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A method to obtain orientation curves in Euler space for
a second diffraction process in polycrystals
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A method is presented to obtain the orientation curve in the Eulerian space, of crystallites which diffract in one point of a Debye-Scherer
ring in a second diffraction process. The incident beam is therefore the reflected beam of a previous diffraction process, and the sample ha
a general orientation for a pole figure measurement, given as usual by two gnglesind the sampl& axis, andp around the sample

normal. Two solutions are found for all secondary reflections. The method proposed here was outlined somewhere else for the measuremer
of pole figures by neutron diffraction [1], and here important improvements are made, especially regarding the mathematical methods.
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1. Introduction 2. The method

Multiple spatter_ing is generally not considered in X—r.ay Or et k, be the wave vector of an X-ray photon, which has al-
neut_ron d|ffract|on from poncrystaIs, due to the negligibly ready been diffracted by planelskolo). If 6, is the Bragg
low intensity expected from this effect; however, measureyngie of the first diffraction, anél = 27/ with ) the radia-

ments of pole figures show significant differences in many;on wave length, this is in the sample reference system
cases when density maxima from first and second orders are

compared to each other, indicating that primary or secondary ko = k(0, cos 8o, sin ). 1)
extinction could be present [1-3]. If secondary extinction is

dominant, a way to verify it could be to test if the curve of 14 getermine possible secondary diffraction processes
crystallite orientations for the second diffraction coincidesipis wave can produce in the polycrystalline sample, the ori-
with high populated zones of the Orientation Distribution gntation curve of crystallites contributing to the intensity reg-
Function (ODF) of the textured sample. As well known of jgiered at a general point of a Debye-Scherrer ring produced
diffraction from polycrystals, the intensity at a point of a y giffraction from plane ki) is to be calculated. Figure 1
Debye-Scherrer ringkl, or the pole density ata pointonthe ghows the primary diffraction layout, and Fig. 2 shows the
pole figure, is caused by the superposition of the intensitiegequence of both diffraction processes.

diffracted by many crystallites, all of which satisfy the Bragg ¢ g convenient to rotate the reference system an amgle
condition for the plangslﬂcl). This crystalhte_s have in COM- aroundX,, to makek, to coincide with theZ axis. Letw be
mon_the nprmal dlrect|on of plane/;l{l), *?“td'ffer otherW|§e an angle characterizing a point of a Debye-Scherrer ring, as
in orientation so that their orientations lie along a curve in theshown in Fig. 3. The wave vector of the second diffracted

querian space,e. the pole figure is a projection of'pole den- ,ave is then in the new reference system
sities along a path through the ODF corresponding tara 2

rotation around the diffraction vector [5]. This happens also
for the second diffraction process, being the incident vector
orientation the only difference, so that the diffracting crys- .
tallites lie also along a curve in the Eulerian space. So the x, kD

aim of this work is to evaluate the orientation curves for the :

main reflections for a secondary diffraction, and for a general i Incident wave vector
sample orientation given by the conventional anghesA). :
This scope was proposed by Palaa@bsl.,[1], however, the

k{, = k(sin 26 cos w, sin 26 sin w, cos 26).

mathematical method used allowed only one solution of the /< -----------------

. . . - |—T . 0 k, Diffractegtvave vector (incident beam
main equation expressing the Laue condition for a second re- g e Biemnse o i)
flection (Eq. (7) of [1]), and no modifications were made ] U
for especial cases where no solution (for example reflections -,
whereh = k& = 0) could be obtained. This work aims to D

solve this deficiencies, and to improve solutions. For the sake
of completeness, the figures and the background of the maiRicure 1. Reference frame for the sample at the orientagica 0
equation are repeated here. andyp = 0.
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FIGURE 2. Sequence of primary and secondary reflections by crys-
tallites 1 and 2 respectively) indicates the detector direction, and y=
D — S the direction of the point of afrom which Debye-Scherrer

ring which this particular event affects. Xy

And expressed in the sample reference system, it is FIGURE 3. Debye-Scherrer ring for a general secondary reflection.

