomic
ing the properties of an open systéhby Heisenberg’s equa- surface does not follow its initial paraboloidal shape found in
tion of motion obtained from the variation of the state vectorthe region of the donor core, as significant of a large charge
within the system and on its boundaries, as determined btransfer, but instead straightens out as a plane characteristic
Schwinger’s principle of stationary action. Equations (2), (3)of a shared interaction.

and (4) apply for a stationary state, describing the motion for

an observablgr, the current for property G and its density ~ Table | gives the properties for the AB representative
property, respectively. Section 2.1 deals with atomic expresm0|eCU|ESZ binding critical point charge of A, surface virial
sions of the Ehrenfest and virial theorems for the observablegf A and B, volumes of A and B, and pressures of A and B.
—ihV andf7 - j, respectively. The commutator of the Hamil- Data for the diatomic hydrides AH ground states, A=Li, Be,
tonian and the momentum yieldsV 3V which is the force B, C, N and F are illustrated in Fig. 2. The zero-flux inter-
F' exerted on an electron atby the other electrons and by atomic surfaces with the proton at the fixed position labeled
the nuclei at fixed positions. Equation (5) gives the expectaH- The bond critical point for Li is located 1.67 a,u, from the
tion values of the force as the negative of the surface integrdroton, and are increasingly smaller for the other atoms. Ta-
of the momentum density or stress tensor of Eq. (6). In turnble 2 illustrates the same properties as in Table 1. Figure 3
the commutator of the virial operator yields twice the atom’scontains the atomic pressures for the successive molecules;
electronic kinetic energy () plus the virial of the Ehrenfest  the highest one on H is in BH. Data for the diatomic fluo-
force exerted over the basin of the atogif2). In a station- ~ rides AF (A=Li,Be,B,C,N,O) in the ground state are shown
ary state these contributions are balanced§f?), the virial  in Fig.4 for the atomic pressures in the successive molecules;
of the Ehrenfest force acting over the surface attmEqua-  the highest one on F is in the polar molecule CF. Table 3 il-
tion (7) is the virial theorem in terms of the total virial for the lustrates the same data as Tables 1 and 2 for the fluorides.
atom as the sum of(Q) + 14(Q2) = v(Q2) = —2T. Equa- In 4.4 data on atoms and ionsX He, Be*2, Li and Ne
tions (8) and (9) are the expressions for the atom and surfagfiside an adamantane molecular caggHGg, represented
virials as the respective integrals of the force and the stresgs XaC,,H,s and designated as complexes are illustrated
tensor. Equations (10) and (11) are the local forms of then Fig. 5 and Tables 4-9. In the Figure molecular graphs
virial theorem and the virial field. Equations (21) and (22)for the cage and for the complex witi = He are shown
describe the expectation value of theoperator and its pro-  side by side. The atom is shown encased by its four inter-
portionality with the surface virial respectively. atomic surfaces. In the cage, a methine carbon is labeled C1

Section 4 deals with calculations of the pressures in termgng _':S tbongeddH (;aytHl; aHr;e?ytl_en?, C?”tbon Is labeled ?i
of the surface virial. Calculation of the pressure in terms of2NC IS two bonded atoms He. Lrtical points are represente

the surface virial is illustrated in 4.3 for atomic pressuresby dots: red for bond, yellow for ring and green for cage.

in diatomic molecules, 4.4 pressure exerted on atom conThe readef may appremate the C.ha.”ges dge to the presence
the confined helium atom and its interactions. Table 4 il-

fined in adamantane cage and 4.5 compression of hydrog . .
ustrates the pressure acting on the atom X in the complex

molecules in a neon vise. . .
and the associated energy change for the successive atoms,

In 4.3 the diatomic moleculesNCO and LiF cover the including their values of the volume, the surface virial, the
range from shared, polar and ionic bonding, respectively. Theressure and the changes in the basin virial and in the energy.
pressure exerted by A on B is determined by the nature of th&able 5 illustrates the atomic pressures on C1, C2, H1 and
interatomic surface which is characteristic for shared, polaH2 in adamantane together with the values of their volume
and ionic interactions. Figure 1 illustrates such surfaces foand surface virials. Tables 6, 7, 8 and 9 give the changes
the respective molecules in the ground state, the electron dem the adamantane atomic properties in forming the succes-
sity distributions and the bond paths. The paraboloidal sursive complexes for C1, C2, H1 and H2 with the values of
face in LiF is characteristic of an ionic interaction, the com-AN(Q2), AE(2), Av(Q2) and AP(Q2). The reader may fol-
bination of a small paraboloidal and plane surfaces in CO ofow the discussion of these results in the text.
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In 4.5 The system used to introduce the quantum defand [15]. The comparison is favorable for Ca, but not for the
inition of pressure consists of a linear chain of hydrogenheavier atoms.

molecules compressed between a pair of Ne atoms. Figure 2) Electronic transitions as functions of pressuréc-

7 illustrates the case of fivesHnolecules for the Ngtio|Ne  cording to Fig. 3 the possibilities of excitations energies are
vise, showing contour maps of the electron density at presthree: 552 — 5s'4d!, 5s'4d! — 4d?, 4d> — 5s'4d'. Fig-

sures of 2.6, 73 and 123 GPa; the intersections of the intefre 4 illustrates their pressure dependences for low and in-

atomic surfaces with the plane of the diagram are shown fogreasing pressures, respectively. Table 2 reports the values
the left half of each molecule, as are the atomic interactioryf the spin-potential:;, the LUMO*-HOMO? gap and the

lines. There is a (3,-1) critical point in the density at each in-singlet-triplet excitation energy for Ca, Sr and Ba as func-
tersection of an interaction line with an interatomic surfacetjons of the confinement radius. Figure 5 is the plot\dE

The indicated structures are invariant to an increase in thgersusy; exhibiting fairly linear relationships.
pressure.

2.1.10. 2.1.11.

“Modelling Pressure Effects on the Electronic Properties of Photoionization of Atoms Encaged in Spherical Fullerenes”

Ca, Sr, and Ba by the Confined Atoms Model” [11] uses thd12] discusses in its Section 2 The Modeling of Doped
confinement inside a sphere with an impenetrable wall anfullerenes. In its first subsection on Preliminaries, it is ex-
the spin-polarized version of Density Functional Theory. ThePlained that the atom is confined with its nucleus at the cen-

methodology described in Sec. 2 covers the pressure as th@f Of the cage and that the radius of the cage is significantly

negative rate of change of the total atomic energy with resped@g€r than the radius of any’ subshell of the ground state

to the volume, Eq. (2), and the SP-DFT framework, in which©f the atom. Thus, to a good approximation, the ground state

the total energy changes according to its dependence on tif&caged atom is only perturbed insignificantly by the cage:
number of electrons N and the spin numberas the natural both the atom and the cage preserve their respective struc-
variables, Eq. (3). For the atoms under consideration, in thirés. Furthermore, when the wavelength of #ephoto-

free configurations there are singlet-triplet transitions for the?lectron significantly exceeds the bond length between the
valence electrons?sand in the transition the two electrons &t0ms of the ¢ cage, the latter can be replaced by an effec-
are unpaired to produce the triplet. However, the number ofiV€ SPherical, attractive, continuous, homogeneous medium
electrons is unalteredN = 0 in the process. In Eq. (3) only acting on the photoelectrqn. For this, thé photoeleqtron

the termAN, is important and its coefficient in Eq. (4) is MUSt be slow, corresponding to near threshelchhotoion-

the spin potentiali, expressed as the partial derivative of theization of the encaged atom. Thus, the slow photoelectron

energy with respect to Nfor N andw fixed Eq.(5), wheres will perceive the fullerene cage as an unstructured semi-
is the external potentiél. The change in the spin number itransparent spherical shell that generates a reflected elec-
AN, = 2, andAE = 2y, Eq. (6). Ref. [32] gives the tronic wave inside the sphere and a transmitted wave outside.

for the increase of the spin as half the difference of the ener- On the other hand, the cages may be neutral, charged or
gies of the Lowest Unoccupied Molecular Orbital and the multilayered. Their following subsections describe model-
Highest Occupied Molecular Orbital, leading to a change ings, successively.

of energy expressed by that difference. The Perdew-Wang 2) The A—potential model: Neutral doped fullerenes

exchange correlation functional of Ref. [33] in the LDA [34] A@C,. Inthis case, the cage is modeled by a spherical, short-

is used in this work. The results are presented and discusse . :
in Sect.3 under the following headings: range, attractive potential of depttiyfor R,, < r < R,+A,

and zero otherwise. This model has been applied for noble

1) Transition pressures for Ca, Sr and B#&igure 1 il- gas atoms and group-V atoms, fulfilling the conditions of be-
lustrates the orbital energi8e, 3d and4s for the confined ing centered in the cage without any charge transfer. The Van
Ca atom decreasing as functions of the increasing radiuder Waals forces are responsible for the atom occupying the
of confinement, the last two ones show a crossing aroundentered position. Since those forces are very weak compared
R = 5. Figure 2 gives the total energy as a function ofto the Coulomb forces, they do not alter the ground state wave
the pressure for the confined Ca atom in the configurationfunction of the encaged atoms appreciably. Electronic wave
[Ar]4s?, [Ar]4s'3d' and [Ar]3d? with successive crossings function and binding energies of the N electron encapsulated
among them between 80 and 100 GPa, showing that the oatom are obtained by incorporating thepotential into the
dering of the configurations change with pressure. The freélF equations for the free atom. The orbital radial functions
energiess are displayed in Fig.3 for the respective electronicmust satisfy the boundary conditions of continuous logarith-
configurations. Table 1 displays the transition pressures famic derivatives at = R,, andr = R,, + A. The parameters
Ca, Sr and Ba for their most stable configurations in the intert/,, and R,, are described for n=60, 240, 540 , and the thick-
vals of the decreasing confinement radii, their multiplicities,ness parametek is determined by the carbon atom, taking a
and the comparison with experimental values from Refs. [14tommon value.
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3) The A—potential model: charged doped fullerenes with a bound electron as the superposition of the electron-
A@Cﬁz combines the potential in 2) and adds the electronhucleus Coulomb energy and the electron-(Z-1)electron
static potential of the charged shell, assuming that the exeharge uniformly distributed in the volume of a sphere of ra-
tra charge Z is evenly distributed over the entire outer surdiusa electrostatic repulsion energy.
face of C,,, turning out to be constar/(R,, + A) inside
0 <r < R, + A and CoulombicZ/r outside. 2.1.13.

4) The A-—potential model:  multiwalled doped ) i )
fullerene onions For neutral doped fullerene onions 1he energy level structure of Low-dimensional Multi-
AQC@C?°@Cc™ the confining potential is the super- electron Quantum Dots” [15] reviews the Computational
Methodology, Quasi-one-dimensional Quantum Dots and

position of those of the single-well potential - y ° ) e
Quasi-two-dimensional Quantum dots investigations.

Vi — aVgo + bVoyo + CVsg0 + ... (1) In the Introduction, Quantum dots are identified as con-
. _ _ fined quantum systems of a finite number of electrons bound
with a, b, c,...either 1 or O for the successive layers. in a fabricated nanoscale potential, 1-100 nm, with a discrete

5) The J—potential model of single-walled doped energy-level structure following Hund’s rules. Their proper-
fullereneswas initially developed in photoionization studies ties can be changed by controlling the size and/or shape of
of A@QCq involving a Dirac delta function at the radial po- the fabricated potential. The energy-level structure and op-
sition R... It is also the limiting situation of thé\ potential  tical properties of quantum dots and atoms are qualitatively
with A — 0, ignoring the thickness of the carbon cage. Thedifferent because of the differences in their respective confin-
model is applicable only to the deep inner subshells of théng harmonic and Coulomb potentials, apart from their sizes
encaged atom. The role of the carbon atoms is only to modand dimensionalities.
ify the radial part of the electronic wavefunction in the con-
tinuous state with the orbital quantum numBemnd electron
momentum with the proper boundary conditionrat R..
The results are manifested as phase shifts.

The computational methodology based on the quantum
chemical molecular orbital theory allows the calculations of
the ground or low-excited states of multielectron quantum
dots for a specific value of the strength of the confinement.
The results vary depending on the strength of the confine-
ment, due to a strong variation of the relative importance of
the electron-electron interaction with respect to that strength;

“Spectroscopy of Confined Atomic systems: Effect of consequently, it is necessary to develop a unified method of
Plasma” [14] reviews the experimental techniques, Theoret: q Y, Y P

. : . interpreting the complicated energy-level structure of quan-
ical Development, Interpretation of Spectral Properties an({l]m dots for the whole range of the strenath of confinement
Atomic Data of atoms under Liquid Helium. In the Introduc- 9 g '

tion it is recognized that atoms or ions embedded in a plasma ) ) ) o

also form a class of confined systems. Their atomic structural Previous studies allowed the identification of the polyad

properties may change drastically depending on the couplingnuamum number, defined by the total number of nodes in
strength of the plasma with the atomic electrons. e Ieadlng conﬂguratlon.of the configuration mteractmry, Cl,

wavefunction, as approximately conserved for harmonic os-

The coupling constant of a plasma is defined as the rasij|ator quantum dots.

tio of the average Coulomb energy to the average kinetic en- h buti he i . fth
ergy of the plasma particles. For plasma particles obeying In the present contribution the interpretation of the

classical statistics, the average kinetic energy per particle ignergy-level structure of qua§|-on§-d|me_nS|ona] quantum
kT in terms of Boltzmann's constant and the temperaturedOtS of two and three electrons is reviewed in detail by exam-

For a one-component plasma with N particles in a volumé'.ning the polyad _structure of the energy Ievel_s and the sym-
V, the characteristic volum&/N is that of a sphere with metry of th_e spatial part of the_CI wave functions due to the

the so-called ion-sphere radius or Wigner-Seitz radius a. ThEauli Principle. The interpretation based on the polyad quan-
Coulomb energy per particle {€¢)? /a. Equation (1) gives tum number is applied to the four-electron case, and is shown
the coupling constant for the plasma obeying classical stati® blg a'pphc'?fble to the gﬁneral muI|t|-eI(|actron cases. The
tic, proportional to the square of the particle charge and to thdualitative g_' erences Im tde energy- e\(’f struc_:ture; between
cubic root of the density, n, and inversely proportional to thedUasi-one-dimensional and quasi-two-dimensional quantum
temperature. Typical examples of weakly and strongly Cou_dots are bnefly_ d_|scussed by referring to differences in the
pled plasmas are characterizedlby: 1 andl” ~ 1to >> 1, structure of their internal space.

respectively, with theifT’, n) corresponding values.

2.1.12.

) ) i 2.2, Electronic Structure of Quantum Confined Atoms
Concerning the theoretical modeling of the plasmatic and Molecules 2014

confinement in the respective coupling limits, Eq. (10) de-

scribes the Debye screening model potential as a Coulomim this section, the further advances in the period 2009 to
potential with an exponentially radial decreasing factor, and2014 are illustrated by connecting and comparing the respec-
Eq. (17) the ion-sphere model for the interaction of an iontive pairs of reviews [1-18], [4-17], [5-19], [2-20], [11-24]
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with common coauthors on related topics; and also by delevels. Concerning the confinement in polyhedral cavities,
scribing and analyzing the other reviews in the monograptihe reader’s attention is directed to: Sect. 2.3, Fig. 1 En-

-23], . ergy levels for hydrogen at the center of the cavity formed by

[21-23], [25] levels for hyd h f th ity f db
joint symmetrical truncation of both the cube with the edge of

2.2.1. 4au and the octahedron; and Fig. 2 Energies of isotropic har-

monic oscillator with the force constaht= 1 placed at the

“Surface Effects in the Hydrogen Atom Confined by Dihedral center of the tetrahedral cavity with the edgé5au (y = 0)
Angles” [17] presents the updating of [4], reporting mainly tryncated to octahedron (= 0.5). Sect. 4.2 Table 2.1 En-
the results of the described confinement which is iIIustrate@rgy splittings of the hydrogen atom states with= 3 in
here in two parts: with the titles of the articles reviewed in itSSome |arge p0|yhedra| cavities: Cube, Octahedron and Tetra-
Section 2, and its main body in Section 3 on the topic of thehedron. Sect. 5.4 The polyhedral deformation of the sphere
title. into the family of cube, octahedron and tetrahedron cavities,

In fact, its Refs. [20[Comment on the electron in the field Egs.(45)-(46), illustrated by Fig. 4 in solid lines, and the state
of an electric dipole momenf21] Ground-state energy shift 3d in the tetrahedrons in dashed line.
of He close to a surface and its relation with the scattering
potential: a confinement moddR2] The hydrogen atom in
a semi-infinite space with an elliptical cone bounddigg]  2.2.3.
Lamé spheroconal harmonics in atoms and molecu[24]
Rotations of asymmetric molecules and the hydrogen atorfiThe Confined Hydrogen Atom Revisited” [19] is connected
in free and confined configurationf25] Ladder operators ~ With the first part of [19], and the second Author describes the
for Lamé spheroconal harmonic polynomiali26] Ladder  first one as a continuation of the second. It is based on two of
operators for quantum systems confined by dihedral anglegheir own recent References, reviewed in Set/a8ational
[27] Complete pure dipole spheroidal electrostatic fields andand Perturbative Treatments of the Confined Hydrogen Atom
sources [28] Surface current distribution on spheres and with a Moving Nucleusand in Sec. 4hannon and Fisher
spheroids as sources of pure quadrupole magnetic fiette ~ Entropies for a Hydrogen Under Soft Spherical Confinement
reviewed in Sections 2.1-2.5, illustrating further advancedllustrating the elements of the novelty in their respective con-
previewed in [4]. tents.

The exact solutions for the hydrogen atom confined | Sec. 3, the conclusions in the moving nucleus versus
by dihedral angles were constructed in spherical, prolatepe fixed nucleus modeling are the following. The increase
Spheroidal and parabolic coordinates. The energy levels Shaﬁ@ the kinetic energy due to the moving nuc'eus is Compara_
common degeneracies identified in Sect. 3.1 and iIIustrategve|y larger than the energy difference between the Coulomb
in Table 1 in terms of the respective quantum labels of theifnteractions for each scheme and all the values of the confin-
eigenstatesn,, ng, j1), (ng, ny, 1) andny, ny, p), as func-  ing radius. The average nuclear position compared with the
tions of the confining angle. The O(2) symmetry breakingaverage electron position is closer to the origin by a factor
is manifested in several effects: Sec. 3.2 In each state, thef 349% for r. = 0.1 up to67% for r, = 10. As the con-
atom acquires and electric dipole moment. Sec. 3.3 Th@ining radius increases the variational ansatand average
electron exerts a pressure distribution on the confining plangejative distances: r >y,0,, < r >4, Steadily approach the
meridian defining the dihedral angle. Sec. 3.4 In the hypergxact wave function and average electron-nucleus distances,
fine structure, the Fermi contact interaction vanishes; and thesspectively, corresponding to the free hydrogen atom. For
anisotropic quadrupole contributions, axialjsdependent, 3| the values of., the radial densities show that the nucleus
and the transverse onejisand¢, dependent. Sect 3.5 The remains close to the center of the cavity, due to its greater
Zeeman effect must be dealt with degenerate perturbatiomass and localization. In contrast, the electron densities in
theory, and was not implemented for lack of time. both schemes are very similar to each other and for very small

values ofr,. the electron shows a free particle behavior.
2.2.2.

