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We have computed accurate values for the ground state energy of a hydrogen atom confined by a finite spherical barrieVipfkeight
function of the confinement radiug.. We consider the nucleus as a sphere with a uniform charge distribution instead of as a point particle.
The contribution to the ground state energy due to the finite nuclear size is computed as a function of the confinemeRt radidshe

height of the barrief};, using time-independent perturbation theory. For an impenetrable cavityRwith 0.5 au, we found that this energy
correction is fifty times higher than the corresponding value for the free hydrogen atom. For a finite idJueveffound that the maximum

of the energy correction is reached at a valgax, Which is very close to the position at which the electron density is most compact around
the nucleus. This is confirmed though evaluation of the Shannon entropy in configuration space.
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1. Introduction very small compared to the energy of the hydrogen atom with
a point nucleus. Until now, no one has studied how this en-
Eighty years ago, Michelst al. [1] used the confined hy- ergy shift changes for the hydrogen atom, confined in spher-
drogen atom (CHA) as a model to study the change in thécal penetrable cavities, when a nucleus of finite size is con-
polarizability of a hydrogen atom subjected to high externaisidered.
pressure. In this model, the nucleus of the hydrogen atom Pyarelal and Bhatnagar [20] proposed a model of the hy-
was clamped at the center of an impenetrable sphere of rarogen atom with an impenetrable nucleus of finite size. In
dius R., while the electron could move within the included that model, the wave functions must vanish at the surface of
volume. In this system, ionization is not possible. The way tathe nucleus. The reduction in the volume available for move-
account for ionization is to allow the walls to be penetrable. ment of the electron produces an increase in the energy of the
This penetrable model was successfully used by Ley-Koo andlectronic states. This problem has an exact solution, but the
Rubinstein [2] to explain the ionization of a hydrogen atommodel is unrealistic.
trapped in alpha-quartz [3-4]. A more realistic model consists of a spherical nucleus
Many applications have been developed from these modef radiusrg, with an uniform distribution of charge. For
els and they have been generalized to cavities with differentydrogen-like atoms with a small nuclear chargg, it is
geometries. This model has subsequently been applied tovéell-known that the Sclidinger equation adequately de-
wide range of physical problems [1-13]. Observable properscribes those systems [19]. An exact solution to this prob-
ties of the systems such the energy spectrum, transition fréem was found by Ley-Koet al. [19], in which they studied
guencies and probabilities, polarizability and the behavior othe muonic atoms, free of any confinement, withup to 90.
atoms trapped in fullerenes, etc., are changed by spatial coha this work, we will adopt the model of a spherical nucleus
finement. Reviews and books on those topics are availablith an uniform charge distribution, and we will use first-
[5]. Recent experimental studies show that the electron cagerder perturbation theory to calculate the correction to the
ture nuclear decay rate is increased under compression [14ound-state energy of the hydrogen atom confined in spher-
16]. A partial explanation of this effect was given using theical penetrable and impenetrable cavities, as a function of the
model of many-electron atoms confined in an impenetrablégadius of confinemenk..
spherical cavity [17]. With the advent of technology to con-  The objectives of this work are twofold: the former is to
struct atomic scale confinements, the study of confined sysestablish benchmark values for the energy of the ground state
tems has become increasingly relevant. of the hydrogen atom confined in a spherical penetrable cav-
In most of the works on the properties of atoms andity, the second is to calculate the energy shift of this system
molecules, either free of any confinement or confined in cavwwhen considering a spherical nucleus of finite volume with
ities, it is assumed that the nuclei are points with charge an@n uniform distribution of charge.
mass but without extent. The inclusion of a nucleus of fi-  The organization of this work is as follows: in Sec. 2, we
nite size in the free hydrogen atom is accompanied by a shiftolve CHA with a point nucleus in a spherical, padded cavity.
in the electron energy [20-26]. The magnitude of this shift isin Sec. 3 we use first-order perturbation theory to compute
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the energy correction due to inclusion of a nucleus of finitewhere
size. In Sec. 4 we show the results of the calculation of the

energy correction due to a finite size nucleus, obtained for y==kr, k*=2u(Vy— E)/R?, (9)
both penetrable and impenetrable confinements. Finally, in o
Sec. 5 we give our conclusions. and whose solution is given by [2]

