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Non-linear radiation influence on oblique stagnation point flow of Maxwell fluid
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Non-linear thermal radiation effects on non-aligned stagnation point flow of Maxwell fluid have been carried out in the present investigation.

It is observed that the non-linear radiation augments the temperature and heat transfer rate. This physical phenomenon is translated into a
system of partial differential equations (PDES). After useful transformation, these non-linear constitutive equations are transformed into a
system of ordinary differential equations (ODESs) and interpreted numerically by means of parallel shooting technique. Effects of pertinent
parameters on flow and heat transfer are elaborated through tables and graphs. It is observed that radiation and surface heating enhance
the rate of heat transfer, however Prandtl number has inverse relation with thermal boundary layer thickness. It has been observed that for
increasing Prandtl number, heat transfer rate enhances. The detailed discussion of heat transfer rate is also presented in this study. Flow
pattern is judged through streamlines graphs. It is also observed that oblique stagnation point flow behaves like orthogonal stagnation point
flow, when free stream velocity is very large as compared to stretching velocity.

Keywords: Maxwell fluid; oblique stagnation point; thermal radiation; parallel shooting method.
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1. Introduction of oblique stagnation point flow for viscoelastic fluid model,
Mahapatraet al. [10] studied radiation effects in oblique

A stagnation-point arises when fluid strikes at a surface andst@gnation point region, Loét al. [11], considered micropo-

its velocity becomes zero. During the last few decades, stad@r fluid model and Yajuret al. [12] studied magnetic effects
nation point flows have been studied by many researcher§n heat and fluid flow in stagnation point region.

The interest of researchers in stagnation point flow is due Unlike Newtonian fluid model, which are governed by
to its wide applications in industrial and engineering prob-a single constitutive equation, non-Newtonian fluid models
lems, such as cooling of nuclear reactors and electronic deéwe complex and it is hard to express them in a single con-
vices by fans, solar central receivers exposed to wind currensiitutive equation. Different types of models have been pro-
[1-3], the environment [4] and several others. The maximunposed by many researchers due to their applications in in-
heat transfer and pressure gradient are observed in the regignstries. Amongst these models, the Maxwell model has re-
of the stagnation point flow. Figure 1 shows that the fluidceived a special attention due to its simplicity describing the
strikes at a stretching surface with an arbitrary angle of intheological effects of viscoelastic fluids. Wang and Tan [13],
cidence, and the fluid away from the surface moves with thé!ised modified Maxwell model to study the linear stability
free stream velocity/. = ax + by (z andy are coordinates With soret effects. They found that oscillatory convection
alongz-axis andy-axis respectively and andb are dimen-  of system destabilized by the soret effect and instability of
sional constants having dimension [1/T]). Stuart [5] was thethe system increases with the increase of relaxation time.
first who initiated the work in this field and found analyti- Noor Fadiya [14] studied the hydromagnetic flow of Maxwell
cal solution for the case when fluid impinging obliquely at fluid under thermophoretic effects and found Homotopic so-
the plane surface. Tamada [6], and Dorrepaal [7], generalutions and analyzed that the boundary layer thickness is de-
ized the case of stagnation point. In their study, they foundreasing function of thermophoretic parameter. Javed and
the solution of oblique stagnation point flow (when the fluid Ghaffari [15], generalized the idea of stagnation point flow
is making acute angle with the plate). However, at right an-of Maxwell fluid. Abel et al. [16], Mukhopadhyay [17],

gle the case of orthogonal stagnation point flow can also b&ladeemet al. [18] also carried out further studies.

achieved. Oblique stagnation flow over a stretching surface Flow over a stretching surface has significant importance
was initially investigated by Reza and Gupta [8]. They founddue to its extensive use in industries such as wire drawing,
that no boundary layer exits when stretching and free strearot rolling, cooling of metallic sheets, glass fibers, and many
velocities become same. Husahal. [9] extended the work others. Magyari and Keller [19] widely discussed this topic
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Where “div” represents divergence operalor= [u, v, 0]
is the velocity vectory and are velocity components along