In Sec. 4, the Shannon and Fisher entropies were calcu-
“Symmetry Reduction and Energy Levels Splitting of the lated in the position{,., I,) and momentum,,, I,) spaces
One-Electron Atom in an Impenetrable Cavity” [18] is for the hydrogen atom spherically confined in soft and im-
methodologically connected with [3]. The Reviewer singu-penetrable boxes, and also the free particle inside an impen-
larized this chapter since the Introduction to illustrate theetrable sphere, as functions of the cavity radilsand the
ideas of superintegrability and symmetry breaking. Here wepotential barrier heighty. The entropies show a monotic
elaborate some more on the basic idea of symmetry, whichehavior for the impenetrable boxes. In contrast, they show
in quantum phenomena manifests itself in the degeneradynportant changes for soft confinement over small radial in-
of the eigenstates with a common eigenenergy; correspondervals in the vicinity ofr = r., reflecting the degree of the
ingly, the reduction of the symmetry leads the reduction ofspatial charge localization associated with the poterifal
the degeneracy with the consequent splitting of the energ¥he occurrence of negative values of the Shannon entropy in

Rev. Mex. Fis64(2018) 326-363



RECENT PROGRESS IN CONFINED ATOMS AND MOLECULES: SUPERINTEGRABILITY AND SYMMETRY BREAKINGS 335

the position coordinate is explained on the grounds of a pro-
nounced space localization, with its associated locally large
density.

2.2.4.

“Variational Perturbation Treatment for Excited States of
Confined Two-Electron Atoms” [20] is connected with the
second part of [5], and [8]. The Authors report Hylleraass-
Scherr-Knight variational perturbation theory (HSK-VPT)
calculations of the energies of the 1s 2$ and 1s 2s*S
states of confined two-electron atoms ions fr= 1 — 4.
These are the first two excited states of the two-electron sys-
tem and serve as bench marks for excited state calculations.
The data reported in Table 4.2 and 4.3 support the hypothesis
that HSK-VPT is a viable approach to the excited states in
confined systems. Preliminary investigations of the 159s
and 1s 3¢ S states indicate that the approach can be readily
extended to higher excited states. The Authors also consid-
ered the extension of Knight's work to 3-10 electron atoms to
their confined versions.

2.2.5.

“Confined Quantum Systems Using the Finite Element and
Discrete Variable Representation Methods” [21] is a review
of its Refs. [9,11,17,50,58,62,63,68,74,76,89,90,91,117,124]
by the same Authors, in which they have developed and ap-
plied the methods in the title to a variety of quantum systems
under different situations of confinement. Section 4 illus-
trates some of these specific applications showing numerical
results matching favorably the most accurate in the literature.
4.1 One-dimensional harmonic oscillator confined by a
modified Wood-Saxon potenti&q. (5.27) and Fig. 1, was
investigated in [11] in order to simulate the confinements
in 1) The Zicovich-Wilson square tangential potential, Eq.
(5.28) and in 2) A constant infinite barrier. The intensity
and slope parameters of the Wood-Saxon potential are op-
timized to an optimum fit to the respective potentials, and

the eigenenergies were calculated using 300 equality spaced

points between [-5,5] and [-4,4] to build the Discrete Vari-f
able Representations. Table 1 shows the comparison of t
results from [11] and [10], and Table 2 those fron [11] and
those from [94] and [95].

4.2 Confined Hydrogenic Atom/lon This section il-
lustrates of the theoretical and computational methodology
based on the variational formalism for the bounded states and
the p-version of the Finite Element Method, applied to the
hydrogen atom confined in 1) an impenetrable spherical box
and 2) in aCs, cage, and 3) hydrogen-like ions in plasmatic
confinement.

1. This case was investigated in [9] and its results for the
energies of the 1s and 3s states, respectively, as func-
tions of the confining radius are illustrated in Table
5 compared with those by Varshni, Zicovich-Wilson,
Saha, Joslin and Aquino, and in Table 5.4 compared

with Varshni, Goldman and Aquino. Table 5.5 il-
lustrates the results on the polarizability for the 1s
state compared with those of Dutt, Banerjee, Saha and
Laughlin.

. The endohedral confinement of the hydrogen atom was

modeled in [17] by adding a Gaussian potential attrac-
tive wall to the Coulomb potential, Fig. 5.6, fitting its
parameters to approximate the potential of Connerade
et al[15]. Figure 5.7 shows the energies of the 1s, 2s,
3s and 4s states of ®Csy from the p-FEM calcula-
tions compared with those from [15], as functions of
wp in the Gaussian potential. Figure 5.8 displays the
radial wave functions/ from 1s to 4d for HRCq for

wo = 0.683. Figure 5.9 shows the corresponding ener-
giesE,,, as functions ofvg.

3. The plasmatic confinement of ions is modeled by

Debye exponentially screened Coulomb potential,
Eq.(5.38), in the weakly coupled plasiia<< 1; and
with the ion-sphere model in the case of one compo-
nent spatially homogeneous strongly coupled plasma
I' ~ 1. For a hydrogenic ion with a nuclear charge
Z and a single bound electron immersed in a homoge-
neous plasma with electronic charge density n within
a sphere of radius R such that exacly— 1 of the
central positive charge is neutralized; the interaction
potential is given by Eq. (5.39) as the superposition
of the Coulomb energy-Ze? /r and the parabolically
decreasing contributiof(Z — 1)e?/2R][3 — (r/R)?]
from the negative uniformly distributed charge. Re-
sults from [117] obtained with self-consistent FEM
are illustrated in Table 5.6 for the ground state en-
ergy (—E,,) for Ar'™ with different Debye parameter
and screening radius for Temperature of 1 eV, and also
compared with [19]. Figure 5.10 illustrates the energy
levels, -E, against the radius R of the ion-sphere for the
hydrogenic ion Hé n¢ = 1s, 2s, 3s, 2p, 3p ,3d, and
also the 1s without a surrounding.

Section 4.3 contains the results of the energy spectrum
or two types of quantum dots: 1) an impurity located in a
arabolic quantum dot, and 2) a two-electron quantum dot.
The spectrum is computed using the DVR method.

1. The Hamiltonian includes the kinetic energy, the

electron-nucleus Coulomb energy, the harmonic oscil-
lator energy and a Wood-Saxon potential. Table 5.8
illustrates the optimized Wood-Saxon parameters and
binding energies for the quantum dot using the DVR
method [11] compared to Varshni’s [118] exact values.

. The Hamiltonian includes the kinetic energy and the

harmonic oscillator potential for the two electrons con-
fined in the quantum dot with an effective mass m*,
and the Coulomb e-e repulsion in the medium with di-
electric constant, Eq. (5.42). The motions of the cen-
ter of mass and the relative one between the electrons
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can be separated. The first one for the anisotropic conBasis. The Hamiltonian Eg. (6.16), and the trial wavefunc-
finement has the spectrum of Eq.(5.43) for the corretion Eqs. (6.13-6.15), must be written in the Hylleraas co-
sponding transverse and axial oscillatgks M, N,,). ordinates|ry, ro, r12, 1, Q2]. 2.4 Complex-scaling Method
transforms the radial coordinate — re*? with the corre-
The relative motion equations (5.44-5.47) were solved insponding changes in the Hamiltonian and each of its terms
[50] using a variational scheme based on the DVR methodg(. (6.18), as well as in the paramefét = Be? in the FO
using the spherical harmonics and radial function expansiongotential. Since both the Cl-basis and the Hylleraas basis are
The calculations included 30 spherical harmonics and 100 ranot orthogonal, the eigenvalue problem appears in the form
dial basis functions. The solutions for the latter were obtainegf the variational Galerkin approach, Eq. (6.20), involving
from 2500 DVR basis functions equally spaced in appropritoth the matrix elements df (¢) and the overlap$¥;| ;).
ate intervals of the pairs of transverse and axial frequencyhe resonance poles are determined by finding the positions
parameters. The energy spectra have a precision of at leastfhere the complex energy eigenvalues exhibit the most stabi-
significant digits. lized characters with respect to the changes in the rotational

For the isotropic case, the center of mass energy spe@ngdled and the scgling parameterEgs. (6.23) leading to
trum is degenerate, Eq. (5.48), with the combinat@ +  Lres = Er — (1/2)il.
L + 3/2) of the radial N and angular momentum L quantum  Section 3 presents the succesive results and discussions.
numbers. 3.1 One-electron QD state 3.2 Two-electron QD Bound
Table 5.9 illustrates the three dimensional two-electrorbtates 3.3 Two-electron Resonant StateSection 4 contains

quantum dot energies for different values of the confiningt@ncluding remarks.

parameter and different configurations (NL,nl) from [50]
based on DVR method and compared with results fromP-2-7-

[120]. Figure 5.11 illustrates the corresponding energy SpeQ’SpatiaI and Shell-Confined One Electron Atomic and
trum of the same two-electron quantum doy ;, ,, ¢/w for

w =0.1,0.25,0.5,1.0 and 4.0 compared with the degenerateM()Iecu'ar Systems: Structure and Dipole Polarizability” [23]

X . investigates comparatively the confinement of the hydrogen
spectrum without the electron-electron repulsion [50]. atom in an impenetrable spherical box and in a spherical

Figure 5.12 illustrates the relative motion energy levelsshell(R,, R.+A) potential, their counterparts for the hydro-
of anisotropic two-electron quantum dots for = 0.5 and  gen atom and the hydrogen molecular ion in an impenetrable
w, = 0.1,0.25,0.5, 1, 4, also compared with the cases with- spheroidal box and in a spheroidal shell potential, a well as
out the e-e repulsion, [50]. Figure 5.13 illustrates the totalfor the hydrogen atom in a cylindrical cavity. The focus is on
energiesEnyn,,n,m,n, forw, = 0.5 andw.[.1,1], in-  the energy levels and the static and dynamic polarizabilities

cluding some of their crossings [50]. of the confined systems as functions of the confining parame-
ters. The methodology is based in B-spline expansions for the
226. wavefunctions and the Variational Galerkin Approach. The

solutions for the Sclidinger equation in the succesive ge-
“Bound and Resonant States in Confined Atoms” [22] is anometries of confinement are constructed and applied for the
investigation of the bound and autoionizing resonant states afvaluation of the respective polarizabilities.

two-electron Quantum Dots (QD) with F& impurity based The results are presented, illustrated and favorably com-
on the Rayleigh-Ritz variational and complex-scaling meth-pared with those in the literature in the following order. 3.1
ods, respectively. The Helium atom in the QD is modeledg|ectronic energies and polarizabilities of hydrogen molec-
by confinement in a finite oscillator potential. Section 1.jar ion spatially and endohedrally confined in spheroidal
Introduction to the QD confinement discusses succesivelyoxes 3.2Energies and polarizabilities of endohedrally con-
the rectangular, harmonic oscillator, attractive Gaussian pined centered Hydrogen ator®.3Energies of spatially con-
tential and in particular the Finite Oscillator (FO) potential fined centered hydrogen ator.4 Energies of spatially and
Vro = —Vo(1 + kR)exp(—kR). Section 2. Theoretical endohedrally confined off-center hydrogen ator.5 Dy-
Method includes 2.1 One-electron QD with the Safinger  namic polarizabilities of spatially confined centered and off-

equation for the atomic impurity in the FO potential and acentered hydrogen atar.6 Energies and polarizabilities of
variational function expressed as a superposition of Slatetcylindrically confined hydrogen atam

type orbitals. 2.2 Two-electron QD: Configuration Interac-

tion Basis. The Hamiltonian is the sum of two one-electrony 2 g.

QD Hamiltonians plus the electron 1 - electron 2 Coulomb re-

pulsion energy. The trial wavefunction involves the antisym-“Density Functional Theory Applied on Confined Many-
metrization operator for the identical electrons, and the supetklectron Atoms” [24] is connected with [9] and [11], some of
position of products of Slater-type orbitals, electron orbitalthose connections allow us to concentrate here on Section 3
angular momentum coupled statés, ¢,, L, M), and total Modified Thomas-Fermi Model and Section 4 Kohn-Sham
spin eigenstates (o1, 02). 2.3 Two-Electron QD: Hylleraas Model.
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In Section 3 the starting point recognizes the unphysicatluding the confining potentials for electrons and nuclei. By
divergent behavior of the electron density at the position olusing Jacobi coordinates, the motion of the center of mass is
the nucleus in the Thomas-Fermi Model. The modificationremoved and the Scbdinger equations in terms of relative
that Parr and Gosh proposed, Eq. (8.26) as a restriction in thgositions and reduced masses are obtained, Egs. (9.5) and
minimization process, combined with the cusp condition on(9.30). 2. Trial wavefunctions for the free molecular ion as
the derivative of the electron density and the electron denthe product of the nuclear vibrational and rotational function
sity itself at the nucleus Eq. (8.27), lead to the well-behaved”(R) and an electron nuclear wave functir 4,7, R)
electron density of Eq. (8.28). The authors develop their owrare proposed, Eq. (9.7).

method to solve the equation in terms of the series expan- For the lowest vibrational rotational levef;(R) is cho-
sion in Eq. (8.34). Table 8.1 shows the lower coefficientssen as a Gaussian function with a coefficientin the
from their recurrence relations. Table 8.2 shows the Valueauadratic exponer‘(tR _ R0)2, § and Ry becoming varia-
of the electron density at the nucleus for the noble gasegonal parameters. The electron nuclear wavefunction is cho-
Z = 2,10,18,36, 54,86 and their scaled values divided by sen to have the Guillemin-Zener form, Eq. (9.9). The elec-
Z?, compared with those reported by Parr and Gosh usingon nucleus radial positions, andr are written in terms
the .iterative approach. The agreement is good to the fourths prolate spheroidal coordinatés, 7, ¢), Egs. (9.10-9.11),
decimal. leading to the separable form in Eq. (9.12), as the product of

In order to estimate the pressure according to the Slatea decreasing exponential§rwith coefficient(Z(R)+a)R/2
and Krutter proposal, the Poisson equation is sufficient, andnd acosh function inn with coefficient(Z(R) — a)R/2.
Eq. (8.41) expresses the proportionality of the derivative of  When the nuclei are fixed, their separati®iis a parame-
Q(w) with respect toQ(w) at the surface of the sphere ter asin the B-O approximation. The variational optimization
w = we, Fig. 2 illustrates the electron density at the con-of Z(R) anda for R, = R, = 2 leads toZ(R,) + a = 1.36
fining spherical surface as a function of the confining radiusand Z(R.) — a = .092 and an energfcz = —0.60244 to
for the noble gases in a log-log plot. The description of Fig. 3pe compared wittE 5o = —0.60263.
is not clear for this Reviewer, unleg$0);,; means(0) for When the nuclei are allowed to mov&(R) is a func-
the free atom. tion of the nuclear separation, such tHatR — oo) — 1.

In Section 4, the Kohn-Sham formalism with different Eq. (13) propose€(R) = 1 + /R and the reparametriza-
exchange-correlation functionals is applied to Na and Ktionsa = v/2, 8 = (1 + a)/2, as in Eq. (9.16).
atoms under central spherical and impenetrable confinement. 5 1141 wavefunctions for the confinediHMolecular-

In Section 4.1, Table 3 illustrates the numerical values of tthOn as the product of that for the free system multiplied by

H 1 1
total energies for N@Nej3s') and K([Ar]4s") as the func-  ojactron and nuclear cut-off factors for both electron and the
tions of the radius of confinement as well as the average ratg5tive nuclear separation, Eq. (9.23).

of change of the energy with respect to the radius, using the

PBE exchange-only functional. Fig. 4 illustrates the orbital The trial wave function for the free molecule,H

energy for the K atom as function of the confining radius with Eq. (9.31),

the ordering 3s, 3p, 3d, 4s fdt5 < R. < 8, showing the ®, = (71,7, R)

crossing of the two higher ones with the inversion of their

ordering 4s, 3d, fotR. < 4.5. The pressure depends on = F(R)¢(&1,m, R)o(&2,m2, R)J (112) (9.31)

the individual orbital energy contributions to the total energy,in, o jves the same nuclear vibrational rotational function with

evaluated as thg r.ate of change of th? total energy with ,retheir respective coordinates, and a Jastrow correlation factor,
spect to the confining volume. Table 4 illustrates the energle'gq (9.35)

for [Ar]4s! and[Ar]3d' and their difference as functions of brys
the confining radius, and Fig. 5 gives the total energy as a J(r12) = exp (1 n Crm) .
function of the pressure for the two electronic configurations,
illustrating the transition of their inversion.

Section 2.3 and 2.4 describe the implementation of
the Variational and Diffusion Monte Carlo calculations for
Dirichlet boundary conditions.

Section 3 presents the results and discussion for 1. Hy-
“Study of Quantum Confinement ofjHlon and K, Molecule  drogen atom located at one of the foci confined by a hard
with Monte Carlo: Respective Role of the Electron and Nu-spheroidal surface, with comparisons with its Refs. [20]
clei Confinement” [25] incorporates the nuclear motion inand [9]. 2. Clamped nuclei Hmolecular ion by a spherical
contrast with the familiar Born-Oppenheimer approximationsurface compared also with [20] and [9]. 3. Confined three-
with nuclei in fixed positions; additionally, the calculations body H, molecular ion by a spherical surface. 4. Confined
are based on the variational and diffusive versions of Montdour-body H, molecule by a spherical surface, 5. Considera-
Carlo. Sections 2.1 and 2.2 deal with the theory for bothtion of confinement in active site of enzymes. 6. Decreasing
molecules starting from their respective 1. Stinger equa- the Coulomb barrier for the fusion of protons by electronic
tions, with three and four particles and their interactions, in-confinement.

2.2.9.
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3. Recent Progress in the Literature up to Jan- of ionized electrons with neighboring atoms to model their
uary 2018 influence on higher harmonic generation. The physical situ-
ation appropriate for such application is systematically ana-
The literature in this section has been selected with the crilyzed.
teria of elements of novelty in some of the key words in the  «gtatic polarizability of an atom confined in a Gaussian
Abstract, which have beenillustrated in Sec. 2 for the reviews)gtential” [30] uses the finite basis set method based on B-
in Advances in Quantum Chemistry, and also in the two typegpines to calculate the energy spectrum, and the optical prop-
of review in the Monograph. The recent progress in the backarties: dipole, quadrupole and octupole oscillator strengths
ground of the set of those reviews is presented also by goingng polarizabilities as functions of the depth and width pa-
from the simpler to the more complex confined quantum sysrameters of the confining potential. The maximum uncer-

tems. Additionally, the new electromagnetic toroidal interac-tainty in the reported numerical results is estimated to be
tions and the new force approach to the old radiation reactiogpot10—4qu.

problem are also included. “Energy-level structure of the hydrogen atom confined

by a penetrable cylindrical cavity” [31] reports the bound-

state energy spectrum and its evolution for the atom located

The common confined element in the twenty references r along th? axis of the cavity, W't.h penetrable and |mpengtrable
oundaries based on the solution of the 8dimger equation

viewed here is the hydrogen atom or hydrogen-like systems. . R

The readers may appreciate the recent progress along this |i¢1'glng a finite difference app_roach. New results are presented

b : ith [2-71 and [17-191. or a nuclear centered position for the penetrable case as the
y comparing with [2-7] [ ] . . L : .

] o ) barrier height and cavity size change. Then special attention
~ “Tunable Excitons in Biased Bilayer Graphene” [26] is given to the energy level evolution of states from the nu-
involves electron-hole excitations between the two lay-cjear centered position (centered states), up to the cylinder
ers. They open a pathway for possible nanoelectronic anglap (cap states), while the corresponding state evolution for
nanophotonic devices operating at room temperature. Th@termediate nuclear positions (intermediate states) remains
binding energy of the excitations may be tuned with the exterzonsistent with node conservation and symmetry. The ener-
nal bias going from zero to several tens of milielectron voIts.gieS of a given state increase as the nucleus moves up. The
The novel strong excitonic behaviors are associated with @yolution as the barrier height and cavity size are reduced
one-dimensional Van Hove singularity joint density of statesconsists of the progressive extinction of the bound states in
and a continuously tunable band gap based graphene lay@ke order of cap, intermediate and centered states. A predom-

that of 2D hydrogen atom. level shift is found.