Re(y) = By™' e Y M(~1,-2l,2y). (10)

2. The CHA in a spherical padded cavity

. . . . I . Hereafter, we restrict our attention to states Wits 0
In this section we give a brief description of the solution of :
. . ; . ecause these are the only states which have non-zero value
the hydrogen atom confined in a spherical padded cavity.

detailed explanation can be found in Refs. 2, 7 and 9. Of 1i(r) whenr =0. . .
. . L The eigenvalues are determined by the requirement that
In atomic units o = ¢ = h = 1), the Schedinger equa- he total wavefunction must be continuous with continuous
tion for a hydrogen atom at the center of a sphere of radiui‘%rst derivatives at = R.. This is most easily accomplished
R, and confined by a constant potenfiglis e y P

by matching logarithmic derivatives a., resulting in the

1 .
—§V2 LV )Y(r 0, 6) = BV (r,0,0), 1) equation
d d
where the potential is a[ln R;] |RC - %[ln R.] ]RC =0. (11)
V. — —%, 0<r<R. @ The normalization constants and B are found from the
Tl Vo, r>R. requirements that
Equation (1) can be solved using separation of variables R, (21;0) — R.(kR,). (12)
U(r,0,0) = R(r)Yim (0, ¢) 3)

and the normalization condition
whereY; ,,, (0, ¢) is a normalized spherical harmonic and

R(r) is a radial function composed @;(r), the wavefunc- 7 5 o 7 5 9
tion inside the sphere anfl.(r), the wavefunction external /(Ri) rodr + /(Re) ridr = 1. (13)
to the sphere. 0 7o
The Schodinger equation for the inner region< r < _ . )
R, As mentioned above, the zeroes of the logarithmic deriva-
tive equation are the eigenvalues of the problem. The first
[_1 (1 d s d) (+1 1} zero corresponds to the ground state energy. With this value,
2 \r2dr dr 2r2 r we construct the wave function in each region. To find the
X Ri(r) = ERi(r), @) zeroes of the equation we used Mathematica 9 with the com

mandFindRoot with 50-digit precision variables. The eigen-
whose solution is given by [8-9]: values obtained through this procedure are shown in Tables I-
V as a function of the box radiug. and the potential height
Ri(r) = Ae_f’/2le(—ﬁ +1+1,20+2, p), (5) Vo. These results are in complete agreement with previous
calculations [2,7,9]. The results are shown with 15 digits af-
where M (a,b,r) is the confluent hypergoemetric function ter the decimal point.

[18] and
- =28 6) 3. Finite nucleus size correction
The external region, > R, is described by the
Schibdinger equation

The Hamiltonian of the hydrogen atom with a finite nucleus
confined by a spherical penetrable wall is given by

2
1/1d 5d I(1+1) H=—2+W(7') (14)
{ Q(d m«)* 202 +VO} 2
x R(r) = ER.(r), (7) Where
2
which can be written as 27{0 [(T’O) - 3} , 0<r<mg
29 1 Ve(r)=4q _1 ., (15)
(dz 24 L )—1) R(r)=0, " ro < fie
dy*  ydy Yy Vo, R.<r <o
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TABLE |. CHA ground state energﬁﬁf, and first-order correction due to the finite nucle é)(RC), as a function of the confinement
radiusR. for V;, = 0. Also shown is the ratio between the energy correction of the confined syEl%?‘(\Rc), and the correction of the free

hydrogen atonFE,. Energies are in hartrees and distances are in bohrs.

