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Shortest path fractal dimension for randomly crumpled thin paper sheets
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We realized a study of the shortest path fractal dimengign, in three dimensions for randomly crumpled paper balls. We took measure-
ments among all possible combinations of pairs of points in crumpled and flat configurations. We found that a correlation between these
distances exists, even more, such mean experimental valyg,is= 1.2953 £ 0.02 that coincides almost numerically with the very known

3D shortest path fractal dimension for percolation systems reported in computational simulations.
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1. Introducction ages of stamped crumpling networks of paper balls got exper-
imentally thed,,;, value, finding that over 500 realizations
Thin folded matter configurations are presentin nature. Somg . (2) — 115 4 0.06 andd,;,*) = 1.53 + 0.16 for the
natural physical systems have a minimal state energy incrumsrympling network in the flat and crumpled configurations
pled configuration. Proteins are an example, and their propefespectively. In that sense this tedious but simple experiment
ties have been studied [1-3]. Other systems like polymerizeghoks for determining the shortest path fractal dimension be-
membranes [4-7], graphene nanosheets [8-13] and crumplggleen pairs of points randomly assigned on the surface of the

paper balls [14,15,17,19-27] have been well studied and they, asj-sphere paper balls correlating distances for the flat and
are reported in literature. Authors of [17,18,21,23-27] hadsrympled configurations.

made remarkable findings working with thin folded matter,
particularly randomly crumpled paper. A complete study of . .
mechanical and dynamical properties of crumpled paper ballg' Experimental details and results

and many different measurements of fractals quantities ha\ﬁ/e started the experiment crushing by hand square sheets of

been reported in [26]. In this sense the experimental and th%opy paper type into quasi-spherical balls of diameter R, orig-

oretical studies in crumpling phenomena is nowadays a Very o' sheet sizes edges welre= 12, 15, 22 y 30 cm. After we
fertile area in science. Analytical relationships and NUMery.ue turned a flat sheet into a ball we randomly assigned a

ical scaling exponents (fractal dimensionalities) have beeQollection of points on its surface and then a complete strain

stablished in relation to the morphological transformation Ofrelaxation was permitted during 9 to10 days [21,23]. To iden-

a flat sheet into a crumpled ball, and intensive studies OVefis, each randomly assigned point, a color code was needed

the recent decades had been made, fractal dimensionaliti balls of each size were measured. In the crumpled state
as chemical, random walk, shortest path, spectral, and OtheElsdigital Vernier caliper was used to get the Euclidean dis-

can be eaS|I)1 fgut:\drE14,dlS#7,20-27]. As a practical mo?eltances, and in flat state measurements were made using the
paper crumpled by hand offers an attractive way to explorg,qr 1] of Foxit Reader free software [30] after digitalizing
the nature of complexity, and also represents a good optiog, corresponding images of each different size sheet. The

to e_mulate some natural systems to extrgpolate an_d co rr(alagf"iginal form, crumpled and flat states of paper sheets, are
their properties. In the present work we will focus principally shown in Fig. 1. Measuring the minimum distance between

in just one fractal dimension of this set of universality cIass,[Wo points located in the same face of a sheet was an easy

scaling exponents, this is the shortest path fractal dlmensm\rﬂvork, but in order to get measurements of distances of a pair

defined by the scalin_g relation [26,28,29] (the present CaS&f points in opposite sides of the flat sheet we devised the
crumpled elastoplastic paper balls) topological transformation presented in Fig. 2. For this case
Linin ¢ Lo@min (1) four distances data were obtained, the smallest one was cho-
sen.
wherely,;, represents the chemical distance or shortest path  once final data were collected a statistic analysis proce-
and!. the Pythagorean or Euclidean distance. The shortegfyre was started for each of the four sizes, we first began real-
pathin, is clearly defined between two vertices randomly jzing a probability distributions tests in order to choose those
chosen on the crumpling network. Initially this quantity was pnes that best fit to our length data [17,20,21,23,26,29]. We
studied extensively by authors of [18,28] for percolation clusound that Gamma and Log-Normal distributions fitted very
ter in 2D and 3D and re-write for the case of crumpling phe-yell in analogy with results of the study of length of crum-
nomena [25,26]. Authors of [26] working with digitized im- pled creases reported in [20,21,29]. Figure 3 is an example
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FIGURE 1. Copy paper type employed in the experiment. (a) Relaxed strain crumpled configuration and (b) Digitized sheet after being
unfolded and flattened. The black corners were a guide to de eye.
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FIGURE 2. (a) and (b) images correspond to the topological transformation made on a virtual sheet just to show the process we followed,

color points schematize the randomly assigned points on the surface of the crumpled ball, (c) image show a real one transformed digitized
flatted sheet.
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FIGURE 3. Statistical distributions of lengths between points randomly assignment on the surface of the hand crushed paper are shown.
Curves: (a) 12 cm size paper; solid curve correspond to gamma distributiomvwithi 9.326 and 5 = 0.6581, dashed curve corresponds
to Log-Normal distribution withy, = 2.5143 ando = 0.24918, (b) all the sizes of paper balls used in this work; solid curve correspond

