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Imaging Mueller matrix determination of transparent, unpolarizing
samples using a classically entangled polarization state
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Inspired in a recent theoretical work for the determination of the Mueller matrix, using a single classically entangled polarization state as
incidence (F. T̈oppelet al., New J. Phys.16 (2014) 073019), an experimental setup is proposed and tested. Open space and two wave plate
retarders are used as the transparent, nondepolarizing samples under study. Results show that some experimental improvements are necessary
in order to accurately implement the theoretical proposal on which this work is based.
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1. Introduction

The determination of the polarimetric linear response to light
is an important procedure related with the characterization of
materials that can be employed in optics and photonics ap-
plications. The determination of the Mueller matrix through
the Stokes vectors, in principle, provides all the basic infor-
mation related with the response to any incident polarization
state [1,2]. The Mueller matrix can be determined by using
different techniques, such as the Ideal Polarimetric Arrange-
ment (IPA), which is based on the linear, ideal response of the
polarization components [1-4]. IPA considers the incidence
and analysis of at least 4 conventional polarization states, for
a total of 16 intensity measurements. A polarization state
with both spatially homogeneous amplitude and phase elec-
tric field distribution is known as a conventional polarization.

On the other hand, the generation, detection, and appli-
cation of spatially non-homogeneous polarization states, or
unconventional polarization, has generated an increasing in-
terest lately [5-8]. There are some unconventional polariza-
tion modes or states, which can not be described as a single
product of spatial distribution and polarization states; that is,
they show an entangled behavior between their two degrees
of freedom. In this sense, the radial and the azimuthal uncon-
ventional polarizations are being considered as classically en-
tangled polarization states [8-12]. The use of a single incident
classical entangled polarization state (radial polarization) has
been considered for the determination of the Mueller ma-
trix (MM) associated to transparent birefringent samples in
metrology applications [13]. Even though this proposal is
theoretical, authors have put forward a complex experimen-
tal setup to get the MM in a single shot [13].

In the work reported here, inspired by Ref. 13, we pro-
pose, and experimentally demonstrate, a modified configu-
ration to obtain the MM associated to transparent, nondepo-
larizing systems, using an azimuthally polarized state as the
single incident classically entangled polarization state. We

have substituted the photodetectors proposed in Ref. 13 by
a single CMOS camera, and we have used only one modi-
fied Mach-Zehnder interferometer, MMZI, but in essence, we
have followed all the remaining suggestions. We have em-
ployed the open space and a half- and a quarter-wave plates
as the systems under study.

2. Theory

The linear response of a medium to light can be expressed in
terms of the Mueller and the Stokes formulism as:

So = MSi, (1)

where Si,o represent the incident and the outgoing 4×1
Stokes vectors, and M is the 4×4 MM of the system un-
der study. A Stokes vector is the algebraic representation
of any polarized state, in terms of intensities; for example,
the Stokes vector associated to a monochromatic plane wave
propagating along the z-direction, with respect to a Cartesian
coordinate system, is given by:

S =
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
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where (Ex, Ey) are the orthogonal components of the elec-
tric field, * is the complex conjugate operator, andIp is the
intensity associated to the polarizations linear horizontal (x),
linear vertical (y), linear diagonal at+45◦, linear diagonal
at −45◦, circular right-hand (r) and circular left-hand (l).
The azimuthal polarization,Eφ, can be expressed in terms
of different basis sets of spatial modes and polarization dis-
tributions, which can be written as (according to the notation
employed in [13]):
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Eφ =
1√
2
(−ψ01êx + ψ10êy) (3a)

Eφ =
1√
2
(ψ ê+ − ψ+ê ) (3b)

Eφ =
i√
2
(ψLêR − ψRêL) (3c)

where ψ± = (ψ10 ± ψ01)/
√

2, ê± = (êx ± êy)/
√

2,
ψL = (ψ10 + iψ01)/

√
2, ψR = (ψ10 − iψ01)/

√
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(êx + iêy)/
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2, êR = (êx − iêy)/
√

2, ψ10, ψ01, represent
the Hermite-Gauss solution of the paraxial wave equation of
orderN = m + n [13], and êx, êy and êz are the unitary
vectors associated to a Cartesian coordinate system.