“Confinement approach to pressure effects on the dipole “Endohedrally confined hydrogen atom with a moving
and the Generalized Oscillator Strengths of atomic hydronucleus” [32] studied the hydrogen atom as a system of
gen” [27] is based on the constant barrier outside modekwo quantum particles in different confinement situations: a
The Schédinger equation is solved by a finite differences spherical impenetrable wall cavity and a fullerene molecule
method for the fixed values of the spherical radius and theage. The motion is referred to the center of spherical cavities
barrier height. The GOS momentum transfer distribution forand the Schidinger equation is solved by means of a gener-
s — nf transitions is enhanced in amplitude and width asglized Sturmian function expansion in spherical coordinates.
pressure increases. There is a critical pressure indicating thehe solutions present different properties from the ones in
approach to the limit of the confining capacity of the systemhe literature, in which the proton is fixed in space and the
to hold then/ state. The corresponding DOS values provideglectron is a quantum particle. The position of the proton is
an useful way to characterize the critical pressures for thgound to be very sensitive to the confinement condition.
fading and ultimate bleaching of the spectroscopic emission “Confinement effects on the electron transfer cross sec-

lines. tion: a study of H&" colliding on atomic H” [33] analyzes
“The hydrogen atom confined in both Debye Screeninghe pressure effects on the target and the physical process of
potential and impenetrable spherical box: [28] used the lininterest by using the model of spherical confinement of the
ear variational method based on B-splines basis functions tmrget at the center. The electron transfer probability is ob-
calculate the ground state and some low lying state energiasined by a time dependent solution of the Sclinger equa-
and oscillator strengths. Comparisons with results in the littion by means of a finite difference approach and the Crank-
erature for confined and free configurations are presented amdicolson propagation method. Results are presented for the
discussed. benchmark system Hé + H(1s) under different conditions
“High-harmonic generation and spherically confined hy-Of confinement.
drogen atom” [29] presents the investigation of the dynamics “The hydrogen atom confined by one and two hard
of the atom under the action of strong infrared femtoseconaones” [34] studies the bound states of the system is a semi-
laser. The spherical box is introduced to model collisionsinfinite space. The solutions when the nucleus is at the apex

3.1. Hydrogen-like Atoms
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of the conical boundaries and the electron is confined outside The two-electron atom and ions HHe and L+ are also
one or two symmetric of such boundaries can be evaluatemhvestigated with the same model of confinement using the
exactly. The third case assumes the position of the nucleus &tartree-Fock equations and implemented with the MEXICA-
the origin of the coordinate system and the apex of one coni€ code. Results are illustrated for the Highest Occupied Or-
cal boundary at a distance h along its axis; the solution can bieital Energies divided by’ and for the total energies divided
evaluated by the variational Monte Carlo Method. The latteby Z2, Z =, 1,2, 3 ande = 80 as functions of the confining
is applied to calculate the force in an Atomic Force Micro- radius.
scope as the negative of the rate of change of the energy with  “Fine structure in the hydrogen atom boxed in a spherical
respect to h. impenetrable cavity” [39] reports the relativistic corrections
“Benchmark Calculation of Radial Expectation Value of the kinetic energy, the spin-orbit coupling and the point in-
(r—2) for Confined Hydrogen-Like Atoms and Isotropic Har- teraction Darwin term to the non relativistic familiar system
monic Oscillators” [35] recognizes that for those physicalbased on the nucleus-electron Coulomb interaction only. The
systems numerous physical quantities have been establishéitst one is negative; the second one couples the orbital and
with very high accuracy. However, the expectation values irspin angular momenta to a total one wjth= ¢ 4 1/2, and
the title of practical importance in many applications has sig-eigenstates¢ s j m;): for initial n¢, the energy levels split
nificant discrepancies among calculations by different methfollowing the order of the values of; the third one occurs
ods. In this work the basis expansion method with cut-offonly for the state witl/ = 0. High precision numerical re-
Slater-type orbitals is used to investigate the two confinedults of the effect of the confinement on each correction, in
systems. Accurate values for several low-lying bound statefirst order perturbation theory, are reported.

were obtained by carefully examining the convergence with  “Confinement of Atoms with Robin’s Condition: Sponta-
respect to the size of the basis. A scaling law for" > neous spherical symmetry breaking in atomic confinement”
was derived and is used to verify the accuracy of numericaj40] and Spontaneous spherical symmetry breaking in atomic
results. Comparisons with other calculations show that thegnfinement [41] are commented together, pointing out their
present results establish benchmark values for this quantityse of the “not going out” Robin’s boundary condition, and
“Sum rules and the role of pressure on the excitation spedheir identification of a symmetry breaking effect.
trum of a confined hydrogen atom by a spherical cavity” [36]  The boundary condition corresponds to the logarithmic
investigates the effects of pressure induced by a soft sphericgkrivative of the wave function at the confining surface be-
cavity on a centered atomic hydrogen impurity, on the dipoleing a real function\(7), representing the contact interaction
oscillator strength sum ruléy, and its logarithmic version of the particle with the cavity boundary; — 0 leads to the
L, by means of a numerical finite-difference solution of theNeumann and. — oo leads to the Dirichlet familiar bound-
Schibdinger equation. The information on the energy specary conditions. The energy functional for the Safinger
trum and the eigenfunctions in the sum rules and their cloequation and the Robin boundary condition includes a surface
sure relations are analyzed as functions of the size and barrigitegral of the probability density at the boundary multiplied
height of the confining potential. The results are relevant irby \. It is this term that makes the difference.
electron-impurity excitations affecting optical transitions in

X “Fisher information in confined hydrogen-like ions” [42]
semiconductor nanostructures.

presents an investigation of Fisher information for the CHA-
“Monotonicity in confined system problems” [37] is con- like systems in conjugateandp spaces, compared with the,

cerned with the changes in the electron density when an atoim case of the free atom. Systematic results on | as a function
is confined at the center of an impenetrable confining spherf the confining radius are presented, with emphasis on the
The work presents four simple theorems that facilitate undernon-zero-{, m) states. Inferences in CHA are significantly
standing the behavior of the electron density of the groundiifferent from the free counterpart: i) dependence oné}
state with variations in the potential or in the radius of thequantum numbers, ii) appearance of maximd,jrplots for
impenetrable spherical cavity. m # 0. The role of atomic number and atomic radius is dis-

“Exact solution for the hydrogen atom by a dielectric con- cussed.
tinuum and the correct basis set to study many-electron atoms “Derived properties from the dipole and generalized os-
under similar confinements” [38] introduces a new modelcillator strength distributions of an endohedral confined hy-
of confinement, alternative to the polarization potential ofdrogen atom” [43] uses two alternative potentials, square-
Jortrer and Coulson, and an alternative basis set to construatell and Woods-Saxon, to model the concentric spherical
the exact solution of the corresponding Sidinger equa- shell A-potential wall in H@Gy. The electronic proper-
tion, distinguishing between the solute and the solvent. Reties of the confined hydrogen atom: hyper-fine splitting, nu-
sults are reported for the total energy, electron density, chargdear magnetic screnning, dipole oscillator strength, static
in the dielectric medium and Shannon entropy, as functionsnd dynamic polarizability, mean excitation energy, photo-
of the radius of confinement and of the dielectric constantonization and stopping cross section, are reported as func-
e [2.1,80], where the extreme values correspond to Teflortions of the depth of the wal, for chosen shell$R, A].
and water, respectively. The values from the two modelings of tie potential are
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compared. A clear discrepancy is found between the squarevork of the same Author for the free ion are matched through
well and Woods-Saxon models on the GOS, due to the squarex 10~2E,,. The results are reported graphically in Figs. 1

well discontinuity. These differences are reflected in the stopand 2 for the energies and for the potential energy curves of
ping cross section for protons colliding with H@C the ground state Eq. (12), respectively, as functions of the nu-

“Relativistic two dimensional H-like model atoms in an clear separations and higher energy valueb ¢akes smaller

external magnetic field” [44] are investigated on the basis 0f/alues. Tables 1 and 3 illustrate the numerical values of the

Klein-Gordon and Dirac equations solved by the power exenergies for the respective states and their variations with the

pansion method. For a given magnetic field B the approxé‘wo distance parameters, _incluqm_g the positions of the min-
imate solutions are determined by imposing boundary coniM@ Ee, E(f) and the dissociating energy.. Table 2
ditions at a finite radius R. For particular values of B, exact'POrts the numerical results of theo, energy and dipole

polynomials solutions are obtained. The dependence on tHePlarizability for different Debye lengths including compar-
effective coupling constant = B/Z2 and on the atomic isons with those from its Refs. [11], [10], [25], and [26]; the

number Z of the energy eigenvalues for several states is stu§nerdies and the polarizabilities are consistently lower from
ied the other reported values. Table 4 illustrates the expectation

) . _ § _ values for the potential energy? andz2. Table 5 contains

Atoms confined by very thin layers” [45] provides the numerical values of the parallel and perpendicular dipole
a mathematical justification for the interest in the two-po|arizabilities, Egs. (9), compared with their Kirkwood ap-
dimensional atoms with the three-dimensional Coulomb POproximation lower bounds Eq. (8), their average, Eq. (13),
tential. The Hamiltonian of an atom with N electrons andnq the anisotropy, Eq. (14). Table (56) shows the Dunham
a fixed nucleus between two parallel planes is consideredarameters fitting the potential energy curves, Egs. (10)-(11),
in the limit when the separation between the latter tends t¢ne harmonic force constant and the harmonic frequency.

zero. Itis shown that the Hamiltonian converges in the norm ) .
“The Effect of Confinement on the Electronic Energy and

resolvent sense to a Sé¢ldinger equation acting effectively e . )
in L2(IR*") whose potential part depends on the Separationl?olarlzabll|ty of a Hydrogen molecular lon” [47] is based on

Moreover, itis proven that after an appropriate regularizatiorin€ Simplest variational trial function consisting of the linear
this Schdinger operator tends, again in the norm resolvenfmbination of twals hydrogen atom orbitals, reporting nu-

sense, to the Hamiltonian of a two-dimensional atom (Withmerical values of théo, andlo, states molecular energies
the 3D Coulomb potential) as the separation tends to zero. below those of the exact and a variational five-term James-

Coolidge trial function, in its respective Refs. [7,10], with
the claim that their results are better than those of the refer-
ences. The Comment on the article [48] points out and clar-
ifies numerical errors in its presentation and Tables, which
c’(?,'bviously violate the variational principle. The authors in
their Response [49] do not address the specific inconsisten-
cies pointed out in the Comment, but include one page of the
The article “H embedded in a Debye Plasma: electronicprint outs of Mathematic® for the one electron integrals for
and vibrational properties” [46] has the background of [14]the non perturbed Hamiltonian of two hydrogen atoms with
and the works of its second author [3,20]. The embedding in &yclej at the foci, A and B, for the Coulomb interaction of
hot dense plasma is modeled by multiplying the Coulomb potne orbital centered in A with the nucleus in B and the or-
tential interactions with a Debye screening exponential radiapjtal centered in B with the nucleus in A, for the Coulomb
factor with a decay distance D. The analysis of the problengxchange interaction, and for the overlap of both orbitals; as

is made within the Born-Oppenheimer approximation and inye|| as an APPENDIX of commands of Mathemaficaf
prolate spheroidal coordinates with the protons at the posipne page and a half for the calculation.

tions of the foci. The solution is based on the variational trial
function of Eq. (6) for thelss, and2po,, states, including s in the li oL h q q
an exponential decaying function in the spheroidal coordiMeNts to works in the literature, inviting the readers to do

nate and a series expansion in Legendre polynomials of Ordépelr own readings of the respective articles. Here, he reiter-

I in the hyperboloidal coordinate and powers of the ratio 0]aates such an invitation and makes his own specific comment:

the spheroidal coordinate minus one to the spheroidal COoﬁ\ccording to the Variational Principle, a variational result for

dinate plus one. The gerade and ungerade states involve ont@/e energy below the exact value is not better, it is wrong.

even and odd values éfrespectively. The expansion coeffi- In “The hydrogen molecule and the{Hnolecular ion in-
cientsc;,,, and energy eigenvalues are determined by solvingide padded prolate spheroidal cavities with arbitrary nuclear
the secular equation and the coefficienin the exponential positions” [50], a variational approach has been proposed for
factor was optimized to give ten digit convergence for eachthe nonseparable Sddinger problem of the molecules in
value of the nuclear separation and the Debye length. In ththe title, in their ground states, confined by soft cavities and
limit of very large values ofD when the Debye screening the nuclei not in the foci positions. The role of barrier height
factor becomes one, the exact energies obtained in a previopstential and cavity size and shape on the ground state en-

3.2. Diatomic Hydrogen-like lon and Neutral
Molecules, and Two-electron Atoms

This section reviews seven articles on molecules and one
He-like atoms.

This Reviewer included in [4] and [17] sections on com-
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ergy of both confined molecules has been analyzed showing “Quantum states of confined hydrogen plasma species:
their importance in defining equilibrium bond lengths and en-Monte Carlo calculations” [52] implements the diffusion
ergies by allowing full nuclear relaxation, consistent with theMonte Carlo method with symmetry-based state selection to
confinement conditions. The variational wave function forcalculate the excited staté§l,, and2Hg of H;r ions under
the Hj molecular ion inside and outside are based on thespherical confinement. Special solutions are employed, per-
Dickinson-Weinhold ansatz for the free ion, involving a su- mitting to obtain satisfactory results with rather simple native
perposition ofls and2p atomic hydrogenic orbitals centered code. The results are interpreted using the correlationjof H
at each nucleus, with the proper factors to satisfy the boundstates to atomic orbitals of H atoms lying on the confining
ary conditions at the surface of the spheroidal cavity and asurface and perturbation calculations. The method is straight-
infinity, Egs. (13)-(15). For the FHimolecule the variational forwardly applied to cavities of any shape and different hy-
function is the product of the same one-electron variationatirogen plasma species (at least one-electron ones, including
functions for electrons 1 and 2, Egs. (11)-(12), inside andH) for future studies with real crystal symmetries.
outside. The energy functional of Eq.(21) is valid for both 4 Rtz variational calculation for the singly excited
molecular systems depending on their numbers of electrongates of compressed two-electron atoms” [53], a detailed
K =1,2for Hj and H, respectively. analysis on the effect of spherical impenetrable confinement
Figure 2 illustrates the variations of the total energy foron the structural properties of two-electron ions in S-states
HZ 1s0, with the nuclear separation for barrier potential has been performed. The energy valued.ofs>S¢, [n =
height and eccentricity, = 0.5 and1/¢, = 0.5 vary- 2 — 4], states of helium-like ions4 = 1 — 5) are esti-
ing sizesD¢, in terms of focal distance® = 1,1.5,2,3 mated within the framework of Ritz variational method us-
in a), and for a fixed sizdD¢, = ¢ and varying heights ing explicitly correlated Hylleraas-type basis sets. The corre-
Vo = 0.25,0.5,2,4500 in b). lated wave functions used here are consistent with the finite

. . ._boundary conditions due to spherical confinement. A com-
Table | provides the numerical values of the total energies y P

for V, = 0.25,0.5,2 and nuclear separatioffi$5, 2.4] from _paratwe study.between the ;lnglet _and trllplet statgs 9r|g|nat-
. : : : : ing from a particular electronic configuration show incidental

this work, including comparisons with the exact one for nu- !

N : R . degeneracy and the subsequent level-crossing phenomenon.
clei coinciding with the foci, which are systematically below. ; TS

Table 2 illustrates the total . t th iib The thermodynamic pressure felt by the ion inside the sphere
' el nustrates efo a entlarg|é§q a ? equilio- gushes energy levels toward the continuum. Critical pres-
flum nuclear separapqn or a selected set 0 caw_ty SIZ€%res for the transition to strong confinement regime (where
(D&), fixed eccentricityl/¢, = 0.5 and barrier heights

: . , , the singly excited two-electron energy levels cross the cor-
Vo = 0.25,0.5,2,4500, with their corresponding numerical

P . ) ~_responding one-electron threshold) as well as for the com-
values of the variational parameters in the trial wave function

. lete destabilization are also estimated. This reference is con-
Table 3 is the counterpart of Table 2 for the ground state o ected with [5,8,20].

the H, molecule.

Figure 3 illustrates a) the equilibrium electronic energy,3.3. Many-electron Atoms
and b) the equilibrium bond length, as functions of the size
of the cavity(D¢,), for &, = 2 andVj, = 0.25, for both con-  The articles to be reviewed in this subsection have an-
fined Hf and H, molecules. The crossing of the curves attecedents and common Authors in [8,11,24] and illustrate
aroundD¢, ~ 1.48 andV; = 0.5 is to be noted. The reader some of their recent advances from their previous reviews.
is invited to follow the explanations in the text. The article “Implementation of the electron propagator to
This model adds more flexibility for the treatment of the secono! order of %PUS o es_tlmate the |or_1|zat|on potenUaIs
electronic and vibrational properties of one and two-electronOf confined atoms [54] considers the confinement in spher-
diatomics when subjected to spatial confinement allowing forIcal boxes Wlt.h |mpenetrable walls, and The I_Elect_ron Prop-
- . i : agator Technique in the second order approximation EP2 to
a more realistic comparison with experiment. )
evaluate the energy to remove one electron from an orbital,
“Spherically confined H: ’y} and?%] states” [51]  Eq. (2), in the Hartree-Fock formalism. The use of the GPUs
presents a study of the molecular iof kinder strong con- for the faster evaluations of two-electron integrals and four
finement conditions produced by a spherical barrier centerehdex integrals Transformations to implement EP2, were in-
in the gravity center of the molecule. Results for the poten-corcoprated in the original MEXICA-C code via CUDA Ker-
tial curves are obtained by diffusion Monte Carlo methods fomels 1 and 2, respectively, Fig. 1. The calculations of the
the ground statéX 2Y:1) and the first excited stafed®%,,),  ionization potential were performed for the free atoms with
and reported as functions of the internuclear distanéer 7 = 3, ..., 18 using the same basis sets as in Ref. [30], in-
different values of the confinement radius. Results show thatluding the predictions of Koopman's Theorem and the EP2
the compressed states corresponding to kﬁo&?z;) and rules. The comparisons of the results of [30], the calcula-
(A2Eu) present deep minima in the potential energy curvestions from MEXICA and the experimental values in eV [31]
due to the increased space for electron wave function whegshow average derivatives of 0.50 to KT and 0.36 and 0.34,
the protons are displaced from the barrier surface. respectively. The authors attribute their smaller derivation to

Rev. Mex. Fis64(2018) 326-363



342 E. LEY-KOO

the use of the Gaussian functions in [30] to their own use oknergy of He in the two situations of confinement from HF
Slater type orbitals. The calculations for the confined atom&nd KS in two of the exchange-correlation functionals. Ta-
are reported for helium in Table 2, beryllium in Table 3, andble 4 includes the exchange and correlation energies, and
neon in Table 4, for boxes of different radius; their generattheir difference, for Mg in the two situations of confinement
trends including those of other references is that they diminand for the fourth exchange- correlation functional. Table 5
ish as the radii became smaller, including vanishing valueshows the Highest Occupied Molecular Orbital energies for
for different radius in the successive calculations. The differ™Mg in the two situations of confinement, comparing the re-
ences between EP2 and KT values are also included; for Hgults from HF and KS with the four functionals. The compar-
differences exhibit negative values for large radii and positiveésons indicate the need to explore other exchange and corre-
values for the smaller ones, for Be they are all positive, andation functionals.