to gamma distribution withy = 6.9167 and 8 = 3.2021, dashed curve corresponds to Log-Normal distribution wite= 3.0165 and
o = 0.4202.
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FIGURE 4. Log-log plots of chemical distances versus Euclidean distances between two any points are shown, data came from the randomly
set of points on the cuasi-spheres surfaces averaged over 30 balls each. Fitting cutvgs aret.8091122°; R? = 0.8342, lmin =
1.934211-3123: R2 = 0.7302, lyin = 8.21321231%; R? = 0.8114 andli, = 1.259211-2592; R? = 0.7636; for (a) 30 cm, (b) 22 cm, (c) 15

cm and (d) 10 cm respectively. Uniquely solid circles are considered, empty circles are excluded from fitting in all cases.
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value when compared with (3). But more interesting is the
TaBLE |. Shortest path fractal dimensions per each size of paperfact that (2) is also closely near up to one decimal to results
sheet. of Monte Carlo simulations, reported by Zongzhex@l. in
Side sheet size (cm) 30 22 15 10 [18] asd,i, = 1.3756 and older simulation made by Hans
. ) and Eugene [28] aé,.;, = 1.34 +0.01, both cases for three-
Shortest Path fractal dimension 1.296 1.3123 1.314 1.2592 jimensional percolation clusters. Despite the technical lim-
i itations and the errors induced during the measurement pro-
of the procedure we followed. Here, we show this test datqess the resemblance of value (2) with shortest path fractal

for the Euclidean distances, the cases of 12 cm size sheet aaﬁnension for 3D percolation system also could be not a co-

all sizes together are presented. .. incidence. In this sense, we suggest that a paper ball system
For this work we took the Gamma probability distribution 4e certain conditions can be viewed as an incrustation in

of this x* tests for goodngsg of fit (foIIowin_g authors of [29]), a three-dimensional percolation cluster, in that way any ran-
to get the same-probability intervals to build graphs shown "Hom pair of superficial points are contained inside the cluster,

Fig. 4[17,20,21,23,26,29]. L ) set of points randomly assigned on the ball plays the role of
A resume of the referred quantities is shownin Table I. - o 4omiy points arbitrarily chosen inside of the percolation
Global mean value can be written as system. from a statitical point of view, individual results do

domin = 1.2953 & 0.02 (2)  not give much information. But when he results from dif-
ferente sizes of sheets became similar, it tells us that we can

Itis interesting to point out that, by definition, the chemi- he dealing with the same kind of universality among other
cal fractals dimensions in flat an crumpled configurations ar¢ractals dimensionalities, as suggested in [26]. We want to
both equal ¢f*" = 2); Even more, these quantities with mass emphasize that results presented here were obtained for copy
fractal dimension [23,26D; (~ (8/3)) whered®3 repre-  paper type sheets. However, it has been shown in experi-
sents the shortest path fractal dimension in a folded ball ofnents with different kind of elastoplastic thin sheets folded
thin sheet. 4 by hand, that the internal structure of the balls after a com-

dﬁ‘f‘i'L - 3 plete strain relaxation, obeys not only scale invariancehut
3 : .

Is important to note that (3) is just valid for elastoplas- is not material dependent [23]. On the other ha.nd, authorg of
tic sheets, and correspond to a fractal property of crumplin 31] had maQe a stud.y of thg lateral deformatlpns for axial
network in the folded configuration. In that sense we postu-, ra_dlal Con_flnement n pla_lstlc and elastoplastic thin sheets

npdlng that just elastoplastic sheets obey a power law behav-

late that (2) could also be universal, because for elastoplast howina this that plastic thin sheets bel to a diff i
paper sheets it has been shown [21,23] thais universal or, showing this that plastic thin sneets belong to a ditteren
niversality class. In that sense, we expect that our results

only after a complete relaxation of the elastic tensions due td ; . - :

self-avoiding interactions. are generally valid fqr thin gelf—avmdmg elastoplastic matter
In Fig. 4 we can see the log-log plot made for each sizeafter the corresponding strain relaxation.

sheet, in total more than 5500 measurements were realized

and graphs exhibit that,,;,, for this experiment is indepen- 4. Conclusions

dent of the sheet sizk.

In conclusion, we determined the shortest path fractal di-
3. Discussion mensiond,i, for a crumpled elastoplastic paper ball relating

measurements of length in crumpled and flat configurations
Notwithstanding we did not smooth or neglect points excepto be1.2953 £+ 0.02. That result is independent of the sheet
empty circles in last two cases (we are presenting the originaize L. We think that numerical resemblance with percola-
set of resulting points), percentage error between expressioi®n system is not just a numerical coincidence, even more,
(2) and (3) is almost 3 percent. We believe that numericalve postulate that a paper ball system can emulate in some
result described by (2) for the shortest path fractal dimenmanner a subsystem of type like the three-dimensional per-
sion may have a different meaning than just a coincidentatolation one.
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