The expressions that relate the intensity measurements to
the elements of the MM, for the case of azimuthal polariza-
tion as the probe beam, were derived following the formalism
presented in Ref. 13, resulting in:

M00 = I00 + I01 + I10 + I11

M01 = −(−I00 − I01 + 2I02 − I10 − I11 + 2I12)

M02 = −(−I00 − I01 + 2I03 − I10 − I11 + 2I13)

M03 = −(I00 − I01 + I10 − I11)

M10 = −I00 − I01 − I10 − I11 + 2(I20 + I21)

M11 = −(I00 + I01 − 2I02 + I10 + I11

− 2(I12 + I20 + I21 − 2I22))

M12 = −(I00 + I01 − 2I03 + I10 + I11

− 2(I13 + I20 + I21 − 2I23))

M13 = −(−I00 + I01 − I10 + I11 + 2I20 − 2I21)

M20 = −I00 − I01 − I10 − I11 + 2(I30 + I31)

M21 = −(I00 + I01 − 2I02 + I10 + I11

− 2(I12 + I30 + I31 − 2I32))

M22 = −(I00 + I01 − 2I03 + I10 + I11

− 2(I13 + I30 + I31 − 2I33))

M23 = −(−I00 + I01 − I10 + I11 + 2I30 − 2I31)

M30 = I00 + I01 − I10 − I11

M31 = −(−I00 − I01 + 2I02 + I10 + I11 − 2I12)

M32 = −(−I00 − I01 + 2I03 + I10 + I11 − 2I13)

M33 = −(I00 − I01 − I10 + I11) (4)

We must remark that the matrixM , obtained through expres-
sions (4), was later transformed to the corresponding MM in
the optical convention,MBW through [14]:

MBW = (QBW )−1MQBW , (5)

whereMBW is the MM as defined by Born and Wolf (opti-
cal convention),QBW is the transformation matrix between
Born and Wolf and T̈oppelet. al. convention, given by [14]

QBW =




1 0 0 0
0 0 1 0
0 0 0 −1
0 1 0 0


 , (6)

and(QBW )−1 is the inverse matrix ofQBW .
All the results shown hereafter correspond to the optical

convention. The intensity measurements, Eq. (4), are ex-
plained in the following section.

3. Experimental Results and Discussion

Figure (1) shows a flow diagram of the steps required to con-
figure the experimental procedure. The idea is just to gen-
erate an azimuthally polarized beam that impinges on the
sample under study, and then analyze the outgoing modified
polarization state. The azimuthally polarized beam is gen-
erated with the aid of a S-wave plate converter (Altechna,
model RCP-515-06), after an incident linearly polarized state
is transmitted (@532 nm). In the usual procedure, using con-
ventional or spatially homogeneous polarization, the analysis
is realized in the polarization contribution, with the spatial
distribution being implicit within the own intensity registra-
tion. However, analysis associated to classical entangled po-
larization states, as it is the case of azimuthal polarization,
implies analyzing both degrees of freedom, one independent
from the other: spatial distribution and polarization state [13].
This is done by analyzing the spatial contribution first, using
a mode converter (MCA, MCB, MCC) and a modified Mach-
Zehnder interferometer (MMZI). The second degree of free-
dom is determined using a polarization state analyzer (PSA),
and finally, the Mueller matrix (MM) can be computed using
the relationships shown in Eqs. (4-6) [13,14].

A mode converter (MC) is a device that affects the spatial
degree of freedom of a given mode, without any effect on the
other degree of freedom, the polarization state. For exam-
ple, a half-wave orπ-mode converter with the fast axis set at
22.5◦ will rotate an incident diagonal Hermite-Gauss mode
ψ+êx to a horizontal Hermite-Gauss modeψ10êx [13].