6 = k(sin 26 cos w, sin 0 sin 260 sin w + cos Oy cos 260,

— cos Bl sin 20 sin w + sin fo cos 26). (2)  where the superindex 0 indicates that the sample is in its ini-
If Qo = ki, — ko, then tial orientation (0,0).
Qo = k(43 4y, 9 (3)
ith ( :) Qo in terms of the pole figure angles ¢, ¢)
Wi
¢° = sin 20 cosw As in a measure of a pole figure, let the sample be rotated an
angley around the&Y” axis (TD), followed by a rotation of an

gy = 2sin f(sin 6 cos f sinw — cos b sin ) angley around the normal direction of the sample. Figure 4

shows the sample in this general orientation for the measure-
ment of a point {, ) of the pole figureQ is the vecto), as
| seen by the sample in its new orientation after both rotations:

qg = —2sinf(cos by cosOsinw + sinfypsinf)  (4)

Qx cos X cos g2 + sin pq)) — sin x cos pq? Gz
Q= Q, | =k| —cosxsinpg® + cos cpqg +sinysinpg? | =k | g (5)
Q- sin xqg + cos xq2 q

Crystallites for which Q satisfies Laue conditions

Let Lkl be a particular reflection, and a crystallite such that the vect@ satisfies Laue conditions for a certain reciprocal
vectorGyy;. The vectorQ as seen by is

QC = Mapl(basz (6)

whereypy, ¢, @2 are the Eulerian angles of the crystallite; those which bring the sample system to coincidence @itand
M., 4., is the rotation matrix [6] (Eq. (2.50)):

COS (P1 COS Yo — Sin Y1 sin o €oS @ Sin @1 cos 9 + €OoS Y1 sin 2 cOs P sin o sin @
— COS (p1 Sin (g — SN (1 COS P2 COS @ — sin (1 Sin Yo + COS Y1 COS Y2 COS P COS (P2 Sin ¢
Msol Pp2 — : - : (7)
sin ¢ sin ¢ — cos pp sin ¢ cos ¢
Then
Qc =G (8)

whereGrx; = hA + kB + IC is the reciprocal lattice vector corresponding to the reflectibh For a cubic system with
lattice constant a:
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FIGURE 4. Sample in a general orientatiow,(p). Axis Xo, Yo

and Z, are those of the sample in its initial symetric orientation.

X,Y y Z are the axis after rotationV is the sample normal.

2 N
Ghp = %(hi +kj + k) 9)

wherei, j andk are unit vectors of’.
After applying matrixM,, ¢, to (6), with k27 /X, and
from (8) and (9), it follows

Asin s + Bcosps = gh (10a)
—Bsin pg + A cos o = gk (10b)
Csing+ Dcos¢p = —1 (10c)
where
A(p1, @) = cos @1 cos ¢gy
— sin 1 cos ¢q, + sin ¢q, (11a)
B(p1) = cosp1q, + sinigy (11b)
C(p1) = gz singr — gy cos gy (11c)

Some properties of coefficientsA, B, C' and D
From (11a) and (11c) it can be readily be seen that
A= —-Ccos¢+ Dsin¢ (12a)

Multiplying (10a) bysin 5, (12b) bycos ¢4, and adding

A
A= E(h sin g + k cos ¢3) (12b)
and similarly forB
A
B = —(hcosys — kcos p2) (12c¢)
a

It follows then

A%+ B? = (2)2 (R* + k?). (12d)
Also, from (11b) and (11c)
B+ C*=q +q
And with (11d)
B+C*+D*=¢ +q.+ ¢ (12e)

Since rotations do not change the magnitude of vectors
Q*=Q?
from which, using (5), (8), and (9)

A 2
Gra+E= <a> (h? + k2 +1?)
Using (12e), this equation gives
2 2
C?+D? - <A) I? = <A> (h* + k*)B?
a a
and using (12d),

A

2
C?+ D? - <> 12 = A2 (12f)
a

Solution of Equations (10)

Equations (10) are not independent, and the way adopted here
to solve them is as follows:

1) ¢ is given as an independent variable.

2) From (11b) and (11c), B{;) and C(p1) are obtained,
and (10c) is solved fop.

3) From (10a) and (10hy, is obtained.

To solve (10c) the following method is proposed for a
general equation with coefficiendtsb andc:

asiny +bcosy =c¢ (13)
Let
. e — e~
STE Ty
e + e~
o8y = ——5——

Equation (13) is then:

ei’Y g_ﬁ.é +€*W _g_i_é =c
2 2 2% 2)
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Multiplying by 2ie® Using (12d), expressingd = A(¢), and applying (16)
24 . . .
e“Y(a+1ib) — a + bi = 2ice” . 1_g—h\A|—kB w72)
209 (g 4 ib) — 2ice! N — TN R R
e“V(a +ib) — 2ice’™ + (—a+bi) =0 +
o . L . 1 _ ahB—|Alk
This is a quadratic equation #1” whose solutions, after COSPy =N T2 (17b)
multiplying by a —ib, and separating real and imaginary parts
are .o _ ah|A[— BJk|
singy = =5 yr (17¢c)
o cd = ava® + b? — ¢? hB | Alk
= 2 2 , ahB+
a® + b COS Yy = XW (17d)
+iac:|:b a? + b2 —c?
a? + b? with the condition
From which
h? 4+ k* >0
cos _cdEava®+b? - c? (14a)
7= a2 + b2
22 _ 2 Especial caséh = k =0
sinvzacq:b @ +b—c (14b)
a? 4+ b2
) _ _ If h = k = 0then, from (12b)B = 0, and from (11b)
Applying this to (10c) witha = C, b = D, v = ¢ and
= (A\/a)l
c= (A a) tan g & (18a)
Ay
AID +Cy\/C? 4+ D2 — (2)*12
cosd = 02 + D2 And from (12a)A = 0, i.e. from (11a)
2 .
sing = C§Z¥D\/C2+D2 — (%) 2 tan & = sin ¢1¢, — cos p1qy
C? + D? 1=
From (12f) these equations become Which, using (18a) can be written
AID + C|A|
cosp = b—o——7— 15a
C?+ D2 e ¢= tanl{—ql g2 +43} (18b)
. 21C ¥ D|A| ’
sin¢ = e (15b)

Which means that for this case there is only one value for
Let -2 be the angles obtained for upper and lower signse1 and one fop, andy, can take any value. The orientation

respectively. A is then obtained from (12a), and (15a) and curve is a straight line, but its value dependg.afq, andg. .

(15b): Equation (18a) has no solution §f, = ¢, = 0. This
\ 4 can come from (5) for the especial cage= ¢ = 0, and
A=—Ccos¢+ Dsing = —C JDECIA ¢9 = ¢ = 0, which corresponds to the symmetrical sample
C? + D2 orientation, and it can readily be seen that 0 andy; + ¢2
+D%ZC$D‘A| I can take any value.
crrpr T
ie Total of solutions
A(¢"?) = FIA| (16)

Except for the especial cage= k = 0, following solutions
This meansA(¢!) < 0, andA(¢?) > 0. gi,; are obtained:
Equations (10a) and (10b) form a system of two linear

equations whose solution is 91 = (¢1,9", ¢3)
. AhA— kB — (01, 62, b 19
sings = 50— g2 = (1,97, b3) (19)
cos 0y — AkA—hB These are two curves if? + k2 > 0, or a straight line
a A? + B? alongyy if h =k = 0.
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FIGURE 6. Curves obtained for the symmetrical orientation of the
sample:y = 0° andy = 0°, and planes 111 as the plane causing
the first reflection, and 202 as the plane causing the second reflec-
tion. Copper radiation was used, and the sample is silver.

FIGURE 5. Curves obtained for a general orientation of the sample:
x = 35° andy = 45° planes 111 for both reflections, primary and
secondary. Copper radiation was used, and the sample is silver.

for each sample orientation, and for first and second reflec-
3. The computer program tions since every orientation of the sample is represented by

two sets of Eulerian angles(p, ¢) ([6], Eq. (2.4)).
A program in Dev C T has been written, as follows:

1) Primary data are given: Pole figure affectd®. 5§  Conclusions
(hokolo), secondary reflectionhl), point w of the
Debye-Scherrer ring of secondary reflection, latticeA method has been developed to determine the orientation
constant of sample, sample orientationy(, ), and  curves of crystallites able to produce a second diffraction of
wavelengthh. From these data, Bragg angtesandé  an incident photon. Calculations require only modest com-
for primary and secondary reflections respectively argyuter capabilities, and they could be applied in future work
calculated. Initiakp; and an incremenfAp; are also  to determine the integrated intensity of the whole Debye-
given. Scherrer rings, as a measure to evaluate the intensity loss due
to a possible effect of secondary extinction.
The aim of this work is thus fulfilled; however, to know
if these curves pass through high pole density zones, further
3) B, C andD are then obtained from Eqgs. (11), and A calculations will be necessary since on the one hand, due to
from (12.f). symmetric properties of the samples, only a part of this cube
of side length2z will be sufficient, and on the other hand,
4) ¢ and o, are then calculated through Eqs. (15) andgyery curve should be first subdivided in segments of equal
(17) respectively. length. Both aspects require careful operations, and for the

5) The especial casés= k = 0 is solved from Eqgs. (18). Moment they are beyond the scope of this work.

2) 42, qy andq? are obtained from (4), ang, ¢, andq.
from (5).
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