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Shortest path fractal dimension for randomly crumpled thin paper sheets
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We realized a study of the shortest path fractal dimensiondmin in three dimensions for randomly crumpled paper balls. We took measure-
ments among all possible combinations of pairs of points in crumpled and flat configurations. We found that a correlation between these
distances exists, even more, such mean experimental value isdmin = 1.2953± 0.02 that coincides almost numerically with the very known
3D shortest path fractal dimension for percolation systems reported in computational simulations.
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1. Introducction

Thin folded matter configurations are present in nature. Some
natural physical systems have a minimal state energy incrum-
pled configuration. Proteins are an example, and their proper-
ties have been studied [1-3]. Other systems like polymerized
membranes [4-7], graphene nanosheets [8-13] and crumpled
paper balls [14,15,17,19-27] have been well studied and they
are reported in literature. Authors of [17,18,21,23-27] had
made remarkable findings working with thin folded matter,
particularly randomly crumpled paper. A complete study of
mechanical and dynamical properties of crumpled paper balls
and many different measurements of fractals quantities has
been reported in [26]. In this sense the experimental and the-
oretical studies in crumpling phenomena is nowadays a very
fertile area in science. Analytical relationships and numer-
ical scaling exponents (fractal dimensionalities) have been
stablished in relation to the morphological transformation of
a flat sheet into a crumpled ball, and intensive studies over
the recent decades had been made, fractal dimensionalities
as chemical, random walk, shortest path, spectral, and others
can be easily found [14,15,17,20-27]. As a practical model,
paper crumpled by hand offers an attractive way to explore
the nature of complexity, and also represents a good option
to emulate some natural systems to extrapolate and correlate
their properties. In the present work we will focus principally
in just one fractal dimension of this set of universality class
scaling exponents, this is the shortest path fractal dimension
defined by the scaling relation [26,28,29] (the present case:
crumpled elastoplastic paper balls)

lmin ∝ le
dmin (1)

wherelmin represents the chemical distance or shortest path
and le the Pythagorean or Euclidean distance. The shortest
path lmin is clearly defined between two vertices randomly
chosen on the crumpling network. Initially this quantity was
studied extensively by authors of [18,28] for percolation clus-
ter in 2D and 3D and re-write for the case of crumpling phe-
nomena [25,26]. Authors of [26] working with digitized im-

ages of stamped crumpling networks of paper balls got exper-
imentally thedmin value, finding that over 500 realizations
dmin

(2) = 1.15 ± 0.06 anddmin
(3) = 1.53 ± 0.16 for the

crumpling network in the flat and crumpled configurations
respectively. In that sense this tedious but simple experiment
looks for determining the shortest path fractal dimension be-
tween pairs of points randomly assigned on the surface of the
cuasi-sphere paper balls correlating distances for the flat and
crumpled configurations.

2. Experimental details and results

We started the experiment crushing by hand square sheets of
copy paper type into quasi-spherical balls of diameter R, orig-
inal sheet sizes edges wereL = 12, 15, 22 y 30 cm. After we
have turned a flat sheet into a ball we randomly assigned a
collection of points on its surface and then a complete strain
relaxation was permitted during 9 to10 days [21,23]. To iden-
tify each randomly assigned point, a color code was needed.
30 balls of each size were measured. In the crumpled state,
a digital Vernier caliper was used to get the Euclidean dis-
tances, and in flat state measurements were made using the
ruler tool of Foxit Reader free software [30] after digitalizing
the corresponding images of each different size sheet. The
original form, crumpled and flat states of paper sheets, are
shown in Fig. 1. Measuring the minimum distance between
two points located in the same face of a sheet was an easy
work, but in order to get measurements of distances of a pair
of points in opposite sides of the flat sheet we devised the
topological transformation presented in Fig. 2. For this case
four distances data were obtained, the smallest one was cho-
sen.

Once final data were collected a statistic analysis proce-
dure was started for each of the four sizes, we first began real-
izing a probability distributions tests in order to choose those
ones that best fit to our length data [17,20,21,23,26,29]. We
found that Gamma and Log-Normal distributions fitted very
well in analogy with results of the study of length of crum-
pled creases reported in [20,21,29]. Figure 3 is an example
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FIGURE 1. Copy paper type employed in the experiment. (a) Relaxed strain crumpled configuration and (b) Digitized sheet after being
unfolded and flattened. The black corners were a guide to de eye.

FIGURE 2. (a) and (b) images correspond to the topological transformation made on a virtual sheet just to show the process we followed,
color points schematize the randomly assigned points on the surface of the crumpled ball, (c) image show a real one transformed digitized
flatted sheet.
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FIGURE 3. Statistical distributions of lengths between points randomly assignment on the surface of the hand crushed paper are shown.
Curves: (a) 12 cm size paper; solid curve correspond to gamma distribution withα = 19.326 andβ = 0.6581, dashed curve corresponds
to Log-Normal distribution withµ = 2.5143 andσ = 0.24918, (b) all the sizes of paper balls used in this work; solid curve correspond
to gamma distribution withα = 6.9167 andβ = 3.2021, dashed curve corresponds to Log-Normal distribution withµ = 3.0165 and
σ = 0.4202.