B \—'\ x Z andy coordinates. Where bar represents the dimensional
N - guantities, later these quantities will be converted into dimen-
Iy €———— Us=cx ——> sionless formp is the pressure is the densityk is the ther-

mal conductivity of the fluidg,, is the specific heat at constant
FIGURE 1. Sketch of the physical plane considered in this study. pressurel’ and represents the temperature of the fluid. The

radiative heat fluxg,. and extra stress tens8rfor Maxwell
theoretically and numerically. During the last few decadesfluid are defined as
the study of stagnation point flow over a stretching surface
has remained an interesting problem for many researchers. Gr = —
Crane [20] was the first, who studied the stretching sheet
problem and found analytical solution. Rajagopgél. [21] _  _ DS _
was among the earlier scientists who studied the flow of S+ Alﬁ = HA1, ®)
a viscoelastic fluid over a stretching sheet, Mahapatra and

Gupta [22] discussed magnetic effects in the region of théNherea*’ o, 05, i, and), are the Stefan-Boltzmann con-

. ) . tant, the R I ti fficient, th t-
stagnation point flow over a stretching sheet. Natat [23] stant, the Rosseland mean absorption coefficient, the sca

. : . . : . tering coefficient, dynamic viscosity of the fluid, and relax-
investigated a micropolar fluid flow over a stretching sheet in 9 y y

the stagnation point region. Later, Layekal. [24], Hayat Z?EE;Q?:;;S? dn;gtne;:jalb;especwel&l s the first Riviin-
et al. [25], Zhuet al. [26], and Bhattacharyya [27] discussed
various effects of the stagnation point flow on linear and non- A =L+ [T, (6)
linear stretching surface.

During the technological processes at high temperatureghereL is the velocity gradient anl” represents its trans-
(e.g cooling glass sheet etc.), thermal radiation effects playose defined as
an important role which cannot be neglected. Gupta and o ou 9a

dox  OT*

3(ay 4 04) 0 “)

Gl
Gupta [28] studied the heat transfer over a stretching surface _ oz dy o oz 0z 0

with suction or blowing and discussed the different aspects L = % 2—;; 0 andL; = ?TZ %Z 0

of the problem. Regently, Mahapatra and.Gupta [29] investi- 0O 0 0 0 0 0

gated heat transfer in stagnation point region toward a stretch- . . _

ing sheet. Raptigt al. [30] studied the effects of thermal The operatoD/ Dt is defined for a contravariant vector

radiation on hydromagnetic flow. Pat al [31] extended and fora contravarian'g tensor of rank 2 respectively in Eq. (7)
the work of Mahapatra and Gupta by introducing radiationand (8) as suggested in Ref. 33

effects. In present problem study of oblique stagnation point DS 4S5 .

flow of Maxwell fluid with radiation effects over a stretching D@ LS, )
sheet has been carried out numerically using parallel shoot- _ _

ing technique. Effects of different parameter on heat and fluid Ds _ as [(s_g” @8)
flow are discussed through tables and graphs. in detail. An Dt dt )

excellent agreement of results has been found with €&op Applying divergence on both sides of Eq. (5), we get
al. [31] and Labropuliet al. [32].

D _ _
(1—)\1D1L)V~S:MV~A1, (9)

2. Flow equations operating(1 + A, (D/Dt)) on both side of Eq. (2) and then
eliminating(1 + A (D/Dt))V - Sfrom Eq. (9), we obtain

In present study, steady two-dimensional oblique stagnation D v ~

point flow of Maxwell fluid over a stretching sheet is consid- <1 — )\1) (pdt + Vp) =uV-A;. (20)

ered. The stretching sheet is taken along the plane 0

and flow is confined along-axis. The sheet is stretched with The second factor on left side of the above equation is a

velocity U,, = cz, wherec (> 0) is stretching constant. The vector, using Egs. (7) and (1), Eq. (10) takes the following

governing equations of the present problem are form in components
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x-component: Let us assume that ambient temperature of the fluid is
- - ) ) T, and the temperature of the stretching platé,js The en-
a@ + 1—)@ — _Llop A (uap ~ O ergy equation in dimensionless form using the transformation
oz oy p0T  p \  0x2 31’33/ given in Eq. (15) reduces to the following form
— — 2_ 2_
????)”(23*23) LT oT _10((
ror. oyoy v y dr 9y  Proy
0%u 0% 0°u
— 52 i 2 4 oT
(55 2+ ) D + R+ 0, - 0T ). a8)

y-component: and boundary conditions are

SO BT, Y e ..
or oy poy 972 970y T(0)=1, T(c0)=0, (19)
B Jv Op - 0v Op v 0%v  0*u where Pr is the Prandtl numbéy, is the surface temperature,
070z 0y 0y o2 " a2 and Rd is the radiation parameter defined as:
8%v 0%v 027 T 4 T3
-\ <52 2y T ) (12) _H oy tw _ M0l
8y2 0x0Y 0x2 Pr P O T’ Rd Hor Tt ol (20)