for Ne they are all negative for thks orbital ionization, and In [57], HF calculation for the atoms H, He, Li, Be, N, Na,
all negative except for the smallest radius of one forzhe Mg, P and Ar confined in a sphere with a constant potential
orbital ionization. The authors argue that KT values provideparrier of heights 0 and 0.5 were performed. The correspond-
good estimates for the ionization potentials but EP2 correctfg results were the basis to evaluate the Shannon entropy of
them in the case of confined atoms; however, they recognizghe respective atoms as a function of the radius of confine-
that such correlations do not reveal a trend for the confineghent. The results for H are illustrated graphically in Fig. 1
atoms, since the differences are negative or positive as illugor a barrier height of 0.5 displaying the Coulomb potential
trated in the Tables. They also explain the overestimates q4nd constant potential energies as well as the radial distribu-
underestimates of the KT ionization potentials in terms of thejon function for A) with a radius 0.65, B) with a radius 1.1,
orbital crossings between unoccupied orbitals: if the loweshnd C) with a radius 4, and horizontal dotted lines for the cor-
unoccupied orbital (LUMO) crosses a virtual orbital the dif- responding orbital energies of 0.4908, 0.1583 and -0.4945,
ferences change sign. respectively. In B) the electron density is localized between 0

The other three articles: “Roothaan’s approach to solvénd 3.5, while in C) a minor localization is recognized. Fig-
the Hartree-Fock equations for atoms confined by soft wallstre 2 displays the orbital energies in squares and Shannon
Basis set with correct asymptotic behavior” [55], “Solution of €ntropies in circles as functions of the confining radius, in
the Kohn-Sham equations for many-electron atoms confinetl€ respective intervals [-0.5,0.5], [2,7] and [0,5]. While the
by penetrable walls” [56], and “Electron-density delocaliza-€nergy increases monotonically as the radius is reduced, the
tion in many electron atoms confined by penetrable walls: AENtropy starts at about 4 for a radius of 5 decreases to a min-
Hartree-Fock study” [57] assume spherical confinement witdmum of less than 3 for a radius of about one, and shows a
a constant potential barrier outside, accounting for the soffnarked increase to close to 7 as the radius is reduced to 0.65;
and penetrable walls, as well as the radial basis sets insidle first interval corresponds to localization of the electron
and outside with the correct behaviors for very small and@nd the second one to its delocalization as the orbital energy
very large distances from the nucleus, taken from the com@pPproaches the height of the barrier. Table 1 shows the HF to-
mon Ref. [27], [4] and [30]. The progress in these three arial energy and the occupied orbital energy for Li, Be, N, Na,
ticles, compared with the counterparts for impenetrable conMg and P in the three situations of confinement for five dif-

finement in their previous works cited and reviewed in theferent values of the radius. Table 2 shows the corresponding
first half of this section, are described next. information for the noble gases He, Ne and Ar. The read-

In 1551 th . . q H. He. Be. N ders may ascertain the systematic changes of decreasing ener-
K .nh[ h] ;E ﬁ at_oms mvei\stl_gate V\l/:_:re ' e,f € Ne in gies for the confined atoms as the radius of confinement in-
with the following conclusions, taking as a reference thaty o qeq approaching their free atom values for a radius of 30,

for impenetrable confinement in which the energies 'ncreasﬁ%dependently of the barrier height; and also their increasing

monotonically as the radius diminishes: A) The shell SUUCy alues for a fixed radius and increasing barrier heights. The

tre is drast|cally' mod|f|.ed, apd a delqcahzatlop effect MaYchanges in the orbital and total energies are more pronounced
occur for a certain barrier height, B) inner orbital energiese, . | i"and Na diminishing successively for Be and Mg, N

_do _not_necessarily go up when th? radiu_s diminishe_s,_ C) thf’?ind P, and He, Ne and Ar. The radial distribution defined in
ionization of many electron atoms is confirmed for a finite po-Eq_ (16) is illustrated in Fig. 3 for Mg, zero barrier height and

tential, and D) the asymptotic behavior of the electron densi%Omcinirlg radii of 2, 3 and 30, as functions of the radial dis-

changes with the height of the potential. tance; the respective curves show intersections. Specifically,
In [56] the Kohn-Sham formalism was applied to study in the last pair the second one for its own confining radius
five closed shell atoms: He, Be, Ne, Mg and Argon for twogoes below the curve for the free atom and vanishes for a
heights U=0, 0.5 of constant confining potential barrier, usinglistance of about 8 exhibiting a localization. On the other
four exchange-correlation functionals. Tables 1 and 2 illushand, for the confinement at the radius 2 something different
trate the results for the free atoms including HF values fothappens: Table 1 shows that the orbital energy is approaching
comparison of the total energies evaluated with Gaussian argkro for smaller distances and Fig. 3 shows that the first curve
STO-CAB functions and the respective exchange correlatiogoes above that of the free atom at a radial distance of around
functionals. Table 3 shows the comparison of the exchang8, exhibiting the delocalization effect like in the case of H.
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Fig. 4 shows the Shannon entropy versus radial distance faemperature on the concurrence shows that the temperature-
Mg confined in constant potential barriers of heights 0, 0.5dependent concurrence displays a suppresed behavior espe-
andoo; all the curves entries are in the lower right quadrant,cially at the anticrossing.

the first two show minima gn.d the third with impengtrable “Orientation and heat capacity of horizontally absorbed
boundary show a monotomic increasing. For zero height angh ¢ jes in electric fields” [60] presents the evaluation of

R. = 3 the entropy is close to its lowest value correspondingy,q energy spectrum and the wave function to probe the rota-
to the localized state identified in Fig. 3; in the same curvg;q 5| characteristic of the molecule. Numerical results indi-
for Rt = 2 the entropy has its highest value above that of the, e that the electric field and the effect of quantum confine-
free atom and is delocalized as also identified i Fig. 3. ot ead to anticrossing behaviors in the energy levels. The
Table 3 gives the values of the Shannon entropies for therientation reveals a stepped feature due to the anticrossig
free atoms, with positive values for the lighter ones and negground state. Moreover, the heat capacity displays two peaks
ative values for the heavier ones, taking decreasing values forear the anticrossing. By means of comparison, each peak of
the heavier elements. Figures 5 illustrate the Shannon ernhe heat capacity corresponds to a particular degree of orien-
tropies of confined H, Li and Na referred to the entropy oftation.
the free H for A) 0, B) 0.5 and Cyo barrier heights, ver-

Stjs thehconflnlng ;ﬁd!uls' ftThe (;]L.”VES n A) andf EI)I) eXk:j'bk;tquantum rotator” [61] presents a basic theoretical framework
steep changes on Iheirleft reaching a minimum Tollowead byye | 5stic Electron Tunneling (IET) that explicitly takes

a monotoml_c Increasing and approachmg-zgro fm”.‘ belowmto consideration quantum angular momentum, focusing on
The curves in C) exhibit only the monotomic increasing and

i . L a molecular H rotator trapped in a nanocavity between two
approaching zero from below also. This contribution ShoWsmetallic electrodes as a model system. It is shown that the

tha_t th_e Shannon entropy is a useful tool to measure the del%’rientationally anisotropic coupling imposes rigorous selec-
calizations for many electron atoms. tion rules in rotational excitation. Additionally, rotational
symmetry breaking induced by the anisotropic potential lifts
3.4. Many-electron Molecules the degeneracy of the energy levels of the degenerated rota-
tional state of the quantum rotator and tunes the threshold
This section reviews four articles involving the rotational ypltage that triggers rotational IET. The theoretical results
properties of molecules and four more on the electronic an%rovide a paradigm for physica' understanding of the rota-
vibrational properties of molecules. tional IET process and spectroscopy, as well as molecular
“Orientation of the absorbed dipolar molecules: A coni- level design of electron-rotation coupling in nanoelectronics.
cal well model” [58] is a theoretical investigation on the ori-  “The effect of spatial confinement on the noble gas HArF
entation of single and two coupled polar molecules irradiatednolecule: structure and electronic properties” [62] presents
by a single laser pulse under a conical-well model. The oria systematic study on the dipole and hyperpolarizabilities of
entation of a single hindered rotor shows a periodic behaviothe confined argon hydroflouride molecule. Detailed analysis
In particular, the amplitudes of the oscillation are sensitiveof the confinement induced charges in the structures of HArF
to the degree of the alternation of the field. Crossover fronis also presented. In order to render the influence of chemical
field-free to hindered rotation is observed by varying the hin<compression on the properties in question, a two-dimensional
dering angle for different heights of the conical walls. For aharmonic oscillator potential, mimicking a cylindrical con-
small hindering potential and angle, the time-averaged orienfinement, was applied. By comparing the results obtained for
tation differs greatly from that behavior under strong dipole-HArF and HF, the effect of Ar insertion on the above prop-
dipole interaction. Entanglement induced by the dipole-timeerties was discussed. A hierarchy of ab initio methods, in-
averaged entropy increases monotonically as the hinderinguding HF, MP2, CCSD and CCD(T), has been employed to
angle is increased. To the competition between the confingnvestigate the effect of orbital compression on the electron
ment effect and dipole interaction is found to dominate thecorrelation contributions to the studied electric properties. It
behavior of the coupled-rotor system. was observed that the external confining potential modifies

“Anticrossing-mediated entanglement of the adsorbe(}he e!ectrp_n.ic contributions to the dipole moment and (hy.per)
polar molecules” [59] studies the entanglement of two adpo!grlzabnmes of 'HArF. In parucglar the first hyperpolariz-
sorbed polar molecules in static electric fields. The concur@Pility of the confined molecule is remarkably smaller than

rence is estimated to quantify the entanglement. The aghat of the free molecule.

sorbed molecules reveal a significant rotational characteris- “On the nonlinear electrical properties of molecules in

tic, such as anticrossing features, due to the influences afonfined spaces: From cylindrical harmonic potential to car-
the electric field and quantum confinement. Numerical rebon nanotube cages” [63]. The effect of spatial confinement
sults demonstrate that these rotational properties dominatan the linear and nonlinear electric properties of LiF, LiH, HF

the amount and profile of concurrence. At zero temperatureand HCl is analyzed based on the results of ab initio quantum
an enhaced concurrence is obtained near the anticrossing éhemical calculations. Central to this study is the comparison
the ground state. Additionally, the analysis of the effect of theof different models of confinement. The harmonic oscillator

“Inelastic electron tunneling mediated by a molecular
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potential of cylindrical symmetry as well as a more sophis-method. A great advantage is that every irreducible represen-
ticated model, based on the supermolecular approximationation can be treated separately. Group theory enables us to
are applied in order to establish the correspondence betwegmedict the connection between the states for the small and
the real chemical environment and their approximate reprelarge box regimes of the systems. The crossing and avoided
sentation in the form of an analytical potential. In the casecrossing of the energy levels and other interesting features of
of super molecular approach, the molecular cages are repréie spectrum are illustrated and discussed.

sented by carbon nanotubes and nanotube-like Helium clus- “The effects of intense laser on nonlinear properties of
ters. The results of calculations show that spatial confinementh prop

strongly influences the electric properties of the investigate& a"°V.V 0,‘,0”” Impurities in quantnm dots with Wooqls—Sagon
molecules. potential” [67] presents a theoretical study of the title using

) _ , _ the matrix diagonalization method and the effective mass ap-
_ "About diverse behavior of the molecular electric proper- . imation. This methodology enables confinement ener-
ties upon spat_lal_ conflnement”_ [64] reports on t_he mfluence\gieS by varying the two parameters in the potential. The in-

of spatial restriction on the static electric p_ropertleS of tW0 1o se laser effects are included via the Floquet method, modi-
electron molecules, namely carbonyl sulfide and chlorocetyg i g the confining potential associated to the heterostructure.
lene. A two <_j|men3|onal .ha.rmonlc oscillator potentlal hasFrom the computed energies and wave functions, the optical
been applied in order to mimic that effect of orbital compres-pp,qhtion coefficients and the respective index between the

sion. All the components of the studied tensorial quantitie%round(g — 0) and first excited? = 1) states are obtained
were obtained using the finite-field-method. Among others, 4 examined. Several configurations of the barrier height,

the nanoatomic changes of the first hyperpolarizability, 0bye ot radius, the barrier slope of the confining potential and

served for the spatially limited OCS molecule, are describeqyq intense incident laser radiation have been considered. The

fﬁr the first time in the I.itera}.ure.. M(Ijreoverz itl hﬁs beﬁn f.ounczresults suggest that all these factors can influence the nonlin-
that upon embedding in cylindrical potential the behavior o ear properties strongly.

the dipole moment is different for each of the investigated
molecular systems. In order to explain the obtained diverse “Impurity position effect on optical properties of various
trends, the Hirshfelder technique as well as the concept agjuantum dots” [68] is an investigation of the effect in the tit-
hyperpolarizability density have been adopted. tle for a pyramid and a cone like quantum dots. First, the
“Vibrational nonlinear optical properties of spatially con- €nergy levels and wave functions in the presence of the im-
fined weakly bound complexes” [65]. This study focuses onPUrity are calculateq using the f|n.|te element methpd. 'Then,
the theoretical description of the influence of spatial confinen€ influence of the impurity location on the refractive index
ment on the electronic and vibrational contributions to (hy-changes and absorption coefficients for the two quantum dots
per)polarizabilities of two dimeric bonded systems, namelyWas studied. It was found that: 1) there is a maximum value
HCN---HCN and HCN --HNC. A two dimensional ana- for the optical properties at a special impurity position, and
lytical potential is employed to render the confining environ-2) the values of the optical properties of a cone like quan-
ment .g. carbon nanotubes). Based on the results of thdum dotare larger than those of a pyramid quantum dot of the
state-of-the-art calculations, performed at the CCSD(T)/augS@Me volume and height. The conclusion is that their impu-
cc-pvtz level of theory, it is established that: i) the influ- MY Iocat_|on plays an important and considerable role in the
ence of spatial confinement increases with increasing ordé§!ectronic and optical properties of both quantum dots.
pf the electric properties, i) the effect of spf':\tial confinement “Calculation of the hyperfine interaction in spherical
is much larger in the case of the electronic than the vibragyantum dot” [69] presents the results of unperturbed wave
tlona_!_contnbutmns, fqr each or(_jer of the electnc_prop_ertles,functiOnS and energy eigenvalues of the ground and excited
and iii) tne d_eprease in thg static nuclear r(_elaxatlon first hysiates of spherical quantum dot, GaAs,Ga_, by us-
perpqlarlzablllty upon the. increase of c_onflnement strengtl?ng quantum genetic algorithm and Hartree-Fock Rootham
is mainly due to changes in the harmonic term; however, foethod. The hyperfine coupling constant and hyperfine en-
nuclear rela_xatlon second hyperpolanz_abmty the anharmonltérgieS of 1s, 2p, 3d and 4f levels are evaluated as functions
terms contribute more to the drop of this property. of quantum dot radius. The results show that both hyperfine
properties change rapidly in the strong and medium confining
regimes as the radius decreases. It is pointed out that dot ra-
This section has the antecedents of [15,22] reviewing th&iUs: impurity charge and angular momentum have a strong
progress in six recent articles. influence on the hyperfine energy. Another finding is that

) . S : . the hyperfine energy and the hyperfine splitting vary with the
On the symmetry of three identical interacting particles aluminum concentration ratio x.

in a one-dimensional box” [66] studies the quantum mechan-

ical physical system in the tittle with two-particle harmonic “Computation of hyperfine energies of hydrogen, deu-
interactions. The symmetry of the system is described by théerium and tritium quantum dots” [70] uses the same QGA
point groupDs,. Group theory greatly facilitates the applica- and Roothan HF methodology as the previous entry by the
tion of perturbation theory and the Rayleigh-Ritz variationalsame Authors. The results show that in the medium and

3.5. Quantum Dots
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strong confinement regimes the hyperfine energy and the hyl-;&, reaching a minimum energy configuration: the hydrogen

perfine constant are strongly affected by dot radius, impurityatoms self-assemble into (&-),5 stable molecular cluster

charge, electron spin orientation, impurity spin and impuritycharacterized by two coaxial six-fold symmetry ring struc-

magnetic moment. Additionally, for all dot radii, the hyper- tures, illustrated in Fig. 3.

fine splitting and hyperfine constant of the confined hydro- |, [73], the confinement of thirteen sHmolecules in a

gen and tritium atoms are approximately equivalent to eacly . ' cage was investigated. The reduction of the size of the

other, and they are greater than those of the confined deyy e |eads to different compression rates with the consequent

terium atom. evolution of the molecular structure, energy, electron density,
“Type-II guantum-dot-in-nanowire structures with large Mulliken populations, HOMO-LUMOS gap and ionization

oscillator strength for quantum gate applications” [71] potential.

presents a numerical investigation of the exciton energy and |, [74], the investigation consist of a systematic study of

o_scillator strength in the quantum dots in the title. For 3,ero-temperature structural and energy propertiessofef-
single quantum dot, poor overlap of the electron part an,hedrally confined hydrogen clusters as a function of pres-
the weakly confined hole part of the excitonic wave functiong,,.« and cluster size. For low pressures, the most stable
leads to a Io_w oscillator strength compared to type-I systemsiyctural forms of(H.),, possess rotational symmetry that
In order to increase the oscillator strength, a double duanshanges from Gthrough G and G as the cluster grows from
tum dot structure is proposed featuring a strongly localized, _ 8 throughn = 12ton = 15, Fig. 1 The equilibrium con-

exciton wave function and a corresponding four fold rela-(q rational energy of the clusters increases as the pressure

tive enhancement of the oscillator strength, paving the Way,creases. However, the rate of this increase, on a per atom

towards efficient optically controlled quantum gate applica-,qjs s different for different cluster sizes. In consequence,
tions in the type-Il-nanowire system. The simulations areye size dependences of the configurational energies per atom
performed using a computationally efficient configuration-4 gitferent fixed values of the pressure are non monotomic
interaction method suitable for handling the relatively largef,,ctions Fig. 4. On the other hand, for high pressures the
nanowire structure. molecular(H,),, clusters become gradually atomic or dom-
inantly atomic, Fig. 3. The pressure-induced changes in the
HOMO-LUMO cluster gaps indicate a finite-size analog of

This subsection borrows the title of [10] and illustrates itstN€ Pressure-driven metallization of the bulk hydrogen. The

basic idea with the series of articles [72-78] on “Endohedrafonizatior_] potentials of the clusters decrease as the pressure
confinement of molecular hydrogen”, “The atomization pro-ON them increases.
cess of endohedrally confined hydrogen molecules”, “Pres- In [75], the thermal behavior of a thirteen molecule hy-
sure and size effects in endohedrally confined hydrogen clusirogen cluster under pressure was investigated using a com-
ters”, “Thermal behavior of a 13-molecule hydrogen clus-bination of trajectory and DFT simulations. The analysis
ter under pressure”, “Thermodynamic states of Nanoclustertss based on characteristic descriptors: caloric curve, root-
at low pressures and low temperature: the casé3ef,”, mean-square bond length fluctuation, pair correlation func-
“Evolution of the vibrational spectra of doped hydrogen clus-tion, velocity auto correlation function, volume thermal ex-
ters with pressure”, “Pressure Induced metallization 6f-Li  pansion, and diffusion coefficients. The discussion is focused
Doped Hydrogen Clusters”. The series has also common fe@n the peculiarities of the transition ordered-to-disordered
tures with [12] considering hydrogen fullerene cages insteadtates as exhibited by the cluster under different pressures,
of the familiar ones with Carbon, and also different specie$5 to 75 GPa, and temperatures, 10 to 600 K . These ranges
of confined systems and different processes. The main difsorrespond to the conditions of an envelope of Jupiter’s inte-
ference between the series and the last reference is in theipr. The results for the successive descriptors are illustrated
methodologies: while the latter models the doped fullerene# Figs. 1-5 and in numerical values in Section IV. In the
with the sphericalA andé potentials, the first includes the Section V of Conclusions, it is stated that “The results point
dynamical interactions between the confined systems and thmut a smooth transition of the molecular cluster from an or-
atoms of the confining cage. More specifically, the series usedered solid state to an intermediate thermodynamic state as
density functional theory for molecules applied to the supera precursor of a possible liquid state of the cluster”. It is the
molecule formed by the cage and the confined molecule. confinement of the cluster which extends the persistence of
In [72], the first problem investigated involved a single the intermediate state of temp_eratures (above 100 K and up
H, molecule inside a kh cage leading to the pressure depen-t0 500 K). They suggest the existence of hydrogen clusters in
dence of the ground state energy and internuclear distance g¥Piter's envelope.
the confined molecule as a function of the cage volume: Fig- In [76], an equation of state is presented based on a con-
ure 2 illustrates the results of this work compared with otherfinement model of finite-size systems. The temperature and
model calculations and specially experimental values, wittpressure of the system are obtained from the positions and
which they agree better. The second problem involved 30 hyvelocities of the enclosed particles via a number of molec-
drogen atoms allowed to relax inside @gHage of radius ular dynamics simulations. The pressure has static and dy-

3.6. Confined atoms treated as open quantum systems
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namic contributions, extending the Miei@risen equation 3.7. Connections with Reviews in other fields of Materi-

of state to include weakly interacting anharmonic oscilla- als Science

tors. The model consist of thirteenyHnolecules under

low-pressure and low-temperature conditions in the classicalhis section is limited to Reviews in surface science, and
regime, inside a confining spherical hydrogen cavity. Theon toroidal dipole moments and interactions in metamateri-
Born-Oppenheimer molecular dynamics in conjunction withals and in nanophotonics, in which some of our works have
DFT are used for the time evolution of the particle systembeen cited.