R. Exo By (1071°) B (R.)/E}y
0.75 -0.002551608753406 0.342781939506244 0.345
0.8 -0.017424391031037 0.808141286815622 0.814
0.9 -0.067406311452319 1.325196851197549 1.335
1.0 -0.125000000000000 1.544741614031751 1.556
1.1 -0.180067083549980 1.621160850903080 1.633
1.2 -0.229179151514072 1.627437259807232 1.639
1.5 -0.338167417956141 1.507712255705773 1.519
2.0 -0.431218889241793 1.287458459987721 1.297
2.5 -0.470393522970229 1.151246460119175 1.160
3.0 -0.487223082818398 1.075285232620169 1.083
35 -0.494519692585279 1.034355146835889 1.042
4.0 -0.497674689400819 1.012980250520460 1.020
4.5 -0.499025598864902 1.002187518743767 1.009
5.0 -0.499596671366575 0.996918364180960 1.004

TABLE Il. CHA ground state energEﬂ)), and first-order correction due to the finite nucleﬂéé)(Rc), as a function of the confinement

radiusR.. for Vo, = 5. Also shown is the ratio between the energy correction of the confined syEﬁé,?(uRc), and the correction of the free
hydrogen atonF,. Energies are in hartrees and distances are in bohrs.

R. Exo E{y (1071°) B (R.)/E}y
0.4 4.827691517791768 6.456668836007435 6.506
0.5 3.907609648085746 10.240494963124124 10.319
0.6 2.982382648801240 9.598999388792230 9.672
0.8 1.666642892127310 6.980485974979947 7.034
0.9 1.229573168163173 5.926377707785826 5.972
1.0 0.893377387585463 5.081081669583943 5.120
15 0.028688218476904 2.781656875168397 2.803
2.0 -0.273954162644265 1.889596355389960 1.904
2.5 -0.397386813501905 1.473407522212738 1.484
3.0 -0.452163079706601 1.256864293020748 1.266
3.5 -0.477542879189045 1.137865941478808 1.146
4.0 -0.489507801753420 1.071253920964084 1.079
4.5 -0.495153894267392 1.034166451405600 1.042
5.0 -0.497794417047201 1.013927192430064 1.021

The first two terms in Eq. (15) are the usual terms of a  Adding and subtracting’ () to Eq. (14), and grouping
free hydrogen atom with a finite size nucleus [6,19,21-23]terms we obtain the
andr is the radius of the hydrogen atom, a proton. The third
termis introduced to confine the hydrogen atom in a spherical
cavity of radiusR,..

We define the potential

V(r) :{ ;;’

H= —22 + Ve(r) + H'(r).

5 (17)

This Hamiltonian can be written in the more familiar

r<r< Ry form
(16)
ro <r <R,

H=H'+H (18)
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TaBLE IlIl. CHA ground state energlf%), and first-order correction due to the finite nucleB: é>(Rc), as a function of the confinement
radiusR. for Vo = 10. Also shown is the ratio between the energy correction of the confined syEt%?rﬁRc), and the correction of the

free hydrogen atoni';o. Energies are in hartrees and distances are in bohrs.

R. Eio By (107 B{y (R.)/ By
0.3 9.846148432090808 9.930542047590157 10.007
0.5 5.639829938566619 17.491618217286550 17.626
0.6 4.097374126091258 13.822727567461880 13.929
0.7 2.995752750577570 10.917393851422899 11.001
0.9 1.620350180030345 7.179161687379589 7.234
1.0 1.185777102316168 5.992750426662855 6.038
1.5 0.116618456909048 3.048420555184699 3.071
2.0 -0.240385375166330 1.999717840968987 2.015
2.5 -0.382937517117798 1.527421154803173 1.539
3.0 -0.445545908145495 1.285799849400771 1.295
3.5 -0.474425028203553 1.153976852962736 1.162
4.0 -0.488027526391939 1.080287038138810 1.088
4.5 -0.494454829661503 1.039165583170746 1.047
5.0 -0.497468459482318 1.016626789889568 1.024

TABLE IV. CHA ground state energEf%)), and first-order correction due to the finite nucleEéé)(Rc), as a function of the confinement
radiusR. for Vo = oco. Also shown is the ratio between the energy correction of the confined syEI{%P?QRC), and the correction of the

free hydrogen atoni;o. Energies are in hartrees and distances are in bohrs.