The boundary conditions of the current flow problem are

29] By using the continuity equation, we define the stream

function such that

’ u:a—w, vz—a—w (21)
W =ar+by, as y— oo (13) % Oz

Now substituting Eq. (21) in Egs. (16-19)

N
o
S]]
<
o
Q
~—+
<
I
(a]

wherea, b and ¢ are positive constants having dimension
(time)~!. By using boundary layer approximation [31], the

2 2 2 93
above equations reduce to the following form Op (W _ 0% (0 +8 O o
Ay \ O0xdy oz \ 8y? oxdy ) 0Oy?
*@_‘_*@—_l@_ﬁ _@@ V@ 3 2 3
Yor "Ve5 T poz p \ 850y 012 _ Q0% 0Y O (00N O
2y o Oy Ox Oxdy Oy ) 0x20y
o (220 g 0T +*28“ (14)
N\ g2 “axay 912 )’ aP 8% 9P 0%y
“ o ey top B
Introducing the following transformation as suggested by
Labropuluet al. [29] 871/182 _ aﬁai — Lg 1 4
dy 0x Ox 0y  Prdy 3
_= /¢ — —\/E _ 1. oT
TR YT T e de(1+(6w—1)T)3>8y>, (23)
1 _ 1
vE e =g (15) y=0: =0, Z—Z):x, T=1
We obtain the following equation in dimensionless form a 1,
y—oor y=-ay+oyy, T=0, (24)
ou Ju  Op Ou dp 0%u ¢
Yo +U@ = or T\ T away) Vo2 where 3 = \ic is a dimensionless number called Debo-

92 52 52 rah number, which represents the fluidity of the material and
- )\10(@2 Z touw—2 ¢ u22>7 (16) 7 = b/c represents the shear in the free stream. Suppose

Iy 9zdy Oz that the solution of Egs. (22,23) subjected to the boundary
conditions defined in Eq. (24) is of the form

and boundary conditions take the form as

u=z, v=0 at y=0, v=2f{y) +9l), T=0@) (25)
_a b where the functiong (y) and g(y) are normal and oblique
v=gT * c as y— oo (7) component of the flows. Using the Eqg. (25) in Egs. (22-24),
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we get
F)af () +9'(y) — fF)f(y) + 9" (y)
BUFW) 2 f" () + g™ (v))
—2f()f" () (xf (y) + 9 (v)))
oP . oP
=55 A+ (y))afy
+xf"(y) + 9" (y), (26)
ﬁ é _ 3 /
3 HH S Rd(1+ (0 — 1)0) }9}
+Prfo =0, 27)
y=0: f(y)=0, fly)=1,
9(y)=4g'(y) =0, O=1
y—oo: fllyy=-, dW=ry, 6=0. (28)

After eliminating the pressure, Eq. (26) takes the form as
Pt (W) +9d'W) = f)f" @) +9" )
+B((F ) (@f " (y) + 9" ()
—2fW)f" (W)@ f (y) + 9 ()

=z (%)2 — Ay +azf"(y) + 9" (v), (29)

423

It is necessary to mentioned here that for a Newtonian
fluid (8 = 0) and orthogonal stagnation point flowy & 0)
Egs. (30) and (32) reduce to Egs. (6) and (7) as reported by
Popet al. [31]. The dimensionless components of velocity
are

oy

u= g, =o' W) +9'W)
v=-2 = s (36)

The physical quantity of interest is the local Nusselt num-
ber, which is defined as

Tqw
k(Ty — Two)

_ 16073 L 877_’
o = 3(ay +0s) 0y
Upon using dimensionless variables given in Eq. (15) the
above equation reduces to

Nu, = and

(37)

Nug(Re,) V2% = — <1 + ;leef’U) 0'(0). (38)

