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Non-linear radiation influence on oblique stagnation point flow of Maxwell fluid
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Non-linear thermal radiation effects on non-aligned stagnation point flow of Maxwell fluid have been carried out in the present investigation.
It is observed that the non-linear radiation augments the temperature and heat transfer rate. This physical phenomenon is translated into a
system of partial differential equations (PDEs). After useful transformation, these non-linear constitutive equations are transformed into a
system of ordinary differential equations (ODEs) and interpreted numerically by means of parallel shooting technique. Effects of pertinent
parameters on flow and heat transfer are elaborated through tables and graphs. It is observed that radiation and surface heating enhance
the rate of heat transfer, however Prandtl number has inverse relation with thermal boundary layer thickness. It has been observed that for
increasing Prandtl number, heat transfer rate enhances. The detailed discussion of heat transfer rate is also presented in this study. Flow
pattern is judged through streamlines graphs. It is also observed that oblique stagnation point flow behaves like orthogonal stagnation point
flow, when free stream velocity is very large as compared to stretching velocity.
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1. Introduction

A stagnation-point arises when fluid strikes at a surface and,
its velocity becomes zero. During the last few decades, stag-
nation point flows have been studied by many researchers.
The interest of researchers in stagnation point flow is due
to its wide applications in industrial and engineering prob-
lems, such as cooling of nuclear reactors and electronic de-
vices by fans, solar central receivers exposed to wind currents
[1-3], the environment [4] and several others. The maximum
heat transfer and pressure gradient are observed in the region
of the stagnation point flow. Figure 1 shows that the fluid
strikes at a stretching surface with an arbitrary angle of in-
cidence, and the fluid away from the surface moves with the
free stream velocityUe = ax + by (x andy are coordinates
alongx-axis andy-axis respectively anda andb are dimen-
sional constants having dimension [1/T]). Stuart [5] was the
first who initiated the work in this field and found analyti-
cal solution for the case when fluid impinging obliquely at
the plane surface. Tamada [6], and Dorrepaal [7], general-
ized the case of stagnation point. In their study, they found
the solution of oblique stagnation point flow (when the fluid
is making acute angle with the plate). However, at right an-
gle the case of orthogonal stagnation point flow can also be
achieved. Oblique stagnation flow over a stretching surface
was initially investigated by Reza and Gupta [8]. They found
that no boundary layer exits when stretching and free stream
velocities become same. Husainet al. [9] extended the work

of oblique stagnation point flow for viscoelastic fluid model,
Mahapatraet al. [10] studied radiation effects in oblique
stagnation point region, Loket al. [11], considered micropo-
lar fluid model and Yajunet al. [12] studied magnetic effects
on heat and fluid flow in stagnation point region.

Unlike Newtonian fluid model, which are governed by
a single constitutive equation, non-Newtonian fluid models
are complex and it is hard to express them in a single con-
stitutive equation. Different types of models have been pro-
posed by many researchers due to their applications in in-
dustries. Amongst these models, the Maxwell model has re-
ceived a special attention due to its simplicity describing the
rheological effects of viscoelastic fluids. Wang and Tan [13],
used modified Maxwell model to study the linear stability
with soret effects. They found that oscillatory convection
of system destabilized by the soret effect and instability of
the system increases with the increase of relaxation time.
Noor Fadiya [14] studied the hydromagnetic flow of Maxwell
fluid under thermophoretic effects and found Homotopic so-
lutions and analyzed that the boundary layer thickness is de-
creasing function of thermophoretic parameter. Javed and
Ghaffari [15], generalized the idea of stagnation point flow
of Maxwell fluid. Abel et al. [16], Mukhopadhyay [17],
Nadeemet al. [18] also carried out further studies.