The hydrogen molecules form a noncrystalline cluster struc-  the Review Article “Auger neutralization and ionization
ture with icosahedral symmetry that remains so in the Who"?)rocesses for charge exchange between slow noble-gas atoms
temperature range investigated. The fluctuations of the intets, 4 solid surfaces” [79] in Progress Surface Science, in its
atomic distances increase with temperature, while the oriengo¢ [147] cites our work: “Ground-state energy shift of He
tational order of the enclosed system of molecules fade OUpose 1o a surface and its relation with the scattering poten-
suggesting a gradual order-disorder transition. tial: a confinement model” [80]. Both articles have also the
respective common Refs. [152-153] and [3-4] by Wethekam
In [77], “Endohedrally encapsulated hydrogen clustersand Winter reporting evidence on the ground state evolution
doped with inert helium k,He and ionic lithium H,Li ™" of the He atom close to an Al11) surface deduced from
were investigated. The confinement model is a nanoscopide™ grazing-scattering experiments after Auger neutraliza-
analogue of the compression of solid hydrogen. The struction.
tural and electronic properties of the doped hydrogen clusters o tamiliar electric multipole£¢ and magnetic mul-

under pressure are determined, and compared with those gf,1e 17/ electromagnetic moments and their interactions
the isoelectronic pure hydrogendicounterpart. The inser- have a complementary family of magnetic toroidal mo-

tion of helium or lithium lead to pressure increase rates ofyants and interactions, as illustrated by our work “Complete
approximatelyl.1 with respect to ks, The changes of ge-  gjectromagnetic multipole expansion including toroidal mo-
ometrical structures and HOMO-LUMO gap energies with oo [81]. Any three-dimensional vector field may be ex-
p_rissure indicate the pre_ssure-mduced meta_llllzanon of thﬁressed in terms of its longitudinal component; and two trans-
Li™ doped cluster, for which the energy gap is abruptly rég;e components: one toroidal and one poloidal with paral-
duced, reaching a value 6221eV" atarouncb11G'Pa. There o circle lines and closed lines in meridian planes, respec-

is a pressure Fiomain where the r.ne.tallization may be achievetg/ew_ They may be expressed as gradient, angular momen-
faster by doping hydrogen with lithium. tum and rotational of the angular momentum operators acting
on scalar Debye potentials, which may be chosen as multi-
In [78], the “evolution of the vibrational spectra of the pole/m solutions of the Helmholtz equations. The simplest
isolectronic hydrogen clusters,fl HyyHe and H4Li™t with examples for dipoleg = 1, correspond to a longitudinal, a
pressure” was investigated. The vibrational modes with col€ircular loop and a toroidal solenoid currents as sources of the
lective character common to the clusters were frequencyespectiveE'l, M1 and7'1 electromagnetic fields with their
shifts in the GPa region were discussed. The results are of irpoloidal electric field, poloidal magnetic field and toroidal
terest to identify the dopings elements as inert He, and ionicnagnetic field, respectively. The toroidal current has a zero
Li T in hydrogen under confinement or, conversely, establistmagnetic moment and its toroidal moment is the total mo-
the pressure of doped hydrogen when the vibrational speenent of the magnetic moments of each loop in the solenoid
trum is known. At high pressure, the spectra of the nanoclus¥’ = ), 7 x ji;. The dipole selection rules of angular mo-
ters resemble the spectrum of a solid, and the nanoclustementuml} = [; + 1 are common for the three types of dipole
may be considered crystals of nanometer size. The computéateractionsE1, M1, T'1; those of parityrsm; = —, +, —
tions were performed at the gradient-corrected level of DFTare common fo1 and7'1; the angular distribution of their
The importance of this work consists in the characterizatiorradiation fields are also common for the three; their polariza-
of matter at the nanoscopic level in environments differention states are common féf1 and7'1, and different forM 1;
from a void. while E1 and M1 share the Rayleigh* frequency depen-
dence of their radiation power, ifil it becomes.®. These
r{ules generalize for all multipoles. Reference [81] is cited

The results for a low pressure 20 GPa compare well wit .
éﬂthe Reviews below.

measurements for the crystal. For moderate pressures 1
GPa the molecules self-assemble into a stable cluster. For A selected sample of toroidal dipole moment interac-
high pressures 520 GPa molecular dissociation appears dtiens and their novel physical effects is illustrated by the
to a high population in an antibinding orbital. The Figurestitles of Refs. [82-91] for metamaterials: “Observation
illustrate the systematic changes in the different properties off ferrotoroidic domains” [82], “On the aromagnetism and
the confined molecular/atomic system. These results are @napole moment of anthracene nanocrystals” [83], “Gy-
interest in the search to achieve the metallic state of hydrorotropy of a metamolecule: wire on a torus” [84], “Toroidal
gen under pressure. dipolar response in a metamaterial” [85], “All-optical Hall
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effect by the dynamic toroidal moment in a cavity-based4.1.1. The H and HeH+ molecular ions confined in di-
metamaterial” [86], “Resonant Transparency and Non-Trivial hedral angles

Non-Radiating Excitations in Toroidal Metamaterials” [87],

T?.r oidal d|p;9lar ?xc't?t'on tan_dl rpaggossg?m electromag—.l.he authors of [17] were invited to participate in the Work-
netic properties of metamaterials” [88], “Planar supercon—shop on Concepts of Mathematical Physics in Chemistry in

ducting toroidal metamaterial: a source for oscillating vector- L
- . . ; . h f Prof Frank H D 2014. In th
potential?” [89], “Toroidal circular dichroism” [90] and onor of Professor Frank Harris in December 20 nhe

“N diati d ) | d An oral presentation preliminary results on thg kholecular ion
onradia mg sources, dynamic anapole, an aronovy are presented, and results on the Bekbn were also in-
Bohm effect” [91].

cluded in the written version [93].
“Theory and applications of toroidal moments in elec-

trodynamics: their emergence, characteristics, and techno- . . .
logical relevance” [92] is a review article in Nanophotonics.%y cglllng.the attention of the reader to its referencgs [1-12]
dealing with the hydrogen molecule and molecular ion con-

Its sucessive sections illustrate the place of the toroidal mo;

ments: in Sec. 2 Families of multipoles in electrodynamics:fIneOI in prolate spheroidal boxes, and the last one in cylin-

1) Multipole expansions for potentials and fields, 2) Clas-dncal harmqnlc cqnf|nement;_[13-;4] on the hydrog(.an atom
sification of multipoles according to symmetry rules underand ha_rmomc oscillators confined in dlhedra}I angles; and the
space and time inversions, in electficassociated with po- remaining ones [.15'25] on the exact solutpns for the free
larization (—,4), magneticM associated with magnetiza- golecut:es, including the P1t_eteron,l<|lcltear ITM_L['r'In tge.;;’:m'
tion (4, —), toroidal T associated with density of toroidal ppenheimer. approximation. aturafly, the ger
moments, or toroidization—, —) and axial toroidal as- equations for the respective molecules are common for the
sociated \,Nith axial toroidizaiim(wr +). Section 3. Char- free ones and for the ones confined by natural boundaries in
L : confocal prolate spheroids or hyperboloids, or dihedral an-

acteristics, interaction, and radiation of toroidal moments in | Th rability of th tion and the intearation of
materials includes: 1) Toroidization and Magnetoelectric ef-J'€s. 1he separabiiity of the equation a € integration o
e ordinary differential equations in the respective coordi-

fect, a spontaneous magnetization (polarization) induced b tes are also common. It is the chanae of boundary con
an external electric (magnetic) field in a variety of materials, ales are als n. 1is change of bouhdary con-
dition in the chosen confining geometry which determines

2) Interaction of optical waves with toroidized materials, 3) the ch in the ei | £ th d the oth
Dynamic toroidal moments in artificial metamolecules and € changes In he eigenvajues of the energy an € other
constants of motion, and in the eigenfunctions. Our works

dielectric nanostructures, 4) Electromagnetic fields and radi- . , L
ation patterns associated with toroidal moments. Section n [8-9] involved cpnfmement n |mpe_netrabl_e and penetra-
Excitation of toroidal moments can be achieved by 1) Exter- Ie_prolate spheroidal ques, respectlvely, with rota_tlonal n-
nal light and 2) Relativistic electrons. Section 5. Couplingm”ance around the axis of the spheroid and” eigen-

of toroidal moments to other classes of moments includes 1[*1”(:“0”8' In contrast, for confinement in a dihedral angle

Formation and discovery of anapoles and 2) toroidal meta- ﬁO(Q) ?mmetry |fs broke_n medgthe EIgen;‘unCtlmitl)lSwpt,
materials. Section 6. Applications of toroidal moments. Sec- ' "eTeH = nyT/p, for n, = 1,2,3 may no longer be inte-
: : ger, as discussed in detail in [13-14], including the breaking
tion 7. Conclusions and Outlook. . : .
and restoration of the parity symmetry in the Legendre poly-

_ nomials with associativity: in the hyperboloidal coordinate

4. Reviewer’s and Collaborators’ Work for the homonuclear H molecule. The separated equations
) ) ) _(5-6) in the hyperboloidah = (r; — 2)/R € [—1,1] and

This section gpdates_ the work of th(? Reviewer and h!SSpheroidalg = (r1 +12)/R € [1,00] coordinates, where
collaborators in two lines of research: One- electron di-. anq;., are the distances of the electron from nuclei 1
atomic molecular ions confined by dihedral angles and Manyz 4 2 with the separatioR, share the same structure in-

electron atoms in the same situation of confinement in 4'1‘i/olving the square of the angular momentum Legendre op-
Theory of Angular Momentum in Bases of L&tSphero- — graior, jinear terms with different coefficients; — Z»)pn

conal Harmonics and its applications in 4.2. It also containsand(z1 + Zo)p€, wherep = R/ao, quadratic terms with the

in 4.3 a preview of ongoing investigations along those twogme coefficient p2n? andp?¢2, wherep® = —p?W > 0in

lines, and on toroidal moments and their interactions, as weLLlerms of the electronic energy’ = 2a0E/e? — 27, Zse?/p
as on the Force Approach to Radiation Reaction.

The updating of the chapter under consideration starts

in units ofe?/2ag, as the difference between the energy of
the moleculeE and the Coulomb repulsion energy between

4.1. Confinement of Atoms and Molecules in Dihedral the nuclei, and the common constant of separakion

Angles . . o )
For the molecular ions confined in dihedral angles, in the

Reference [17] in its Section 1.4.3 and 1.4.2 anticipated thbomonuclear casg€; = Z, the linear term in) vanishes.
investigations on the one-electron diatomic molecular ionsThe eigenfunctions have a definite parity, gerade and unger-
and the filling of electronic shells in atoms under dihedralade. Their classification is made via the number of nodes
angle confinement. The two next subsections describe thef the spheroidal and hyperboloidal coordinates and the az-
updating of results on both problems. imuthal quantum numberg:¢, n,,, n,) and parity. Since.

Rev. Mex. Fis64 (2018) 326-363



348 E. LEY-KOO

is no longer integer the usual classification basedror=  tion and energy-4/ (1 + 1)*> = —16/9, —36/25, —1, —4/9
0,1,2,...,0,6,7,... is no longer valid, but their equiva- for the respective angles at the positions with the dots on
lents aren, = 1,2,3,... with 0,1,2,... nodal meridian the left vertical scale. Each energy curve increases mono-
planes between the two defining the confining dihedral antonically as the nuclear separation increases, and on the
gle. The lower state§,0, 1)y, (0,1,1), and(0,2,1), are  right-hand side at the vertical the values of the dissociated
evaluated by constructing the matrix representation of Egmolecule has the electronic energy of the hydrogen atom
(5) in the basis of Legendre polynomials with associativitywith Z = 1 with the values of one fourth of those for the

w1 and definite parities. The matrix elementsiphave the united atoms:—4/9,—-9/25,—1/4,—1/9, to which the en-
selection ruIem;7 = n, £ 1, with nonvanishing elements ergy curves approach from below. For comparison in B)
on the diagonals above and below the main diagonal of théhe electronic energies show minimum values in the vicin-
matrix. The matrix elements of? have the selection rules ity of R ~ 10, showing increments for both smaller and
n, = n, — 2,n,,n, + 2, with non vanishing elements on larger nuclear separations; to the left they become horizon-
the main, and two above and below diagonals. Equation (12al for small separations approaching their united atom limits
gives the explicit form of the pentadiagonal matrix, with its —4/ (1 + 3)* = —16/49, —36/121, —1/4, —9/25 also indi-
entries evaluated in the Appendix by using mathematical in€ated by the dots on the left vertical; to the right they increase
duction and ladder operators identified in its Ref. [14]. Fornoticeably, but forR = 100 are still below their dissoci-
the homonuclear molecule, the matrix becomes tridiagonaating limits —1/ (1 + 2)*> = —4/25,—9/64, —1/9, —1/16,
because the entries in the first diagonals above and belorespectively; for even larger separations they keep increasing
vanish. For chosen values of the nuclear separaiiand and for R ~ 300 are approaching those values from below.
the electronic energy parametér, the diagonalization of the Notice that the latter do not have tig (u + 3)2 dissociating
matrix leads to the eigenvalues of the separation consfant  unlike the situation for the ground state.

and the eigenvectors,, (K, as the coefficients in the ex-  Figyre 2 jllustrates the difference between the free molec-
pansion in the basis of Legendre polynomials with associay 5y ion and the quasi-free molecular on wjth = 2. Dif-

tivity . and definite parity. The size of the matrix is changedserences are expected, because the first one has all the direc-
to test for convergence and accuracy. tions in ¢ available[0, 7], but the confined one is excluded

Equation (6) in the spheroidal coordinatess solved from ¢ = 0 andy = 27 which is the meridian half plane
by Jafé’s method using the ansatz of Eq. (13) with the re-(r =0,y,2).
moving singularity factorg¢? — 1)#/2 e=r¢(¢ 4+ 1) and The free ion states af@00), (010),, and(020), with the
a Taylor series in the variablg — 1)/(¢ + 1) wheres =  united atom energies4, —1, —4/9 interlaced with those of
(Z1 + Z2)p/2p — (1 + 1). The coefficients in the series the confined one from Fig. 1 and the ungerade siate),,,
satisfy a three-term recurrence relation with the parameterat —16/25. Notice the similar behaviors of the pairs of elec-
u, p,o, K, EQs. (14) and (15); the recurrence relations can beronic energy curves of the corresponding ground and excited
recast into a matrix form for the eigenvalue problem follow- states for the free and confined configurations, monotomi-
ing its Ref. [18]. The matrix is tridiagonal and nonsymmetric, cally increasing for the first and with minimum values in the
the eigenvectors contain the coefficients in the Taylor seriesther two. Notice also the crossing of the ground state en-
and the eigenvalue i& + p%. The diagonalization of the ma- ergy curve of the confined ion and the ungerade state energy
trix yields the separation constaft;, and the eigenvectors curve of the free ion, with different parities at arouRdv 2.
bn (K¢) for the chosen values gfandp®. The test of con-  For larger separations the frée00),, and (010),, approach
vergence and accuracy for large enough matrices can also ligeir common dissociation limit at 1, while their confined
implemented. counterparts part901) , and(011),, do it at—4/9; the sec-
ond excited states frg@20), and confined021), have their

The eigenfunctions of the molecule must involve COM- yissociation limits at-1/4 and—4/25, respectively.

mon values ofp, p?> and the separation constants from the

solutions of the Egs. (5) and (6, (R, W) = K¢(R, W). The total energy of the molecule is the sum of its elec-
The matching of this condition for different values of the nu- {ronic energy and the Coulomb nuclear repulsion energy. Fig-

clear separation and the electronic energy provides the infoles 3 follow from Figures 1 by adding the positive value and

mation on the relationship between these two quantities folnversely proportional to the nuclear separation of the latter.
each electronic state and each angle of confinement. Fid?ememberthat the horizontal scale is logarithmic. Addition-

ure 1 illustrates the variations 6% (R) for A) the ground ally, the energy curves for the extra angles of _confinement
state(001), and B) the excited stat@21),, for R[0.1,100]  ¥o = 117/6, 57/3,87/9, 7 /9, and2r/3, and their respec-

in logarithmic scaléV’[~2, 0] andW [—.45, —0.5] inalinear  tive values ofu are included.

scale, respectively; andy = 27,37 /2, 7 andw/2 with the The reader may appreciate the similarity of the curves
respective values gf = 1/2,2/3,1,2 from lower to higher and their systematic changes with the nuclear separation and
values of the energy. In A) for very small nuclear separationswith the confining angle for each state: they show a well
the electronic energy curves approach the united atom limitlefined minimum which shifts to larger nuclear separations
with a nuclear charge df; + Z, = Z in the confined situa- and higher energies as the angle diminishes from its larger
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value below to smaller ones above. The differences between The confined molecular ion also acquires an electric
the curves for A) the ground state and B) the excited statelipole moment in the equatorial plane= 0 and in the direc-

of the same parity are quantitative with the minima more tation from the center of charge of the electron in the meridian
the right and higher. Remember also the different verticaplane bisecting the confining dihedral angle to the center of
scales. Since the nuclear energy approaches zero for larglee molecule, which is the center of charge of the two nu-
separations, the total energy curves approach the dissociatiaiei. The evolution is explained in Eqgs. (16) and (17) and
energies asymptotically, from below as the electronic energyhe results reported in Table 4 for different angles of con-
does. Table 1 illustrates the variations of the total energyinement for the H molecular ion its ground state. Their
E (R, o) for the ground states. values range from.145, 3.502 and9.158 in units eaq for

Each molecular energy curve is also characterized by th€0 = 27, 7,7/2, increasing as the angle diminishes. Here
position of its minimum(R., E.) in terms of the equilib- we include the corresponding values for the hydrogen atom

rium nuclear separation and its variations from th&re R in the respective situations of confinement in its ground state
E(R) — E(R.). Dunham’s parametrization does it in terms in spherical coordinates, Table 1.2 [17]: 1.27307, 3.75000,

of a harmonic oscillator approximation plus asymmetries of2-2807 which are slightly larger.