3. Numerical method

Non-linear equations (30), (32), and (34) subject to the
boundary conditions (33) and (35) have been solved numeri-
cally by using parallel shooting method [34]. For the solution

where A is a constant that accounts the boundary layer disof highly non-linear problems, the parallel shooting method

placement. After comparing the coefficientsadfandz® in
Eq. (29), following system of equations is obtained

a\ 2
P = (2) B 1) =0 (@30)

is better as compared to the simple shooting method because
the simple shooting method is hard to use due to its depen-
dence on initial guess. The method of parallel shooting is
very efficient for the solution of this kind of problems. The
method is described as follows

" " !/ "/ 2 — A 31
AR A S 7 (81 (i) Equations (30), (32) and (34), are reduced in the sys-
Energy equation is tem of first order differential equations by lettiffig=
0 4 3\ ) fi.h = faandd = fg
o [{1 + S Rd(1+ (6., —1)0) }9} L Prfg =0 (32)
and boundary conditions are fi=rFn f2=1Ts
fi=1= gfz( fifs+f3—=2Bf1f2fs— (*) )
y=0: f(y)=0, f'(y) =1, f1 = fs,
g(y):g/(y):()’ 0(y) =1, 5 = 1— 15f12(_f1f5+f2f4_Qﬂflf3f4+A)
, a fG f77
y—oo: fly) =2, fr= (14 $RA(1+ (0, — 1)fo)*)
Jd ) =~y, 0y)=0. (33) ><((—4Rd(9w—1)(1+(9w—1)f6)2)(f7)2—P7“f1f7)

Where the prime denotes the derivative with respegt to
For the simplicity, a new variable is introduced which is de-
fined asg’(y) = vh(y), Eq. (31) with boundary conditions

and boundary conditions are expressed as

reduce to f1(0)=0, f(0)=1, f2(ysc) = %,
B' + fh' — f'h+ BRff"h— f?h) = A, (34) f1(0) = 0. f5(yoo) = 1,
h(0) = 0h'(c0) = 1. (35) f6(0) =1, f6(yoo) =0

Rev. Mex. Fis64(2018) 420-428
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TABLE |. The Numerical values of/(0), 4’ (0) and A for the different values /c, for Newtonian fluid 3 = 0).

e £"(0) W (0) A
Ref. 31 present Ref. 31 present Ref. 31 present
0.1 -0.96938 -0.96939 0.26278 0.26338 0.79170 0.79170
0.3 -0.84942 -0.84942 0.60573 0.60633 0.51949 0.51950
0.8 -0.29938 -0.29939 0.93430 0.93473 0.11452 0.11453
1 00 1 1 0 0
2 2.01750 2.01749 1.16489 1.16521 -0.41040 -0.41041
3 4.72928 4.72924 1.23438 1.23464 -0.69305 -0.69305
4 8.00042 8.00036 1.27272 1.27300 -0.91650 -0.91650
(i) The domain P,y..] is divided into n subintervals 12
[0. 9], [y, 921, [02.ya] . 1. 90 = yc]. For cON- &
vergence of solution, n can be increased sufficiently. 10f @
(iif) The problem is solved over each subinterval such that = 8 B=00204
it satisfies the boundary conditionsiat . T il
(iv) Initial guess is supplied for the first interval and then \§' 4
the obtained solution is taken as initial guess for the
next interval and so on. 2t y =20
alc=02
(v) Algorithm is developed in MATLAB R2010a. 0 . .
0 1 2 3 4 5
y
4. Results and discussion 15¢ ®

The nonlinear ordinary differential Eqs. (30), (32), and (34)
with boundary conditions (33) and (35) have been solved nu-
merically. The numerical values ¢f’(0), 4/(0), A and Nus-

selt number are shown in tables. In Table |, the comparison is
given for f/(0), h'(0), and boundary layer displacement *
with results obtained by Labropukt al. [32] wheng = 0.

It is found that the calculated results are highly accurate and
in good agreement with Labropulu [32]. It can be seen from

FIGURE 3. Variation in horizontal velocity profile: alongy, for
the different values off, when (a)a/c = 0.2, (b) a/c = 2.0 and
v = 2.0 are fixed.

the Table | that the value of”(0) is increasing with the
increase ofa/c. The comparison of Nusselt number with
the result obtained by Paogt al. [31] is shown in Table II.
The results shown in braces are reported by €ogl. [31].