R. Eno Eié) (10719 Ei? (RC)/E%)
0.5 14.747970030350280 54.536609722874516 54.956
0.6 9.527707806146348 33.740936784485875 34.000
0.7 6.469926127251262 22.720335291772468 22.895
0.8 4.543380181009424 16.278628704347120 16.403
0.9 3.262189536240119 12.229690823293298 12.323
1.0 2.373990866103664 9.538267646127938 9.611
15 0.437018065247256 3.969102513288022 3.999
2.0 -0.125000000000000 2.355893659642013 2.374
2.5 -0.334910185427921 1.695773616320432 1.708
3.0 -0.423967287733454 1.374211998517624 1.384
35 -0.464357128440197 1.202793634385484 1.212
4.0 -0.483265302078022 1.107644656981758 1.116
4.5 -0.492205427798878 1.054376061163177 1.062
5.0 -0.496417006591452 1.024902478009865 1.032

From Eq. (17) we immediately identify the first two terms
as the Hamiltonian of a hydrogen atom confined in a penetra-

The perturbation is given by [6, 21-23]

ble spherical cavity, as analyzed in previous section. We note , 1 |:(r)2 _ 3} 4+ 1 r<rg
that for H°, the unperturbed Hamiltonian, the eigenfunctions H' = ¢ 27 [\"0 r ' (19)
9., and eigenvalueg?, are well-known. 0, ro <71 <00

As mentioned above, we are only interested in states with
[ = 0, because the electron density is non-zero at the origin.
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The correction of the energy to first-order is given by 5. Results

(1) — /
Eng = (oo [H'[ngo)- (20) In Tables I-1ll, we show the corrections to the ground-state
A straightforward calculation gives the following expres- energy of CHA, taking into account a nucleus with finite

sion. The eigenfunctiong,,,, are an orthonormal set of wave size. The correction to the energy is small compared with
functions with the form the energy of the unperturbed confined atom. As the con-

finement radiusk, grows,E(l) approaches the value of the
w”oo (T7 97 ¢) = R”o (T)YOO (97 (rb) (21) 10
o ) can see that there is a change in the value of the energy cor-
(1) 1 9 r 2rg
EJ=— — ) = 20
R = o [ Rulo) [() 342
0 between the correction of the ground state energy of CHA
dent of the value ofy and depends only on the ratio of the
Ro(r) = R (0). (23) 0 P y

. . 1
first-order correction of the free hydrogen atoEéozree =
rection that depends oR. andV{. This behavior can be
r2dr. (22) P ¢ 0
In the regionr < ¢, taking in account that for a proton, due to the finite nucleus, relative to the correction for the free
wave functions evaluated at the origin
Equation (22) then becomes

Substituting (21) in (20) we obtain 0.9923592777 x 10719 hartrees, according to Eq. (24).We
seen more clearly in Fig. 1, where we have plotted the ratio
ro <K 1, hydrogen atom. It should be noted that this ratio is indepen-

T2 1
By = 1B (O)F. (24) Bly _ [Ri(0)P o6
10 =0 ; (26)

. . | Riofree(0)2
In this work we will use the most recent measured pro- 10free Froeel0)]
ton radiusry, = 0.8335 femtometers {.575086726 x 10~
bohrs) [24].

where Riee(r) and R1o(r) are the radial wave functions of
the free hydrogen atom and the CHA, respectively.

4. Shannon entro _ L
by For a spherical cavity with impenetrable walls, the correc-

Claude E. Shannon in 1948 introduced the so called Shanndi®n to the energy grows rapidly d. tends to zero because
entropy in his paper “A Mathematical Theory of Communi- by reducingR. the electron is closer to the nucleus without
cation” [27]. The quantum version of Shannon entrgy  the possibility to escape. In Fig. 1 we can see that for a value
in configuration space is defined as of R, = 1, the energy correctioﬂ%) to the ground state of
the CHA is 10 times greater than in the free hydrogen atom.
5, =~ [ o) p(ryar, (25)

wherep(7) is probability density of the electron, in atomic
units.