higher orderE(R) = E(R.) + Ayz* (14 Arz + Az2?), Concerning the HeH"™ molecular ion, the proton is lo-
wherez = (R — R.) /R.. In turn, the rotational constant cated in the lower focu& = 1,7 = —1,¢) and the He nu-
B., the vibrational frequency., the anharmonicity constant cleus in the upperong = 1,7 = 1, ¢) . For its confinement
wer. and the Raman frequencyr can be determined for in dihedral angles the azimuthal eigenfunctions and eigen-
each energy curve as reported in Tables 2 and 3 for the grourwhlue ;. are the same as for the homonuclear molecular ion.
and excited states, respectively. The corresponding values f&ince nowz; — Z, = —1, the linear term irp in the matrix

the free molecule are also included, and the reader may agigenvalue equation of Eq. (12) must be included, and the
preciate the significant changes in the rotational vibrationasolution involves the diagonalization of pentadiagonal matri-
properties of the molecule due to the confinement in the dices. Parity is not conserved and the classification amdu
hedral angles. states is not valid. The eigenvalue equation for the spheroidal

Figure 4 also follows from Fig. 2 by adding the Coulomb degree of freedom, Eq. (6) wilhl, + Z; = 3, accepts Jokf
nuclear repulsion energy, for the ground and excited state%OIl_JtIons of Eq._ (13)' The m_ethodo_logy to obt_am the molecu-
of the molecule forp, — 2, illustrating their total energy lar ion elegtronlc eigenfunctions, eigenenergies and constant
curves together. The reader may recognize the curves for ttfd SéParation, for each nuclear separation, is the same.
gerade state®)01) , and(021) ,, below and above from Figs. The results for the grounfD01) and first excited011)
3A and 3B, respectively. The first excited sté6d1), of  states are reviewed next in the same order as in the homonu-
opposite parity shows a monotonic decreasing as the nuclegtear molecular ion. Figure 7 shows their electronic energies
separation increases and approaches asymptotically the di¢r ©o = 27 as functions of the nuclear separation in the in-
sociation limit form above, as the ground state does it fronferval [0.1, 100] in logarithmic scale and their own values in
below, as their electronic energies did in Fig. 2. Notice thathe vertical scale in the interval-4, —0.5]. The ground state
the shallow minimum of the ungerade state in Fig. 2 disapshows a monotonically increasing variation interpolating be-
pears in Fig. 4 due to the dominant Coulomb repulsion entween the LiZ = 3) united atom hydrogen-like atoms limit
ergy. The gerade states of the molecule are binding, but that —4, and the dissociation limit of He Z = 2, at—16/9.
ungerade state is antibinding. On the other hand, the first excited state starts fresi/25,
ﬁxhibits a minimum at abou® = 2 and increases approach-

Fi I h h i ; o .
igures 5 and 6 also show the comparisons betweemg the dissociation limit in the excited state-at6/25.

the hyperboloidal wave functions of the free molecular ion
(000),, (010),, and(020), states and the dihedrally confined  Figure 8 shows the total energies for the same states and
in o = 2m (001),, (011),, and(021), states, in their re- the same situation of confinement on a vertical scale in the
spective A, B and C entries. In Fig. 5: A) is symmetric andinterval [-1.7,1], in the interval of nuclear separations [0,20]
has no nodes, B) is antisymmetric and has its nodp@t(), in a linear scale. Both exhibit the divergent Coulomb nuclear
and C) is symmetric and has two symmetrically located nodekepulsion energy for vanishing separations. The ground state
in the interval(—1,1) and for different nuclear separations. total energy curve is monotonically decreasing and is identi-
In Fig. 6: They share the nodesiat= —1 and1 associated fied as an antibinding state. The excited state exhibits a shal-
with the singularity removing facto(rl _ 772)#/2, A) is sym- low minimum at about? ~ 6 foIIowe_d by a small increase
metric and has no node, B) is antisymmetric and has its nod@nd continuous monotomic decreasing.

in n = 0, and C) is symmetric and has two symmetrically =~ Figure 9 is the set of total energy curves in the in-
located nodes in the open intervat1, 1) and for the same terval [-0.65, —0.1] versus nuclear separation in the inter-
different nuclear separations; the approaching to the nodes a#l [1,100] in logarithmic scales for the values qfy, =

the extremes is preceded by a sharp maximum or minimun2z, 117 /6, 57 /3, = and their corresponding values offor

The differences arise from the valuesmof= 0 andy dueto  the first excited states. The change of the horizontal scale
the confinement in the dihedral angle. enhances the occurrence of the minimum, the small increase
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and the monotomic decreasing for the lower states; the firdhgs [94] is focused on the evaluation of the electron-electron
two characteristics disappear fpp = 7 and smaller, and Coulomb repulsion multipole component matrix elements

even for the two previous ones. Their monotomic decreasbetween hydrogenic wave functions needed for Hartree-Fock
ing in the entire range of nuclear separations allows to idenealculations for the atoms in dihedral angle confinement.

tify them as antibinding. For the lower energy curves and 1,4 introduction of this contribution describes the sym-

larger angles of _confinement, the presence_ofaminim_um foI-metry breaking, in the hydrogen atom confined in dihedral
lowed by a maximum and then a monotonic decreasing cagngjes as reported in [17]: i) it acquires an electric dipole
be quantitatively established; fofy = 2m, Rumin ~ 7a0d  pyoment i) its Fermi contact term in the hyperfine struc-
Rmax ~ 10. The corresponding well may bind the molecule, ;1o yanishes, iii) its Zeeman effect in first order perturbation
which may also tunnel through the barrier and dissociatey, o vanishes and degenerate state perturbation theory is
Thus, the state is identified to be metastable. needed for its analysis, iv) the degeneracies of the energy lev-

Bates and Carson [21] of the chapter under review stud- els D as functions of the confining angle are identified, with
ied the exact wave function of HEH in its free configuration  the consequent anticipation that v) the filling of the electron
in the Born Oppenheimer approximation, identifying for the shells in the successive atoms and periodicity in their proper-
first time the metastable character of(ii40) excited state in  ties are different form those of the free atoms. Quantitative
1956. References [22] arj@3] by Ben-Itzhaket alreported  answers about the latter require Hartree-Fock calculations for
the experimental evidence for the existence of2he bound  the atoms confined in dihedral angles, specially for those with
state of HeH™ and its decay mechanism in 1993, and thea nucleus with a charg#, andZ andZ — 1 electrons. The
mean lifetime of the boungpo state of HeH™ in 1994. Here  remaining sections: 2) deals with the evaluation of the ma-
we must point out that the metastability of the correspondingrix elements of the Coulomb electron-electron repulsion in
state(011) under dihedral confinement is still present for the the basis of the hydrogen like orbitals with non integer asso-
angle2m > ¢ > 3m/2. ciativity and definite parity, for which 3) shift operators and

Figure 10 illustrates the electronic hyperboloidal coordi-recurrence relations have been identified, and djscussed in 4)
nate function for the ground state of the HeHmolecular ~ in order to implement the Hartree-Fock calculations.
ion for ¢, = 27 and R = 7 with its two nodes at) = —1 The hydrogenic wave functions under dihedral confine-
andn = 1, no nodes in between and a pronounced extremenent [93] are presented in Eqél) in their azimuthal sine
nearn = 1 where the He is located. The preference of theand cosine dependence gad= n,7/¢, eigenvalues, Egs.
electron to be close to the He nucleus is related to the an®) in their polar angle Legendre polynomial dependence
tibinding nature of the state. with noninteger associativity, and restored parity Eq.(3),

In contrast, Fig. 11 with the corresponding eigenfunctionand their radial dependence is the same as for the free atom

for the excited state shows the common nodes-at—1and ~ €xcept that the angular momentum labelis- ng + 11, also
n = 1, with large amplitudes to be between the proton and thé&oninteger.
He nucleus, allowing for some binding; and also an extreme  The electron-electron Coulomb repulsion is given in
nearn = 1 but of fairly small amplitude. Figure 12 shows the Eq. (4) in its multipole expansion form involving their
companion eigenfunction exhibiting the nodetat 1 with  harmonic radial(rL /r+"), polar angleP™ (n,) P™ ()
a large maximum nearby, no other node and an exponentigngd azimutha(cos mep; cos mps + sin mep; sin mes) func-
decrease with vanishing amplitudes for- 3. tions. The corresponding matrix elements take the multipole

Figures 13 A and B, and 14 A and B compare the hy-expansion form of Eq. (5) involving the radial integrals of
perboloidal eigenfunctions for the A) free and B) confined inEQ. (16) of the same form as for the free hydrogen atom ra-
©o = 27 molecular ion in the respective ground and exciteddial functions, the azimuthal integrals Eq. (7) with the closed
states, (000) an()01), and(010) and (011), for nuclear sep- forms and selection rules of Egs. (9-13), and the polar angle
arations 0f0.2, 10 and20, and others. Apart from the nodes integrals of Egs. (8) and (14), for electrons= 1,2. The
atn = +1in B the behaviors in between are very similar for polar angle integrals involve the powerg2 of (1 — ,?) and
each nuclear separation. Such common behaviors are behindf 7 from the associated Legendre polynomials in Eq. (4);
the antibinding and metastable characters of the respectiieir evaluation is based on the shift operators and recurrence
states in the free and confined configurations. relations identified in 3) and discussed in 4).

In Ref. [26] of [17], we reported the identification of

4.1.2. O(2) Symmetry Breaking in Dihedrally Confined Ladder operators for quantum systems confined by dihedral

Atoms and Consequent Modifications of the Periodicangles, which also have their counterparts for the hydrogen
Table molecular ion in the same situation of confinement. There, it

is illustrated how multiplication by = cos 6 of |ng, 1) leads
The authors also participated in the International Colloquiunto the superposition oy — 1, 1) and|ng + 1, 1) with the
of Group Theoretical Methods in Mathematical Physitsl same associativity and polar angle excitations one unit below
in June 2016, with the contribution having the same title asand above, respectively. The derivative with respect as
this subsection. The written contribution for the proceed-the same effects.
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Here, the Legendre polynomials within the multipole lar momentum and asymmetry distribution Hamiltonian op-
expansion with integer associativites = 0,1,2... re-  erators, Eq. (7), commuting with each other, Eg. (8). In this
quire the identification of shift operators changing the assoway, the review of Sect. 3 can be done more in detail with em-
ciativities of the polar angle eigenfunctions. Starting fromphasis on the structure of the respective operators, their rela-
Egs. (8.5.2) and (8.5.4) and (8.5.5) in [95], we have identionships, and their matrices in spheroconal harmonic bases.
tified that multiplication by(1 — 772)1/2 of such eigenfunc- The readers interested in the mathematical details are re-
tions leads to other eigenfunctions with lower associativitiederred to the Appendix, which includes the cartesian and
Eqg. (16) and higher associativities E(L.7) of one unit, re-  spheroconal coordinate transformations Egs. (Al), the lin-
spectively; notice also the changes in the polar excitation anfiar momentum operators Egs. (A8), the angular momen-
the multiplication byn in the second term in Eq. (16), and tum operators Egs. (A12), and the simultaneous separations
the corresponding double deexcitation in the second term iff the eigenvalue equations (A18) of the square of the an-
Eq. (19). Equations (18-21) illustrate the results of the recurgular momentum and (A19) of the asymmetry distribution
sive applications of Egs. (15-17) involving multiplications Hamiltonian, provided the asymmetry coordinate parame-
by additional factors of the or (1 _ 7]2)1/2 type, leading to tersk? + k2 = 1 and the asymmetry dynamical parameters
superpositions of states with different polar excitations and1 + €2 + €3 = 0, ¢f + €3 + ¢3 = V/3/2 are related by
associativities. Eq. (A16).

The matrix elements ofl — 77z)m/2 n® acting on an ini- _The respgcti_ve eige_nvalue eguations can be separate_d into
tial state|ng, »1), and written as a superposition of states OforQ|qary Lang d|ffere_nt|al equations (A21) in the respective
different polar excitations and associativities, are obtained bf!liptical cone coordinates, because the operators commute
the multiplying by the bran), 1¢/| which will project into the with ,each qther.' The sphgrqconal harmonlps are products of
state matching its excitation and associativity with a well de-L@me functions in both elliptical cone coordinates Eq. (A24)

fined amplitude. The selection rules and numerical values ofith matching asymmetry parametdsis+ &3 = 1; matching -
the matrix elements are thus determined. species of their singularity removing factors connected with

states of definite paritigs!, B] = [1, z,y, 2z, 2y, xz, yz, xyz]

4.2. Angular Momentum Theory in Bases of Lange and numbers of nodal planes = 0, n” = n¥ = n* = 1,
Spheroconal Harmonics nY = n®* = n¥* = 2, n"Y* = 3, matching numbers of total

numbers of nodes“? + n; + ny, = ¢, for a given value of
In the same Workshop in honor of Professor Frank Harris, théhe angular momentum labél= 0,1, 2, ... with a square of
authors of the contribution with the title of this subsection andthe angular momentum eigenval( + 1), wheren; andn,
its written version [96] a review of the key concepts of an-are the respective numbers of elliptical cone nodes; match-
gular momentum theory in bases of spheroconal harmonic#ng separation constants;, (k%) + h2 (k%) = ¢(¢ + 1) and
Such an alternative had already been contemplated in [4] fori k2, (k?) + eshD (k3) = 2E*, Egs. (A23), connected with
the rotations of free asymmetric molecules and free quanturihe eigenvalues of the respective operators, where;, e3
systems with central potentials, and their counterparts corare the alternative set of asymmetry parameters.

fined in elliptical cones as natural boundaries in spheroconal The spheroconal coordinate§, x1,x2) are written
coordinates. The implementations of the latter for asymmetin terms of Jacobi elliptical integrals of the types
ric molecules, the free particle, the hydrogen atom and then(y, |k?), cn(yi|k?) = /1 —sr(x1|k?), dn(xi|k}) =
harmonic oscillator were reported in the5@anibel Sym- V1= ks (x1|k2).

pﬁsium and gsCIZroceidings, as weclil as infan invited review The spheroconal harmonics of lower order and monomial
chapter in A 1. The corresponding references were re- . e . .

viewed in [17] Subsection 1.2.3. The updating of this "neeforms are identified in the following table, using only the
of research starts with [96], includes the application in [97]

of interest in magnetic resonance imaging and neutral atom

symbols of the functions for = 1, 2 in the successive pow-

traps, and [98] reporting a new class of shift operators and ¢ 0o 1 1 1 2 2 2 3

recurrence relations for individual Lapolynomials at the A 1 dn cn sn ecnsn dnsn dnen  dncnsn

G31. B 1 sn cn dn cndn sndn sncn  shcndn
"AB 1 x y z yz Xz Xy Xyz

4.2.1. Concepts of Mathematical Physics in Rotations of
Asymmetric Molecules

The derivatives of each Jacobi elliptic integral involves
The main sections in [96] had the headings:SYmmetries the products of the other two with the coefficiefts-1 and
in the rotations of Asymmetric Moleculagad 3. Actions of ~ —k2. The derivatives of the square of each one of them is the
Operators of Angular Momentum and Linear Momentum orproduct of the three of them with the respective coefficients
Rotational Eigenstatesin this updating the review of [98] 2, —2 and —2k2. The derivative is odd under the exchange
is limited to a characterization of the L&spheroconal har- y; = —x;, and so is the sn function, while the other two cn
monics as common eigenfunctions of the square of the angwand dn are even. The general form of the individual Eam
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polynomials involves the singularity removing factor and aand their spheroconal compositions, which nevertheless lead
polynomial of degree; in sré(&;|x?). The individual Lané  to their common cartesian species [AB], just like in the case
polynomials of the different species and excitations are charef linear momentum. However, for the angular momentum,
acterized by the quantum labdls, /[A]) and |n.¢[B]) for  the connection is between states of the same parity. This is
1 = 1,2, respectively. Their product corresponds to the Bam directly connected with the exchange of the coefficients of
spheroconal harmonics represented\]lﬁ%ﬁ , as character- the respective derivatives iy, andys, between the angular
ized in the previous paragraphs. momentum and linear momentum operators in their cartesian
. . ' omponents. Since the rotational eigenstates are eigenstates
_ The spheroco_nal_cqord|_nates in Eq._ (A4) are define f L2, which commutes with., L, and L., the latter can
in terms of Jacob_| el_Ilpt|c_aI integral functions connected byOnly connect with states with the same eigenvalughe en-
Eqs.(AZ).and denvanye_s in Egs.(A3). They are “SefP" to Ob'tries in the Tables 5-8, containing factors of the squares of sn,
tain the displacemenf™, in terms of the orthogonal radial and cn and dn are polynomials of the respective ordersidf,

elliptic cone unit vectors, Y1, X2) Es. (A6) and Egs.(A4), which can be rewritten as a linear combinations of the con-

the scale fa_\ctorBT = Landhy, = hy, i Eqs._(AS)_.The gradl-_ nected rotational eigenstates. The natural way to display the
ent vector in Egs. (A7.) leads to the |d_ent|f|cat|on of th_e lin- actions of the respective operators on the spheroconal har-
ear momentum cartesian components in £qs.(A8); notice tha, ;- and the connections among them, is by constructing

under the exchange = 2 O.f the elliptical cone arguments: oir matrices in the spheroconal harmonic bases. Section 3.3
Py = P: andP, — P, similar to the coordinate exchanges jy qtrates the structure of the angular momentumL,, L.

v = zandy = y. The angular momentum operator fol- . ices in such bases for= 1,2, 3,4. For¢ = 1 the basis
lows from the vector produat x p, in the spheroconal bases has three eigenstates x, y, &z, transforms y in z and vicev-

in Egs. (A.11) and in the cartesian component in Eqs. (Alz)ersa,Ly does likewise for z in x, and., for x and y. The

The momentum operator has radial components with the "hatrices are hermitian with entrigsiz in the elements (2, 3)
spective partial derivatives and the common scale factors; itSn (3,2), (1, 3)and (3, 1), and (L, 2) and (2, 1), respectively
cartesian components have the respective partial derivativeg ze'ros, fo; the rema’inin’g entriés. Hok 2 :the,basis has ’
with the direction cosines of the respective radial and ellipticg, . eigenstateﬂfg[;], Xy, ZX, Y2, \Ijgg] and the nonzero en-