Present results as a limiting case are shown in the Tables |

o rmmm
— =00
; ----B=02
S F wammm B ) 4
= 7=0.0
T
51
=
0.5
0 1 2 4

and Il, which establish a good agreement with the previous

] results. However, a small difference arises due to change

in numerical technique. In present study the parallel shoot-

FIGURE 2. Variation in horizontal velocity profile alongy for the ing method is used where Pa@t al. [31] solved with the
different values of3, whena/c = 0.1, 0.4, 2.0 andy = 0.

help of simple shooting method. For infinite domain, simple
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TaBLE II. The Numerical values of Nusselt number for the different value$, af/c and Pr.

Newtonian fluid ¢ = 0) Maxwell fluid (6 = 0.2)
alc Pr 0, =1.1 0w =2 0, =1.1 0w =2
Rd=1 Rd=10 Rd=1 Rd=10 Rd=1 Rd=10 Rd=1 Rd=10
0.05 0.11617 0.25815 0.17507 0.47034 0.11395 0.25587 0.17287 0.46827
(0.1159) (0.2587) (0.1750) (0.4737)
0.1 0.5 0.52056 0.98655 0.72129 1.64850 0.50358 0.96460 0.69977 1.62669
(0.5194) (0.9861) (0.7210) (1.6473)
1.0 0.83618 1.53603 1.15670 2.47460 0.81017 1.49404 1.11685 2.43044
(0.8337) (1.5335) (1.1550) (2.4763)
1.5 1.09838 2.00807 1.53495 3.16612 1.06728 1.94792 1.48047 3.09981
(1.0946) (2.0040) (1.5318) (3.1654)
0.05 0.21346 0.53127 0.34720 1.00664 0.21240 0.53059 0.34608 1.00489
(0.2131) (0.5305) (0.3465) (1.0013)
0.5 0.5 0.72884 1.74413 1.15842 3.246117 0.72128 1.73363 1.14868 3.23508
(0.7267) (1.7461) (1.1573) (3.2408)
1.0 1.06582 251678 1.68455 4.64451 1.05397 2.49782 1.66709 4.62336
(1.0621) (2.5121) (1.6823) (4.6404)
15 1.33262 3.12665 2.10291 5.73795 1.31792 3.09850 2.07912 5.70632
(1.3268) (3.1194) (2.0988) (5.7386)
0.05 0.28805 0.73736 0.47746 1.40927
(0.2888) (0.7517) (0.4772) (1.4104) 0.28805 0.73736 0.47746 1.40927
0.5 0.91092 2.33066 1.50985 4.45631 0.91092 2.33066 1.50985 4.45631
1.0 (0.9081) (2.3283) (1.5085) (4.4574) (4.4574)
1.0 1.28824 3.29605 2.13525 6.30218 1.28824 3.29605 2.13525 6.30218
(1.2833) (3.2882) (2.1315) (6.2985)
15 1.57778 4.03682 2.61515 7.71856 1.57778 4.03682 2.61515 7.71856
(1.5699) (4.0268) (2.6098) (7.7089)
0.05 0.39551 1.02982 0.66345 1.98097 0.39506 1.01129 0.65865 1.90525
(0.3948) (1.0292) (0.6627) (1.9811)
0.5 1.18876 3.17994 2.02722 6.18570 1.20143 3.18483 2.04074 6.14863
2.0 (1.1842) (3.1738) (2.0242) (6.1801)
1.0 1.64141 4.43873 2.81466 8.68359 1.66308 4.46166 2.84334 8.67191
(1.6332) (4.4280) (2.8093) (8.6779)
1.5 1.97902 5.38551 3.39844 10.57659 2.00662 5.42352 3.44386 10.58412

(1.9675) (5.3690)  (3.3938)  (10.5729)

shooting method is hard to use due to its dependence on inidscosity of the fluid. Increase in Prandtl number, physically
tial guess. In present study, the boundary edge reaches toeans viscosity of the fluid increases.