The Shannon entropy in quantum computation means the
absolute limit of the best possible lossless compression ofany 10
communication, under some particular constraints [33]. On _
the other hand, the Shannon entropy has a wide variety of ap-=
plications in Physics and Chemistry [34]. Usually, it is inter-
preted as the uncertainty associated with the particle position,
which is related with the degree of localization (delocaliza- E‘o
tion) of the particle. In chemistry, the Shannon entropy is ~
associated with the delocalization of an electron in aromatic ~ o
compounds [35]. w

Panoset al. [36], computed and plotted;, as a func- 1
tion of the atomic numbey/, for many-electron atoms. They
found that the curves,.(Z) has relative minimum values for
the closed shell atoms as He, Ne, Ar and Kr. They interpreted
this fact as the electronic density of those atoms is more com- & 1 2 E, 4 1
pact (localized) than their near neighbors. Recently, this in- R (au)
terpretation for the Shannon entropy was used successfully in €
the study of many-electron atoms confined in soft spherical
cavities [37,38]. In this work we will adopt this interpretation FiGUre 1. Ratio E\}))(R.)/E )., of the energy correction of
for the Shannon entropy. CHA to the free hydrogen atom as a function/af.

10free
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FIGURE 2. Energy correction{’ and Shannon entrop§, asa  FIGURE 4. Energy correctionZ{;’ and Shannon entropy, as a
function och for Vo=0 hartrees. function Och for Vo=5 hartrees.
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FIGURE 3. Energy correctiorE}é) and Shannon entropy, as a

FIGURE 5. Energy correctiorEﬁ(lf and Shannon entropy. as a
function of R. for V5 = 1 hartrees.

function of R. for a spherical impenetrable of radifs.

This value is in complete agreement with that calculated by |ntyjtively, one expects that the energy correctlbl%) be
Goldman and Joslin [6]. They found that for very small val- higher in a small size cavity, in which the electron is closer

ues of k. and very excited states, the correction of the enyhe nucleusij.e. a cavity in which the electronic density is

ergy, By, can be several orders of magnitude greater thamore compact. One way to quantify the compactness of the
the value for the free atom. electronic density is by means of the Shannon entropy [27-
For a fixed value of the barrier height, the situation  38], as was mentioned above. This idea is supported in the
is quite different. The energy correcticE{(l)) (R:) grows as interpretation of localization-delocalization associated with
R, decreases, and it reaches its maximum value at a confinghe Shannon entropg,.. A small value ofS,., means that the
ment radius that we calk, . . As R. continues to decrease, electron density is more localized around the nucleus [30-
the energy correctionE%s(Rc), decreases also, approach- 32,36-38]. AtR¥, where the entropy curvey,.(R.), has a
ing zero ask. approaches a critical radius, at which the totalminimum value, the electron density is more compact around
energy of the electron is equal to the height of the bafifier  the nucleus, and thus the contribution to the energy correction
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E%) (R.) is greater. In Figs. 2 to 5 we plot the energy cor-ing, the value of the wave function at the origin decreases

rectionE%)(Rc) and the Shannon entrogy.(R,.) for afew  quickly, but it grows fast inside the barrier. This process con-

values ofV; as a function ofR... In Fig. 2 we plot together tinues until ionization take place.

E%)(RC) and S, (R.), as a function of the confinement ra-

dius, R, for Vj = oo. We see that whei®. decreasesS.

also decreases. This means that the electron density around

the nucleus increases and there is an increa@ﬂjh This  In this work we calculated the energies and wave functions,

behavior continues aB. diminishes. with high numerical precision, for the ground state of the hy-
In Figs. 3-5 we show the energy Correctiﬁﬁ)(Rc) and drogen atom confined in a penetrable spherical cavity. We

the Shannon entropy, for fixed values ofl;,. In all fig- a!so galculated the energy corrc_ection due to a nuclgL_ls of fi-

ures, we see that the curve of the energy corredifi(R,)  Nite size for the CHA as a function dt. andV;. For finite

reaches a maximum value at a confinement radiys,~ Darriers, the curves of the energy correction reach a maxi-

which depends on the value b. We can also see that the Mum value, while the curves of the Shannon entropy as a

curve of the Shannon entropsy.(R..) reaches its minimum function of Z.reach a minimum value. The maximum of the

value at a confinement radiug’, i.c., in a spherical box of ~€nergy correction is al\{vays.cllose to thg position at wh!ch the

radius R the electron density is more compact around theShannon entropy has its minimum valie, at the position

nucleus. From Figs. 3-5 we can see tRat < R*. This N which the electron density is most compact.

result can be interpreted in the following way. A% de-

creases, the value df. also decreases, and the density be-Acknowledgments

comes more compact up to a maximum valuét As R,
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