FIGURE 1. Schematic diagram of the experimental procedure.
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FIGURE 2. Schematic diagram of the required experimental inten-
sity measurements to determine the Mueller matrix using a single
azimuthally polarized beam of light @532 nm (following Ref. 13).

When the device is changed by a quarter-wave orπ/2-mode
converter with the fast axis at 45◦, a conversion between
Laguerre-Gauss fundamental modes and Hermite-Gauss fun-
damental modes is achieved [13]. In any case, the polar-
ization state is not affected. A mode converter can be ob-
tained by using a couple of cylindrical lenses of the same
focal distance [12]. MCA represents aπ/2-modeconverter,
MCB represents aπ-modeconverter, and MMC represents
an open space, with no mode-converter present [13]. The

modified Mach-Zehnder interferometer (MMZI) is a Mach-
Zehnder interferometer with an additional mirror placed at
one of the two arms [14]. The role of the MMZI is just to
separate the orthogonal spatially distributed modes [13,15].
The polarization state analyzer, PSA, is applied to analyze
the polarization contribution associated to each spatially dis-
tributed decomposed mode. The simplest PSA configuration
is obtained by using a quarter-wave plate and a linear polar-
izer.

Figure (2) represents the 16 intensity measurements re-
quired by Eq. (4) in order to obtain the complete MM, once
the incident classically entangled polarized state (azimuthal
beam) has been modified by the transparent sample. The PSA
is set to analyze the contribution to horizontal (X), diagonal at
+45◦ (+45◦), and vertical (Y) linear polarizations, and to cir-
cular right-hand polarized light (R). Intensity measurements
are made using a CMOS camera.

The diagram in Fig. 2 explains the procedure to get the
16 experimental intensity measurements required for the de-
termination of the Mueller matrix, according to Eqs. (4-6).
Once the beam interacts with the sample, it passes through
a mode converter A, B, or C. Each one of them will change
the spatial distribution of the beam differently, but none of
them will alter its polarization. For the case when the beam
passes through MCC, which is air, its spatial distribution is
conserved, and then it goes through the MMZI. The purpose
of the MMZI is to decompose the beam into its orthogonal
ψ10 andψ01 modes (regardless of their polarization state) so,
in this case, we will have modeψ10 with its corresponding
polarizationêy, at one port (say at port 1, P1), and modeψ01,
with polarizationêx, at port 2 (P2) (see Eq. (3.1)). At each
output port, a PSA is placed, and we register the results from
analyzing the horizontal (X → 0), vertical (Y → 1), +45◦

(+45◦ → 2), and circular right-hand (R → 3) polarizations
with a camera. The intensities are taken from the images

FIGURE 3. Schematic diagram of the proposed experimental setup for the determination of the Mueller matrix of a transparent sample using
an azimuthally polarized beam of light.
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FIGURE 4. Experimental setup proposed here to determine the Mueller matrix using a single azimuthally polarized beam of light @532 nm
(following Ref. 13).

FIGURE 5. Imaging Stokes vector associated to the azimuthally polarized beam of light @532 nm, with spatial average symmetry〈S〉 = [1
0.0455 0.0360 0.1187]T .

which are labeled according to the polarization (first sub-
script) and the mode (ψ10 → 0, ψ01 → 1, ψ+ → 2 ψR → 3,
second subscript, as it is done in [13]).

The beam undergoes a similar procedure when it passes
through MCB or MCA, with the difference that its spatial dis-
tribution will be affected differently, and that in such cases,
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we are interested in just one of the output ports of the MMZI
(port 1), as their measurements correspond to the intensities
required in Eq. (4).

Figure 3 is a detailed schematic representation of the ex-
perimental setup employed here, where the arrows show the
modifications employed to get the three different mode con-
verters (including the lenses required), in order to fulfill the
analysis proposed in Fig. 2.

Figure 4 shows a photograph of the experimental setup
employed in this work.