C?ff‘e_ u:"? ¥§ ctor? alg]ng,j df%”ldj andt_the_lr relspect|veJco- b_tries in the respective matrices are six. Har (1, 4) and
efficients; those for the radial derivative involve one Jaco |(4’ 1), (2, 3) and (3, 2) ofif, and (4, 5) and (5, 4). For

elliptic integral function.in ea}Ch variaple; the other opes.in—Ly: (1, 3) and (3, 1), (2, 4) and (4, 2) &fih, and (3, 5) and
volve twq of such functions in the vangblg of the derivative 5, 3). ForL.: (L, 2) and (2, 1), (2, 5) and (5, 2), and (3,
2Irllid t(i)cnien':re] thel ?thetr, bgcauic,e thf[’ dtenvauves of'each _‘ll_ﬁco and (4, 3) oftih. Table 9 shows the explicit entries for
P gral tunction INVolves s two companions. € the other connections. Fér= 3 the basis has seven eigen-
cross product of the radial position vector and the linear mo- tates []o.2, [y]o.2, [2]o.2: [#92]0.0, [£]2.0, [¢]2.0, [2] and
mentum operator leads to the angular momentum without 3 0:2: 1410,2, [210,2, [TY=]0,0, 12,0, 1¥/12,0, [£]2,0,
dial derivative component, and cartesian components wit ere are twelve connections among them. Eor (1, 4)
radial deriv ponent, and car comp nd (4, 1), (2, 3) and (3, 2), (2, 7) and (7, 2), (3, 4) and (4,
the coefficients of the partial Qerlvatlves with 'respecMo 3), (4, 5) and (5, 4), (3, 6) and (6, 3), and (6, 7) and (7, 6):
andy- exchanged and a possible change of sign, from thosgor L, (1, 3)and (3, 1), (1, 7) and (7, 1), (2, 4) and (4
. ) o s (4, , 1), (1, . 1), (2, ,
in the ca}r'gesmn components @f Now, the exchangé = 2 2), (3, 5) and (5, 3), (4, 6) and (6, 4), (5, 7) and (7, 5): For
leads to:L,, = —L. andL, = —Ly. L. (1,2)and (2, 1), (1, 6) and (6, 1), (2, 5) and (5, 2), (3,
The successive actions of the cartesian components of tf and (4, 3), (4, 7) and (7, 4), (5, 6) and (6, 5). Table 10
radial position vector, linear momentum and angular momengives the expressions for the explicit entries. For 4 the
tum vectors on the singularity removing factors are in Tablébasis contains nine eigensta&é%fﬂZ2 \Ilfl[fﬁ’j \I/fl[f;fi \Iffl[f’,‘fl
4 for [AB], in Table 5 and 6 for the terms with the derivatives with n1n,=04, 22, 40 anchyny = 02, 20 for the species 1
with respect toy; and toy, respectively, and in Table 7 and and the other three, respectively. They are ordered and in-
8 also for the corresponding operations, including the disterlaced species increasing by the order of excitation of
tinction of their actions on the successive factors dependingith the corresponding decreasing of the order of excitation
on one variable or the other, as well as the resulting speciedf x2. The reader may see twenty positions in the respective
[AB] with definite cartesian parities. In Tables 5 and 6 thematrices in the reference under review. In this case, Table
reader may notice the differences in the entries in the resped-1 contains the numerical entries in the respective matrices
tive rows fory; andys, which nevertheless lead to the samefor the special case of the most asymmetric molecules with
values of [AB]. Additionally, they coincide with the respec- k7 = k% = % ande; = —e5 = v/3/2 ande, = 0.
tive entries of their counterparts in Table 4. The reason for
this coincidence is that bothandp are vectors and share the Since the numbers of non zero entries in the matrices for
same negative parity, they can only connect rotational eigerthe explicit lower values of are 2, 6, 12, 20, we can state
states of different parity and angular momentum with the seby mathematical induction that they correspond(to+ 1).
lection rule¢’ = ¢+ 1. In Tables 7 and 8 the reader may The three matrices have zero entries in the main diagonal and
notice the differences in the entries in the respective rowshe positions with non zero entries are symmetric with re-
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spect to the diagonal. The, matrix is also symmetric in The magnetic induction field inside and outside the spher-
its positions with non zeros entries with respect to the otheical boundary are evaluated as the rotational of the magneto
diagonal; L, and L, do not have such a symmetry, but get static vector potential. Their radial components are different
their positions exchanged under reflection relative to that dibecause they are directly inherited from their respective po-
agonal. For those rows and columns with a single entry théentials, and they share the same dependengg iand x-
connection is unique, occurring only for the monomials ininvolving two terms with the product of one of the Larhi-
¢ =1 and 2; the multiplicity of entries in each row or column nomials and the second derivative of its companion; however,
counts the number of connections with the companion statest the boundary = « both radial components are also con-
of the other species, and the relative values of the entries at&uous, as expected by Gauss’ law. On the other hand, their
the probability amplitudes of the connections. components in the directions gf, and x» involve the ra-
From the individual matrices,, L, and L., their dial derivatives.of{ﬂ?’/a anda*/r, inside and outside respec-
squares can be evaluated as well as their sum or their line&¥€ly; and multiplied by the other binomial; now the tangen-
combination with the:1,e» ande; coefficients yielding the tidl components at the boundary are discontinuous due to the
square of the orbital angular momentum and twice the asymdlf'ference in the radial derlvatlyes. This difference is also ex-
metry distribution Hamiltonian, respectively. Both matrices Pe€cted by Ampere’s law and gives the measure of the surface
are diagonal, the first with the common entty + 1)12 and currgnt distribution, which is thg quantity of our interest, Eq.
the second one with twice the energy eigenvaltig AQB]. (11) in the reference under review.
In Egs. (9) for the magnetic induction field inside and
4.2.2. Family of Laré spheroconal quadrupole harmonic outside the sphere there appears the common scale factor in
current distributions on spherical surfaces as sourcesthe square form in the denominator leading to the linear de-

of magnetic induction fields with constant gradientsPendence- and 1/r*, respectively. They account for their
inside and vanishing asympotically outside respective characterizations in terms of constant gradient and

asymptotically vanishing.
Constant gradient magnetic fields play key roles in mag-  The current field lines on the spherical surface follow
netic resonance imaging and in neutral atom traps. Reftom Egs. (11) via the condition of tangentiality of Eq. (12)
erence [28] in [17] reported our work on spherical andyng jts integration leading to Eq. (13), which is equivalent to

spheroidal quadrupole harmonic current distributions, on the,e constancy of the scalar potential from which the magne-
respective surfaces, and the constant gradient magnetic igsstatic vector potential was constructed.

duction fields in their interiors, as well as the exterior asymp-
totically vanishing companion fields.

While Eq. (9) uses the unit vectotsy, x2, the latter can
be written in the cartesian basis. The magnetic induction field

Our work with the title of this section [97] is an ex- inside in the familiar cartesian coordinates takes the form of
ample of the application of the Laspheroconal harmon- gq (16).

ics, providing an alternative family of solutions from the

- . Figure 1 illustrates the quadrupole harmonic current dis-
same problem. We start out by pointing out that of the flVetributions on the spheres for different values of the asymme-
quadrupole harmonicé = 2, [1]n1ne with niney = 02 and P Y

20, [y=]oo, [22]oo and [z]oo, the last three coincide with try parameter. The extreme values= 0°, 60° correspond

their spherical counterpart, and our analysis is based on thtg the spherical case with an axis of rotational symmetry.

first two. Table | corrected in an Erratum [97] illustrates the values

The solution of the equations of magnetostatics, in ordeP]c the gradients in the, y and directions according to Eq.

. . ) S 16), for the different asymmetries. Notice that their sum is
to identify the quadrupole harmonic current distributions an . ; . .

) . I ; . . _zero associated with the solenoidal character of the magnetic
their constant gradient magnetic induction fields, take int

consideration the solenoidal character of the latter and Arﬁ'em'

pere’s law. Thus, the magnetic |nduc.t|on field can be' wr|tten4.2.3_ Shift Operators and Recurrence Relations for Indi-
as the rotational of the magnetostatic vector potential. The ; , :
vidual Lané Polynomials

potential itself is also solenoidal and we write it as the gen-

erator of rotations operatatx V acting on the spheroconal The guthors’ oral contribution to the Group 31 Meeting had
quadrupole harmoni¢ = 2[AB],,,,,, inside and outside a ¢ tjtle "Review of the development and application of the
sphere of radius: = a, with the respective radial depen- gpheroconal theory of angular momentum”. It consisted of
dences'élor2/a3 a”dAoa_Q/Tg' guaranteeing its continuity at 5 presentation of our then recent results of the previous two
the radius of the spherical surfage= a. The spheroconal g psections, as well as our preliminary results of our then
harmonic is the product of two matching Larbinomials in 5nq0ing development on the topic with the title of this sub-

st¥ (xilk?), i = 1,2, as described in 4.2.1. section. The written contribution for the Proccedings [98] is
The potential does not have a radial component, and itfocused on reporting our new results on this topic.

components along the unit vectogs and x» involve their Our previous work has been focused on the spheroconal

own Lane binomial and the derivative of its companion. harmonics as eigenfunctions of the square of the angular mo-
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mentum and the asymmetry distribution operators. Whilevalue/ = 2N + 2 even for all four species. There are also
in [8] of the reference under review, an article by the com-additional superpositions of lowering and raising states, for
mon authors in "SIGMA Ladder Operators for LarBphero- each species and different excitations.

conal Hftrmonlc Ptol)glonilalsL were |de?t|f|et(r:i] as_the a?giular The multiplication of two individual Lar@ polynomials
momentum operators,, Ly, L. connecting the eigenstates .y, labelse; ande; leads to other polynomials with other

of a given angular momentum, different species and excita- . . [es] 5 1les]
tions; in [96] the actions of the linear momentum operator values off. Equation (9) gives the example mé Ao

. 2[e;e;] . . . .
P,, P,, P, on the spheroconal harmonics consist of differ-sbecom'ngAO fori # j. While fori = j, Eq.(10)

ent species and different excitations. In the present revie\XPCOQQn['ﬁeS that? can be written asa superpos!t!onAﬁ“}

the emphasis is on the shifting operators for the individuaNdA; ", and also as the alternative superpositiona gt

Lamé polynomials and the recurrence relations among thennd Ay, *l for n = 0,2. Equation (11) shows the product of
The following Table illustrates the changes in the species\**’ with itself which iseZe? and its superposition ot At

of the corresponding polynomials under the derivative operafor n = 0,2,4. Equation (12) shows the alternative prod-

tion: uct AgdASee el — 20 ¢, as a superposition ofsl !
A] 1 cnsn dnsn dncn dn en sn dnensn With n = 0,2 also. Equation (13) identifies the product

2[eie:] x 3leie;en ..
Adleresl pBlecesen] e;e3e; as asuperposition ot states

with n = 0,2,4. In Eq.(14) the produa&é[”}Aim becomes

another superposition oﬁi[ei] with n = 0,2,4. Equation

The reader may notice in the first row the four species 16 h q Aoi[‘“d] ith itself s2c2d? h
with an even number of factors, followed by the other four(16) Expressest A uct with itself s”c"d" as the
withn = 0,2,4,6. In the cases above,

with an odd number; as well as the exchanges under th&UPerposition of\,; _ “ . .
derivative in the second row. The shifting actions of thethere are also other alternatives of superpositions with addi-

derivative operators are proven by mathematical inductiontional polynomials of the same species and with lower val-

Eq. (6) illustrates its connecting the thrée= 1 monomial  Ues Ofl, like in Eq.(10). Specifically, in Eq.(11) superposi-

states, with one Jacobi elliptic integral each, to their monoions with AR, n =02, or Ag ;i I%q.(lZ) withA g/,
mial counterparts witf = 2 and the products of the other in Eq.(13) with AN, n = 0,2, or Ag™]; in Eq.(14) with
two such integrals, all of them without any elliptical cone A5, n = 0,2; in Eq.(15) withAx"!, n = 0,2, 4, A2/" and
nodes. A,

Equation (7) illustrates the actions of the derivative on  In the generalization in the ket notation, implying or-
the five Lang& polynomials with¢ = 2, the three from the thonormality and completeness of the basis, the product of
previous case and the two of species 1 with= 0, 2 ellip-  two of them can be written as the superposition of the con-
tical cone nodes, leading to the seven states With 3, as  nected states
a monomial the one of species scd, and the three superposi-
tions of species [s], [c], [d] in their twa; = 0, 2 states. The  |I;[A1]n1) |la[A2]ne)
respective raising coefficient8¢: are determined by com-
paring the coefficients of the powers of6in the respective = > VAW (VAW L [Ad]na; o[ As)ns
rows. Equation (8) also illustrates the possible lowering and VA
raising alternatives with superpositions 6§ and A2,
n = 0, 2 involving different sets of coefficients.

%Afl{f‘] dncnsn dn  c¢n sn cnsn dnsn dncn 1

as allowed by the addition of their angular momentum oper-

The generalizations of the raising action of the deriva-atorSEl + L = L'; the superposition coefficients are iden-
five on the? — 2N even and species [1], [cd], [sd], [cs] tifiable from the comparisons of the powers of stiter the

to thel — 2N + 1 odd [scd], [s], [c], [d] species, and on common species factgrl’] is removed. The application of
the next! = 2NN + 2 even with the respective species, is il- the derivative is also associated with the additicn?; = ¢

lustrated by the two following sets of equations. In the first

case, the degree of the polynomial of species [1] ihisn  4.3. Preview of Ongoing Investigations

¢/2 = N, and it is(¢/2) — 1 for those of specief;e;];

and their derivatives are respectively of species [scd] and deFhis section outlines some of the problems which we have
gree(¢/2) — 1 = [(2N + 1) — 3]/2, and of speciege;]  been investigating along the lines of 4.8h& Hydrogen atom
and degreé?/2) — 1 = [(2N + 1) — 1]/2, justifying their ~ confined in a dihedral angJet.3.2applications of the angu-
identifications as superpositions of Larpolynomials with  lar momentum theory in bases of Laspheroconal harmon-

¢ = 2N + 1 of the different species and excitations. In theics, as well as 4.3.3oroidal moments and interactionand
second case, the initial states have just been characterizetl3.4radiation reaction in the force approachPreliminary
and their derivatives are of species [1] dagk;] with poly- reports about their formulations, advances and results have
nomials of degree@N + 1 —3)/2+2 = [2N +2]/2and  been presented in the VIII Workshop on the Structure and
[(2N +1) —1]/2 = [(2N + 2) — 2]/2, thus justifying also  Dynamics of Matter and Optics, and the LIX and LX Mexi-
their identification as Lai polynomials with the common can National Physics Meetings.
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4.3.1. SO(2) Symmetry Breaking in the Hydrogen Atoniwo of them for electromagnetic fields, and the third one for
Confined in Dihedral Angles: manifestation in the scattering in quantum mechanics.

Zeeman Effect
Indeed, the first one is about L&nVector Spheroconal

This problem was formulated in Sect. 1.3.5 of [17], but atHarmonics, our contribution to the Meeting on Selected Top-
that moment time did not allow the implementation of its so-ics of Mathematical Physics in honor of Professor Natig
lution. Equation (1.17) in that section describes the interacAtakishiyev as a tool to construct solutions of Maxwell’s
tion between the magnetic moment of the electron with itsequations for electromagnetic fields with a harmonic time
orbital and spin contributions and a uniform magnetic fielddependence. These solutions are alternatives to the familiar
in the direction of the edge of the confining dihedral angle.vector spherical harmonics [99], with the advantage that they
While in the free hydrogen atom, the z-component of the aneome in families depending on the value of the asymmetry
gular momentum is a constant of motion leading to the famil-distribution parametes, like in 4.2.2. The longitudinal and

iar mh equally spaced Zeeman splittings of the energy levelsiransverse characteristics of the sources, electric intensity and
the situation for the atom in dihedral confinement is radicallymagnetic induction fields are guaranteed by using the scalar
changed. In fact, the boundary conditions of vanishing wavespheroconal harmonic solutions of the Helmholtz equations
functions at the meridian planeg,= 0 andy = g, break  with radial spherical Bessel functions, as Debye potentials.
the rotational symmetry around the z-axis: the eigenfunctiong he longitudinal components follow from the application of
becomesin pp, wherep, = n,m/po andn, = 1,2,3,...  the gradient operator to the Debye potentials. The first fam-
instead of &¥. The degeneracie® of the hydrogen atom ily of transverse vector spheroconal harmonics of our interest
depend on the angle of confinement as illustrated by Table 1.dre constructed by applying the generator of rotations oper-
in [17]. The diagonal matrix elements of the z-component ofator 7 x V to the Debye potentials, a second family is ob-
the angular momentum in the basis of eigenfunctiong:.p  tained by applying the rotational operator to the solutions of
vanish, so that first order perturbation theory is not applicathe first family. By construction both families are solenoidal.
ble. The problem must be solved by using perturbation theorilhe first one is characterized as a toroidal field, and the sec-
for degenerate states. ond one as a poloidal field.

Equations (1.18) and (1.19) give the general forms of the The second application was presented in the LIX Con-
matrix elements of ., in the confined hydrogen atom eigen- greso Nacional de iBica Session MID12 with the title:
function basis and in thein ;¢ basis, respectively. The lat- “Complete Electromagnetic Multipole Expansion in bases of
ter defines the selection rules;, + n,, even lead to vanish- spheroconal harmonics”. The starting point is the multipole
ing values, and odd to finite values. The overlap integralexpansion of the scalar outgoing wave Green function for the
in the radial and polar angle factors of the eigenfunctiondHelmholtz equation in the complete and orthogonal bases of
k(npngnl, | n, ng n,) in Eq.(1.18) were not analyzed at that spheroconal harmonics multiplied by the respective spheri-
time. Our recent analysis has led us to recognize that the p@al Bessel functions in the radial coordinate andr-, the
lar angle eigenfunctions with different parities have vanishingsmaller and the larger of the field and source poirasids’.
overlaps, and overlaps different from zero require equal pariBy using such a function asa Debye potential, the successwe
ties. Degenerate states have common values of the principapplications of the operato?@ 7 x V andV x (7 x V)
quantum label = n/ +np+ ' +1=mn, +ng+p+1For  yields the complete expansion of the title in its respective
each choice of/,, n, andny, ny, the choices ofi; andn, longitudinal, toroidal and poloidal components. The expan-
are also limited. In this way the entries for thex D hermi-  sion is complete also in the sense that it provides harmonic
tian matrices vanishing and non-vanishing are identified. well-behaved solutions inside and outside a spherical sur-

The spin contributions to the magnetic moment are readface of radius”’ = a. For a given choice of surface charge
ily incorporated via its diagonal elements with eigenvaluesand current distributions the solutions of the inhomogeneous
ms = 1/2, —1/2, and doubling the size of the matrices Helmholtz equation are the surface integrals of the outgoing
2D x 2D. The diagonalization of the finite matrices leadswave Green function weighted by the respective source dis-
to the eigenvalues of the Zeeman split energy levels and thefributions. Each term in the expansions selects the respec-
respective eigenfunctions. tive longitudinal or transverse, as well as spheroconal multi-

The evaluation of the radial and polar angle eigenfunctiorpolarity components of the sources. Specifically, the scalar
overlaps can be done numerically, but we are also exploringotential is the outgoing wave Green function integral trans-
alternative ways by using ladder and/or shift operators. form of the surface charge density, and the vector potential is

the same integral transform of the surface current density. If
4.3.2. App"ca’[ions of Angu|ar Momentum Theory in baseghe sources have a well-defined direction and multipolarity,
of Laré Spheroconal Harmonics the potentials share the same properties inside and outside,
and are continuous at the boundary. For the electric inten-
In 4.2.2 an application of Latspheroconal quadrupole har- sity field, its sources are the gradient of the charge density
monics in Magnetostatics has already been reviewed. Herand the partial time derivative of the current density; and the
we describe three additional applications under investigatiomnagnetic induction fields’ source is the rotational of the cur-
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rent density. They can also be evaluated as the integral trangsth inner and outer radip = a andp = b, and lower and
forms of the respective sources, or from the derivatives of thepper circular rings at positions= —h/2 andz = h/2 are
respective potentials. They also satisfy Maxwell’s equation@ssumed. The magnetic induction field satisfies Helmholtz
in the boundary condition forms: the normal components ofequation with the rotational of the poloidal current as its
the electric intensity field are discontinuous at the sphericasource; such a source is toroidal. The magnetic induction
charged boundary, and its tangential components are continfield is evaluated as the scalar Green function integral trans-
ous; the magnetic induction field has continuous normal comform of its toroidal vector source for a current with a fre-
ponents, and its tangential components are discontinuous quencyw and amplitude I, inside and outside the toroidal
the boundary yielding the surface current. This formalismsurface. The magnetic induction field inherits the alter-
lends itself to a unified treatment of the electromagnetic radinating time dependence, the toroidal vector character of its
ation of £l and M multipole antennas and resonant cavities.source for each of its circular cylindrical multipole compo-
The third application: “Scattering by Asymmetric Tar- nents §,, k., m). The one withm = 0 is invariant under
gets in Spheroconal Harmonic Bases”, M1E035, LX Con-rotations around the axis of the toroid and corresponds to the
greso Nacional deiBica, is explained next. It is an alterna- toroidal dipole. The other values et = 1,2,3... corre-
tive to the familiar quantum theory of scattering in sphericalspond to higher multipoles with eigenfunctiosniss my and
harmonics, sharing the same radial spherical Bessel functionén m¢ of definite parity and periodicity. The electric inten-
in the expansions of the plane wave and of the outgoing wavsity field can be evaluated as the rotational of the magnetic
Green function for the free particle, as well as being eigeninduction field via their Maxwell connection. Both fields are
functions of the square of the angular momentum. The differwell defined inside and outside the toroidal surface, including
ence is that the respective harmonics are also eigenfunctionise near and far away zones for each multipole. The electro-
of the asymmetry distribution Hamiltonian and parity opera-magnetic radiation field of each toroidal multipole antenna is
tors versus the z-component of the angular momentum. Cowvell-characterized in terms of polarization and angular dis-
respondingly, the concept of phase shifts and their values ateibution. In the case of the toroidal dipole, it shares the same
also common, but the angular distributions for the differentproperties as the electric dipole; their difference resides in
angular momentum eigenstatg$ABlnin,) and [¢m) are  theirw® versuso? radiated power. That difference extends to
different; notice that the asymmetry of the target is incorpo-the other multipoles)?‘*+2 versusv?.

rated dynamically via the asymmetry distribution Hamilto-  The second contribution follows from the first one upon
nian depending on a single paramétetr o < 60°. Whilein  gemanding the boundary conditions for the Transverse Mag-
the spherical harmonic formalism the incoming plane wave isietic modes in the resonant cavity namely the vanishing of
assumed to be in the z-directions and the rotational symmetrye tangential components of the magnetic induction field
around the z-axis leads to the scattering amplitudes to desytside the toroidal surface. In fact, the magnetic induction
pend only on the polar angle, the situation in the spherocongle|q is discontinuous at such a boundary without any normal
harmonic formalism is different; the incoming plane wavescomponents; the discontinuity is determined by the tangential
along ther, y and z-axes scatter differently, and the ampli-gyrface current consistent with Ampere’s law. The bound-
tudes depend on both elliptical cone angular coordinates.  ary condition and the vanishing external electromagnetic field
imposes the boundary conditions on the scalar multipole De-

4.3.3.  Electromagnetic Green Function Toroidal Momentyye potentials, which in turn define the respective resonant
Expansion in Circular Cylindrical Coordinates frequencies.