FIGURE 4. Log-log plots of chemical distances versus Euclidean distances between two any points are shown, data came from the randomly
set of points on the cuasi-spheres surfaces averaged over 30 balls each. Fitting curves arelmin = 4.8091l1.296

e ; R2 = 0.8342, lmin =
1.9342l1.3123

e ; R2 = 0.7302, lmin = 8.2132l1.314
e ; R2 = 0.8114 andlmin = 1.2592l1.2592

e ; R2 = 0.7636; for (a) 30 cm, (b) 22 cm, (c) 15
cm and (d) 10 cm respectively. Uniquely solid circles are considered, empty circles are excluded from fitting in all cases.
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TABLE I. Shortest path fractal dimensions per each size of paper
sheet.

Side sheet size (cm) 30 22 15 10

Shortest Path fractal dimension 1.296 1.3123 1.314 1.2592

of the procedure we followed. Here, we show this test data
for the Euclidean distances, the cases of 12 cm size sheet and
all sizes together are presented.

For this work we took the Gamma probability distribution
of thisχ2 tests for goodness of fit (following authors of [29])
to get the same-probability intervals to build graphs shown in
Fig. 4 [17,20,21,23,26,29].

A resume of the referred quantities is shown in Table I.
Global mean value can be written as

dmin = 1.2953± 0.02 (2)

It is interesting to point out that, by definition, the chemi-
cal fractals dimensions in flat an crumpled configurations are
both equal (dball

l = 2); Even more, these quantities with mass
fractal dimension [23,26]Dl (≈ (8/3)) wheredball

min repre-
sents the shortest path fractal dimension in a folded ball of
thin sheet.

dball
min ≈

4
3

(3)

Is important to note that (3) is just valid for elastoplas-
tic sheets, and correspond to a fractal property of crumpling
network in the folded configuration. In that sense we postu-
late that (2) could also be universal, because for elastoplastic
paper sheets it has been shown [21,23] thatDl is universal
only after a complete relaxation of the elastic tensions due to
self-avoiding interactions.

In Fig. 4 we can see the log-log plot made for each size
sheet, in total more than 5500 measurements were realized
and graphs exhibit thatdmin for this experiment is indepen-
dent of the sheet sizeL.

3. Discussion

Notwithstanding we did not smooth or neglect points except
empty circles in last two cases (we are presenting the original
set of resulting points), percentage error between expressions
(2) and (3) is almost 3 percent. We believe that numerical
result described by (2) for the shortest path fractal dimen-
sion may have a different meaning than just a coincidental

value when compared with (3). But more interesting is the
fact that (2) is also closely near up to one decimal to results
of Monte Carlo simulations, reported by Zongzhenget al. in
[18] asdmin = 1.3756 and older simulation made by Hans
and Eugene [28] asdmin = 1.34± 0.01, both cases for three-
dimensional percolation clusters. Despite the technical lim-
itations and the errors induced during the measurement pro-
cess, the resemblance of value (2) with shortest path fractal
dimension for 3D percolation system also could be not a co-
incidence. In this sense, we suggest that a paper ball system
under certain conditions can be viewed as an incrustation in
a three-dimensional percolation cluster, in that way any ran-
dom pair of superficial points are contained inside the cluster,
set of points randomly assigned on the ball plays the role of
randomly points arbitrarily chosen inside of the percolation
system. from a statitical point of view, individual results do
not give much information. But when he results from dif-
ferente sizes of sheets became similar, it tells us that we can
be dealing with the same kind of universality among other
fractals dimensionalities, as suggested in [26]. We want to
emphasize that results presented here were obtained for copy
paper type sheets. However, it has been shown in experi-
ments with different kind of elastoplastic thin sheets folded
by hand, that the internal structure of the balls after a com-
plete strain relaxation, obeys not only scale invariance butDl

is not material dependent [23]. On the other hand, authors of
[31] had made a study of the lateral deformations for axial
a radial confinement in plastic and elastoplastic thin sheets
finding that just elastoplastic sheets obey a power law behav-
ior, showing this that plastic thin sheets belong to a different
universality class. In that sense, we expect that our results
are generally valid for thin self-avoiding elastoplastic matter
after the corresponding strain relaxation.

4. Conclusions

In conclusion, we determined the shortest path fractal di-
mensiondmin for a crumpled elastoplastic paper ball relating
measurements of length in crumpled and flat configurations
to be1.2953 ± 0.02. That result is independent of the sheet
sizeL. We think that numerical resemblance with percola-
tion system is not just a numerical coincidence, even more,
we postulate that a paper ball system can emulate in some
manner a subsystem of type like the three-dimensional per-
colation one.
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