It is important to note that the original proposal [13] con-
siders an optical arrangement such that the probe beam after
the sample is split into three beams, which interact with the
mode converters A, B and C at the same time, and then each
beam goes through an independent MMZI. PSAs and pho-
todetectors are placed at the output ports of each interferom-
eter. It is implicitly considered that the cross-section of each
beam is not affected.

In our arrangement, the beam interacts with each of these
configurations in sequenced time, so we have space and

mountings for removable elements, which allow us to adapt
the experimental setup to each set of measurements.

The first step in our experiments is to generate the az-
imuthal beam. The illuminating source is a diode laser
(@532 nm). We use neutral density filters, a spatial filter,
a collimating lens, and a polarizing beam splitter (PBS) in
order to obtain a homogeneous horizontally polarized colli-
mated beam. The PBS is used as we employ the reflected
beam into other independent setups. A diaphragm is used in
order to experimentally control the diameter of the beam, as
it is an important parameter for the mode-matching process
required by MCA. The S-wave plate, adequately oriented, al-
lows us to convert the horizontally polarized beam into the
azimuthally polarized beam that is needed.

After the azimuthal beam has been generated, it interacts
with the sample, and a lens with a focal length of 500 mm is
placed to fulfill the mode-matching condition required by the
π/2 converter [13]. This element is called a mode-matching
lens, as shown in Fig. 3. Auxiliary mirrors 1 and 2 send the
beam to a pair of cylinder lenses that are adjusted to operate

FIGURE 6. Imaging Mueller matrix associated to air, using a single incident azimuthally polarized beam of light (following Ref. 13).
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in the MCA configuration, and then, a microscope objective
and a lens are used to collimate the resulting beam. This
beam is redirected with the help of auxiliary mirrors 3 and 4,
in order to assure good alignment upon entering the MMZI.
We place a camera after one PSA, make the measurement for
one polarization state, and then change for the correspond-
ing measurement at the other port. This allows us to be cer-
tain that we are registering both orthogonal modes (as they
flip quickly between one port and the other with any minimal
change in environment conditions). Once we have measured
all the required polarization states for this mode converter,
we proceed to implement MCB. For this purpose, we take
out the mode-matching lens and the collimation system at the
end of the cylinder lenses. We change the cylinder lenses for
the π mode converter configuration (MCB), and follow the
same steps as before to register the PSA results. For MCC,
we place auxiliary mirror 5 right after the sample, and auxil-
iary mirror 6 in front of auxiliary mirror 4, in order to send
the light directly to the MMZI (the beam does not change its

cross-section size). The mode conversion operation is ver-
ified for each one of the mode converters. We register the
PSA resulting images and proceed to their processing and
analysis.

Figure 5 shows the best generated azimuthal polarization
state through its image Stokes vector, where Figs. 5(a-d) rep-
resents0, s1, s2, ands3, respectively (images taken after the
S-wave converter, Fig. 3).

A simple way to determine the quality of the beam gener-
ated can be provided by its spatial average symmetry (SAS)
metric [16], which is the spatial average Stokes vector. For
the case presented here, the spatial average Stokes vector is
given by〈S〉 = [1 0.0455 0.0360 0.1187]T , which is inter-
preted as an unconventional polarization state with a slightly
global tendency to a right-handed elliptical polarization state.

An ideal azimuthal polarization state has an associated
spatial average Stokes vector equivalent to totally unpolar-
ized light,〈S〉 = [1 0 0 0]T , [13,16]. Note there is a singular-
ity at the center of each image; this is, in fact, a characteristic

FIGURE 7. Imaging Mueller matrix associated to a half-wave plate with a horizontal fast axis, using a single incident azimuthally polarized
beam of light (following Ref. 13).
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of any unconventional polarization with axial symmetry, as
in the case of azimuthal polarization [5,6,8,16].

Figure 6 shows the normalized Mueller matrix obtained
when the sample under study is the air.