The work in this section was reported in the contributions: ~ The combination of the previous paragraphs connects
“Electromagnetic multipole expansion in circular cylindri- with the third contribution about a unified treatment of both
cal geometry” Session M2DO08 in the LIX Congreso Na-antennas and resonant cavities, for each toroidal multipole.
cional de Fsica, “Normal TM modes in a toroidal cavity” _ _ o o
in VIII Workshop on the Structure and Dynamics of Matter 4.3.4. Analytical Solutions for the Radiation Reaction in
and Light, and “Unified treatment of toroidal antennas and the Force Approach

resonant cavities”, M1E10 in the LX CNF. s .
The radiation reaction problem was analyzed by Abraham
Our previous work: Complete electromagnetic multipole and | orentz starting from the Larmor formula for the power
expansion including toroidal moments, cited by the groupgagiated by a charged particle with a mass a chargeg
that have identified toroidal dipole moments and interactiongind an acceleratiod, which is proportional to the square
in metamaterials [85] and nanomaterials [92], was done inf the last two quantities angl/(3¢3) is the proportionality
spherical coordinates. Since the toroids with rectangulagonstant. The conservation of energy and momentum of the
cross sections are more common, our work has been focuse@celerated charge, before and after the emission of the ra-
in the alternative geometry. diation, are the basis for the identification of the radiation
The first contribution started from the outgoing wave reaction force on the particle and its recoil due to the en-
Green function in circular cylindrical coordinates as a De-ergy and momentum carried by the radiation. The Abraham-
bye potential. A poloidal current on the surface of a toroidLorentz radiation reaction force turns out to be proportional
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to the time derivative of the acceleration with the propor-magnetic field Egs. (17-19) and their cartesian components
tionality constantq?/(3c3m?). In the case of an electron Egs. (20a,b).

e’/mec® = r. is the classical radius of the electron and  For the linear motion, for Eq. (9) the first order deriva-
2r./3c = 7 = 6.3 x 10~2* s is the time that it takes light to tive of the velocity with respect to time equation is separa-
move 2/3 of that radius. Consequently, the equation of moble with singularities in3, = 2¢*F/3m?2c* and 1, and in-
tion for an electron under the actions of the radiation reactionegrable, Egs. (10) and (11a,b). This is an exact relativistic

force and an externally applied foréébecomes: solution. The author chose to take the non relativistic limit,
. Eqg. (12), and illustrate the graphical behavior of the differ-
7= de i. @) ence between the motions with and without radiation reac-

dt  me tion.

Its solutions involve several nonphysical features: 1) run  For the circular motion no analytic solutions of
away solutions exponentially divergefit= doe!/”, 2) itre-  Egs. (20a,b) were constructed. The graphical solutions in
quires knowing the acceleration at the initial titne- 0, for Fig. 2 illustrate the differences between the trajectories with-
which 3) preaccelerations in the earlier intervalo <t < 0  out and with radiation reaction for increasing values of the
are included in order to have this initial valuetat 0, with  applied force evaluated by numerical integration.
its consequent 4) a_causal effects, even if the_:re is no external Our own analysis of the linear and circular relativistic
forc_e, F " O'. The ills of th_e f'ibove fo_rmulat|on s_tem f“’?" motion equations has allowed us to construct exact solutions
the identification of the radiation reaction as the time derivay . o entire range of velocitigs < 3 < 1 when the radia-

tive of the acceleration. tion reaction is included, in both cases.

The force approach to the radiation reaction was proposed For the linear case, to begin with we have identified some

by G.V. Lopez two years ago with the following conditions; ypographical errors in the solutions of Egs. (11a) where the

it must depend on the applied force, vanishing if the applie irst factor in the numerator is simply 1, instead of the bino-

force vanishes; in such a case the particle does not accelerar_tﬁal, and in Eq. (11b) where the binomial in the denomina-
and does not radiate [100].

tor of the first factor is missing the exponent 2 in the second
The identification of the radiation reaction force in the term. We prefer to plot directly the variations of the speed

force approach also starts from the Larmor formula for thefor the motion with the radiation reaction included as given

radiated power with the acceleration written as the applieghy the correct form of Eq. (10), by choosing the values of

force divided by the mass. It also imposes the conservatioR in the vertical axis and evaluating the corresponding val-

of energy and momentum, distinguishing between the caseges of the time from (Eq. (10) for an initial value 6§ on

of linear motion and circular motion. In the first case, thethe horizontal axis. It is necessary to distinguish between

energy lost by the particle in a small time interval is the two situations starting from the poiftt= 0, 3 = 3(0))
9122 B for B(t) < ﬁ(p) ast take; incregsing values to the right and
—AU = ~3E3 At = Froq - AT B(t) decreasing values illustrating the damping effect of the
m=c

radiation reaction, and faf(t) > ((0) ast takes increas-
and equal to the work done by the radiation reaction forcéng values to the left and(t) also increasing values under
while producing the small displacemeft”. Since A7/At the dominating action of the applied force over the radiation
is the velocity of the particle it follows that the radiation re- damping with the consequent acceleration of the charge. In
action has a magnitude proportional to the squares of the aghe respective cases, the speed goes asymptotically to their
plied force and the charge, and inversely proportional to théimiting values § — /; and3 = 1 of the singularities in
square of the mass and to the magnitude of the velocity, anBid- (9). Additionally, in the non relativistic limit the graphs
its direction is opposite to that of the velocity vector, Eq. (6).in the form3/j, versust/[F'/mc] have a universal behavior
For the circular motion including relativistic effects the for the different values of". On the other hand, the differen-
radiated power includes the square of the time dilation factial equation for the position shares the same singularities as
tor in the denominator, Eq. (13), and the resulting radiatiorthat of the velocity and its solutions have the same structure.
reaction force has the same characteristics as in the previous |n the circular motion under a uniform magnetic field, the

paragraph, and is also inversely proportional to the square gfpplied force is proportional to the velocity, and so is the radi-
the time dilation factor, Eq. (15). ation reaction, apart from the dependence in the time dilation

In both cases, if the applied force vanishes, the radiatiofiactor. The equations of motion (20a, 20b) also admit ana-
reaction vanishes, the particle does not accelerate and dobsic solutions, which we are in the process of completing for
not radiate, satisfying the imposed conditions, and consisteribe velocities and the trajectories.

with the observations. The availability of analytical solutions allows us to for-

The specific examples analyzed in [100] were those ofmulate a physical interpretation of the radiation damping ef-
relativistic motion in a straight line under a constant force,fects, which will hopefully contribute to test the force ap-
Eq. (8); and of circular motion for the charge under a constanproach. Its author has also developed it further in [101] for
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any type of motion and in an electronic undulator applicationl, 2, 3 is based on the Ritz variational calculation with Hyller-
[102]. aas basis sets, providing benchmark results [53].

In 3, the set of references [54-56] with common authors
have the antecedents of [8,11,24] on many-electron atoms.
The work in [54] on the implementation of the electron

This section includes summarizing and connecting discusProPagator to second order GPUs to estimate the ionization
sions about the contents of the successive sections in the dtotentials of (hard sphere) confined atoms was anticipated

ticle. It also contains some concluding remarks about thd" [24]. The other works, “Roothan’s approach to solve the
recent progress in the field. Hartree-Fock equations for atoms confined by soft walls: Ba-

sis set with correct asymptotic behavior” [55], “solution of

Sectiqn 2 includes dgscriptions a_nd lllustrations of _thethe Kohn-Sham equations for many-electron atoms confined
contents in the chapters in Advances in Quantum Chem|str)5y penetrable walls” [56], and “Electron density delocaliza-

and the Monograph, as points of the reference to appreciaig,, in many-electron atoms confined by penetrable walls:

the further advances in the period between their pub'lication% Hartree-Fock study” [57], share the spherical confinement
and on to the subsequent recent progress from the literatur&yisn 4 constant barrier outside; this feature is crucial for the

Section 3 is presented in its successive Sections: Ilanalysis of ionization potentials. See also their connections
Hydrogen-like atomf26-45], 2. Diatomic Hydrogen-like lon  with [38].
and Neutral Molecules and Two-electron Atof#§-53], 3. In 4, the first four references deal with rotations of
Many-electron atom§54-57], 4. Many-electron Molecules mojecules, and the last four with the confinement effects on

[58-65], 5. Quantum Dotd66-71], 6. Confined Atoms as  the structure and electric and optical properties of a variety of
Open Quantum Systerfig2-78], and 7. Connections with  molecules.

Reviews in other fields of Materials Scierjg®-92]. Some References [58-60] with a common Author also share
comments about them are appropriate as a guide to the reaqﬁre

; e orientation of adsorbed polar molecules in a conical well
to appreciate the recent progress. There is still a great propor- : . ; : s
model, in anti-crossing mediated entanglement, and in elec-

tion of investigations for the simpler systems, as the naturatl g . g .
. ric fields and their effects on heat capacity, respectively.
trend from the background reviews. However, there are also

qualitative changes as illustrated next. Reference [61] investigates the inelastic electron tunnel-

) . ing mediated by a molecular quantum rotator.
In 1, we can follow some of the keywords in the titles: Ref 62-65] h Auth . tqati
tunable excitons, biased bilayer graphene, dipole oscillator eferences [62-65] have common Authors, investigating

strengths, generalized oscillator strengths, Debye conﬁnéhe effect of spatial conflnement on the ”n?ble gas HA_rF
olecule: structure and electric properties”, “On the nonlin-

ment, high harmonic generation, Gaussian potential confind!’ lectri Y f molecules i fined f
ment, penetrable cylindrical confinement, endohedral concdr Electric properties ol molecules in confined Spaces-irom

finement, moving nucleus confinement, confinement effect ylindrical harmonig potential to carbon nano?ube (?ages”
on electron transfer cross sections, confinement by cone The_ latter is investigated as a sueermolet_:ule mcludlng the
benchmark calculations, sum rules, monotonocity, confine(-:OnflneOI molecules ‘find the ca_ge], Aboutdlyerse b_ehawor (,?f
ment in dielectric continuum, symmetry breaking, Fisher in-the quecqlar electrlp proper'ges upon s!oatlal conf_mement '
formation, relativistic two-dimensional hydrogen atom, Con_and Vibrational nonlinear optical properties of spatially con-

finement by very thin layers. Hopefully, this list will stimu- fined weakly boun_d complexes : _ _

late the readers to study the original references of their spe- In 5, Ref. [66] investigates the symmetry of three identi-
cific interests. It is also illuminating to follow the set of ref- cal interacting particles in a one dimensional box, with har-
erences [27,31,33,36,43] with a common Author. monic oscillator interactions using group theoretical meth-

In 2, seven of the references deal with the hydrogenOds i i .
molecular ion and the eighth with the helium-like atoms. De-  Reference [67] investigates the effects of intense laser on
bye embedding is investigated in [46]. References [47-49] in_nonlmgar properties of shallow dqnor impurities in quantum
volve confinement in an impenetrable prolate spheroidal bo£/0tS With the Wood-Saxon potential.
and a variational solution with the simplest trial wave func-  Reference [68] investigates the impurity position effect
tion in the original article, a Comment about it, and the re-on optical properties of various quantum dots, pyramidal and
sponse. Reference [50] investigates the molecular ion insideonical specifically.
padded prolate spheroidal cavities with arbitrary nuclear po-  References [69,70] by the same authors implement Cal-
sitions. References [51,52] by the same authors investigatgulation of hyperfine interaction in spherical quantum dot,
the spherically confined molecular ion in tﬁE; and?y}t and computation of hyperfine energies of hydrogen, deu-
states, and in thé&lI, and the’Il, states, respectively, using terium and tritium quantum dots, respectively.

the Monte Carlo approach. Reference [71] investigates Type-ll quantum-dot-in-
The investigation of the singly excited statesus 'S¢ nanowire structures with large oscillator strength for optical
and 3S¢ of the Helium-like isoelectronic sequencé =  quantum gate applications.

5. Discussion and Concluding Remarks
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In 6, the subsection borrows the title of [10] and il- includes the spherical harmonics as a special case. An appli-
lustrates its basic idea with the series of articles [72-cation, of interest in Magnetic Resonance Imagenology and
78] on “Endohedral confinement of molecular hydrogen”,in Quadrupole Magnetostatic Traps for Neutral atoms, is the
“The atomization process of endohedrally confined hydro4identification of surface current distributions on a spherical
gen molecules”, “Pressure and size effects in endohedrallgurface producing magnetic induction fields with a constant
confined hydrogen clusters”, “Thermal behavior of a 13-gradient in its interior. Shift operators and recurrence re-
molecule hydrogen cluster under pressure”, “Thermodydations for the individual Lar@ polynomials have also been
namic states of Nanoclusters at low pressures and low temdentified, as counterparts of those for the familiar Legendre
perature: the case @8H,, Evolution of the vibrational spec- polynomials.

tra of doped hydrogen clusters with pressure”, “Pressure In-  The same section contains a Preview of on going inves-

duced metallization of Li-Doped Hydrogen Clusters”. The igations: 1) Zeeman effect in the Hydrogen atom confined
series has also common features with [12] considering Hyp, gihedral angles. 2) Vector spheroconal harmonics needed
drogen fullerene cages instead of the familiar ones with Cargoy the analysis and construction of solutions of Maxwell's

bon, and also different species of confined systems and disqyations and their applications; quantum theory of scatter-
ferent processes. The main difference between the series aﬁ% using spheroconal harmonics to incorporate asymmetries
the last reference is in their methodologies: while the lattef, the target. 3) Multipole Toroidal moments and interactions
models the doped fullerenes with the spheriaands po- i circular cylindrical geometry, and their applications in ra-

tentials, the first includes the dynamical interactions betweeaiating and resonant cavity systems with a unified treatment.
the confined systems and the atoms of the confining cagey) Radiation Reaction in the Force Approach.

More specifically, the series uses density functional theory h timat h in the Introduction included
for molecules applied to the supermolecule formed by the{h . te p;anut |maek pg]r.agrap n te ”n roduc "’tf‘ inciude
cage and the confined molecule. e intention to make this a conceptually connecting review.
. _ Here the attempts to implement that intention are underlined.
In [7], the connections of some of our works with other

fields of Materials Science are illustrated. Specifically, the In Section 2.1 the concepts of confinement in quantum

Review Article “Auger neutralization and ionization pro- systems, from simple to complicated, were identified and

cesses _for charge"exchgnge between slow nob_le-gas _at(_) connected for the chapters in AQC. Section 2.2 illustrated the
and solid surfaces” [79] in Progress Surface Science, in its

Ref. [147] cites our work: “Ground-state energy shift of He Subsequent extensions in the chapters in the Monograph with

close to a surface and its relation with the scattering poten(—:ommOn Authors, identifying further advances in the elapsed

tial: a confinement model” [80]. Both articles have also theperiod; and also in the other chapters incorporating their new

respective common Refs. [152-153] and [3-4] by WethekamtOpICS’ concepts and methods.

and Winter reporting evidence on the ground state evolution ~The recent progress in Section 3 is guided by the same
of the He atom close to an Al11) surface deduced from idea following the conceptual connections and extensions in

He't grazing-scattering experiments after Auger neutralizathe Literature for the successive types of quantum systems.
tion. In 3.1 for the hydrogen-like atoms the titles and their key-

) words may help the readers to decide which references to
) On the other hand, the SEries of Papers on Metama_tes'tudy more in depth according to their interests. For some ref-
rials and the Review Article m_Nanophot(_)mcs,“ and thelrerences, specific connections have been pointed out, but each
novel physmal_effects_ [82-91], mte_zd our art|_c|e: C(_)mplete reader may identify others. In 3.2 the seven articles on the
electrc?,magnenc multipole expansion including toroidal mo'hydrogen-like diatomic molecules have the connection with
ments” [81]. [25] and references therein, as well as with [93]. Section 3.3
Section 4 contains the updating of the Reviewers’ andllustrates the recent progress for many-electron atoms from
collaborators’ works along the lines of 1) Confined Atoms[11-24] to [54-57], and specifically in going from impene-
and Molecules in Dihedral Angles and 2) Development andrable to penetrable spherical confinement. Section 3.4 on
Applications of Spheroconal Theory of Angular Momentum. many-electron molecules involves investigations associated
New results in the first one were reviewed for thg lnd  with different degrees of freedom: rotational motions in the
HeH** molecular ions, as well as for shift operators and re-first four with new forms of confinement and new physical ef-
currence relations for Legendre polynomials with non inte-fects; and in the last four, with common Authors, electronic
ger associativity needed for HF calculations of many-electrorstructure, and also connected with [10] and [13]. Section
atoms confined in dihedral angles. In the second line the the3.5 on Quantum dots contains one work on the symmetry
ory is an alternative to the familiar one based on the sphericaif three identical particles in a box; three works on optical
harmonics as eigenfunctions of the z-component of the anguroperties: in donor impurity quantum dots under an intense
lar momentum operator, using instead the Hamiltonian of théaser field, in impurity pyramidal and conical quantum dots
asymmetry distribution of molecules as the alternative condepending on their positions, and in Type-Il quantum-dot-in-
stant of motion. The spheroconal harmonics depend on ona wire structures; and two works on hyperfine structure in
asymmetry distribution parameter, and form a family whicha spherical quantum dot, and in hydrogen isotope quantum
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dots. Section 3.6 contains a series of seven articles on hyy geometrical design, bring in additional elements of nov-
drogen cages confining hydrogen molecules, with commorlty in those phenomena or are responsible for them.
Authors, treated as supermolecules and connected with [10],

[12] and [63]. Most important, the successive investigations
report results on atomization, clusterization, metallization otA
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