y = 200, for large value of radiation parameter and small  The effects of parameters namely, the velocity ratio pa-
Prandtl number. It is observed from the Table II, with therametera/c, the Deborah numbe?, the shearing parameter
increase of radiation parameter Rd the Nusselt number iny, the radiation parameter Rd, and the surface heating param-
creases.e. heat transfer rate increases with®f¢ and keep-  eterd,, on the velocity and temperature profiles are shown
ing Oy fixed. It is further observed that the value of Nusseltthrough Figs. 2-8. In Fig. 2, it is seen that due to stretching
number increases with increase of Prandtl number (Pr) due tand straining velocities two boundary layer structures appear
reason that the Prandtl number is directly proportional to theas reported by Mahapatra and Gupta [27]. Figures 2 and 3
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FIGURE 4. Variation in temperature profilé(y) for the different values of Rd, when Pr = 0.05= 0.2, v = 5.0, andéd,, = 2.0 are fixed.
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FIGURE 5. Variation in temperature profilé(y) for the different values of.,, when Pr=0.053 = 0.2, v = 5.0, and Ré&= 2.0 are fixed.
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FIGURE 6. Variation in temperature profilé(y) for the different values of Pr, wheh, = 1.5, 8 = 0.2, v = 5.0, and Ré= 2.0 are fixed.

depict the behavior of orthogonal stagnation point flow andn values ofg. In Fig. 3(a), it is observed that the effectdis
oblique stagnation point flowy( = 0) respectively for the very small for small values af/c. Itis noticed that the veloc-
different values ofg. From Fig. 2, It is observed that for ity of the fluid increases with the increase of whefe < 1
a/c < 1 boundary layer thickness and velocity decrease wittand it decreases with the increasesimhena/c > 1.

the increase in values gfbut fora/c > 1 velocity increases
and the boundary layer thickness decreases, with the increasgthogonal stagnation point flow is greater than that of or-

Figure 3 illustrates that the velocity in the case of non-
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1
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FIGURE 7. Variation in temperature profilé(y) for the different values of/c, when Pr=0.053 = 0.2, v = 5.0, andd,, = Rd = 2.0 are
fixed.
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FIGURE 8. Variation in temperature profilé(y) for the differ- \4;
ent values ofa/c, when Pr = 0.053 = 0.2, v = 5.0, and 0.8
6., = Rd= 2.0 are fixed. ’
) ) ) ~ 0.6]
thogonal stagnation point flow. Figures 4 and 5 show the
temperature profiles for the different values of the radiation- 0.4
conduction parameter Rd and surface heating parameter re-
spectively. In both figures, the thermal boundary layer thick- 0.2
ness increases with the increase of radiation-conduction pa-
rameter and surface heating parameter. Figure 6 shows the -f5
effects of Prandtl number on the temperature profile for small
and large values ofi/c. It depicts that with the increase figure 9. Streamlines for oblique flow (a)y =
of Prandtl number, the thermal boundary layer thickness deto(dashedlines), v =  30(solidlines) (b) ~ =
creases, meaning that fluids of high Prandtl number are re-10(dashedlines) v = —30(solidlines). when = 0.2,

sponsible for more heat transfer. The effects of Deboralu/c = 0.5 are fixed.

number on temperature profile have also been shown in

Fig. 7(a,b) for both small and large values of Prandtl number.  Figures 9 and 10 show the flow pattern of the oblique
Figure 7(a) shows the temperature profiledgr = 0.1. In  stagnation point flows+( # 0). Both cases of favorable
this case thermal boundary thickness increases with increage > 0) and unfavorabley < 0) are considered. Figure 9 il-

in the values of3. On the other hand, Fig. 7(b) shows an lustrates the increase in obliqgueness with increase in the val-
opposite behavior.e thermal boundary thickness decreasesues of shearing parameter In the stagnation point region
with increase in the values @f. In Fig. 8, the temperature the velocity of the fluid increases with increase in the values
profile for the different values aof/c (ratio of straining and  of |y|. Figure 10 further shows that by increasing free stream
stretching) is shown which depicts that with increase 4f,  velocity, the streamlines of oblique stagnation point flow look
thermal boundary layer thickness decreases respectively. like those of the orthogonal stagnation point flow.
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FIGURE 10. Stream lines for oblique flow, whefi = 0.1 and
~ = 5 for the different values of /c.
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5. Concluding remarks

The radiation effects on the flow of Maxwell fluid near the
oblique stagnation point over a stretching sheet is studied.
The effects of different parameters on heat and fluid flow are
discussed through graphs and tables. This study concludes
that the boundary layer thickness decreases with increase of
a/cin the oblique stagnation point flow. The thermal bound-
ary layer thickness increases with the increase of radiation-
conduction and surface heating parameters. It is also noted
that with the increase of free stream velocity the tempera-
ture of the fluid decreases near the wall. On the other hand,
temperature of the fluid increases with increase of stretching
velocity. The velocity of the fluid also increases with the in-
crease of shearing parameter
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