Ideally, Fig. 6 should be associated with a unitary imag-
ing MM. Even when these images show this tendency, there
are some deviations due to two main factors: the azimuthal
polarization is not ideal, and the use of the mode converters
implies the use of two cylinder lenses (for MCB) and, in ad-
dition, mode-matching lenses for MCA, which affect the in-
tensity cross-section of the beams reaching the CMOS cam-
era. These factors are present when Eqs. (4-6) are applied
(following the intensity measurements according to Fig. 2)
to obtain Fig. 6. Note that elementsMBW

00 , MBW
01 , MBW

10 ,
MBW

11 , MBW
20 , MBW

21 , MBW
30 , MBW

31 (Eqs. 4-6) are deter-
mined by some of the intensity measurements (I00, I10, I20,
I30, I01, I11, I21, I31) when there are no lenses present be-
tween the sample and the CMOS camera (MCC); intensi-
ties are added and subtracted for beams with the same cross-

section size, and this is the reason why the results are close to
the expected ones. Observe that the elementsMBW

02 , MBW
12 ,

MBW
22 , MBW

32 are determined by the use of intensities where
MCB (I02, I12, I22, I32) and MCC are present; the intensi-
ties are added according to Eq. (4), generating a mixture of
slightly different cross-section sizes, which originates slight
deviations from the expected results. Finally, note that el-
ementsMBW

03 , MBW
13 , MBW

23 , MBW
33 are associated with

measurements where mode converters A and C are being
present; this implies that these measurements are taken with
the use of both, mode-matching and cylinder lenses for MCA
(I03, I13, I23, I33) and no lenses for MCC, according to Eq.
(4) and Figs. 2 and 3. These are the reasons for the deviations
registered in relation to the expected results.

The results obtained for commercial thin film retarders of
a half-wave and a quarter-wave retardance, with the fast axis
set horizontally, are shown in Figs. 7 and 8, respectively. In
addition to the goal of maintaining the same cross-section for
all the beams measured, there are also some slight deviations

FIGURE 8. Imaging Mueller matrix of a quarter-wave plate with a horizontal fast axis, obtained using a single azimuthal incident polarization
state (following Ref. 13).
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associated to the true retardance shown by the wave plates at
the incident wavelength (@532 nm). According to our mea-
surements, the sample half-wave plate used causes a retar-
dance of 161◦ (instead of the 180◦ expected), and the quarter-
wave plate causes a retardance of 95.18◦ (instead of an ideal
90◦) at this wavelength.

4. Conclusions

Inspired in a theoretical proposal [13], an experimental ar-
rangement that uses a single classically entangled polariza-
tion state as incidence has been described for the determina-
tion of the imaging Mueller matrix. The open space and two
wave-plate retarders have been used as the transparent sam-
ples under study. Results show that some experimental im-
provements are necessary in order to accurately implement
the theoretical proposal on which this work is based. Three
main factors have been identified as being inherently associ-
ated to experimental deviation from the ideal desired results:
generation of a high quality azimuthal beam, control of the
cross-section size for all the output beams coming from the
different mode converters (which is to be the same), and con-
trol of the intensity of the beams entering the MMZI (which
is also to be the same); that is, the main goal is just to get

the same collimated beam after the sample and at the face of
the CMOS camera. Also, since the MMZI is very sensitive,
it is necessary to implement a real time stabilization system
in order to get outputs that do not flip too quickly between
ports. This, in addition to all the slight deviations in the de-
lays caused by the non-ideal elements used in the experimen-
tal configuration, mainly the components of the MMZI which
have important repercussions since, in order for the MMZI
to exhibit a polarizing mode-splitter like behavior, elements
with exact retardance ofπ are required [13], which are diffi-
cult to find in practice. Probably the use of plate beam split-
ters and a stabilized laser in both, intensity and frequency,
could help to improve the final results.

We hope that the experiences derived from this work can
contribute to accurately implement the theoretical proposal
on which we have based this work [13].
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