Flow over a stretching surface has significant importance
due to its extensive use in industries such as wire drawing,
hot rolling, cooling of metallic sheets, glass fibers, and many
others. Magyari and Keller [19] widely discussed this topic
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FIGURE 1. Sketch of the physical plane considered in this study.

theoretically and numerically. During the last few decades,
the study of stagnation point flow over a stretching surface
has remained an interesting problem for many researchers.
Crane [20] was the first, who studied the stretching sheet
problem and found analytical solution. Rajagopalet al. [21]
was among the earlier scientists who studied the flow of
a viscoelastic fluid over a stretching sheet, Mahapatra and
Gupta [22] discussed magnetic effects in the region of the
stagnation point flow over a stretching sheet. Nazaret al. [23]
investigated a micropolar fluid flow over a stretching sheet in
the stagnation point region. Later, Layeket al. [24], Hayat
et al. [25], Zhuet al. [26], and Bhattacharyya [27] discussed
various effects of the stagnation point flow on linear and non-
linear stretching surface.

During the technological processes at high temperatures
(e.g. cooling glass sheet etc.), thermal radiation effects play
an important role which cannot be neglected. Gupta and
Gupta [28] studied the heat transfer over a stretching surface
with suction or blowing and discussed the different aspects
of the problem. Recently, Mahapatra and Gupta [29] investi-
gated heat transfer in stagnation point region toward a stretch-
ing sheet. Raptiset al. [30] studied the effects of thermal
radiation on hydromagnetic flow. Popet al. [31] extended
the work of Mahapatra and Gupta by introducing radiation
effects. In present problem study of oblique stagnation point
flow of Maxwell fluid with radiation effects over a stretching
sheet has been carried out numerically using parallel shoot-
ing technique. Effects of different parameter on heat and fluid
flow are discussed through tables and graphs. in detail. An
excellent agreement of results has been found with Popet
al. [31] and Labropuluet al. [32].

2. Flow equations

In present study, steady two-dimensional oblique stagnation
point flow of Maxwell fluid over a stretching sheet is consid-
ered. The stretching sheet is taken along the planey = 0
and flow is confined alongy-axis. The sheet is stretched with
velocity Uw = cx, wherec (> 0) is stretching constant. The
governing equations of the present problem are

divV̄ = 0, (1)

ρ
dV̄
dt

= −∇p + divS̄, (2)

ū
∂T̄

∂x̄
+ v̄

∂T̄

∂ȳ
=

k

ρcp
∇̄2T̄ − 1

ρcp
∇̄ · qr, (3)

Where “div” represents divergence operator,V̄ = [ū, v̄, 0]
is the velocity vector,̄u andv̄ are velocity components along
x̄ and ȳ coordinates. Where bar represents the dimensional
quantities, later these quantities will be converted into dimen-
sionless form.p is the pressure,ρ is the density,k is the ther-
mal conductivity of the fluid,cp is the specific heat at constant
pressureT̄ and represents the temperature of the fluid. The
radiative heat fluxqr and extra stress tensorS̄ for Maxwell
fluid are defined as

qr = − 4σ∗
3(αr + σs)

∂T̄ 4

∂ȳ
, (4)

S̄+ λ̄1
DS̄
Dt

= µĀ1, (5)

whereσ∗, αr, αs, µ, andλ1 are the Stefan-Boltzmann con-
stant, the Rosseland mean absorption coefficient, the scat-
tering coefficient, dynamic viscosity of the fluid, and relax-
ation time of the material respectively.̄A1 is the first Rivlin-
Ericksen tensor defined by

Ā1 = L̄ + L̄T
, (6)

whereL̄ is the velocity gradient and̄LT
represents its trans-

pose defined as

L̄ =




∂ū
∂x̄

∂ū
∂ȳ 0

∂v̄
∂x̄

∂v̄
∂ȳ 0

0 0 0


 and L̄T

1 =




∂ū
∂x̄

∂v̄
∂x̄ 0

∂ū
∂ȳ

∂v̄
∂ȳ 0

0 0 0




The operatorD/Dt is defined for a contravariant vector
and for a contravariant tensor of rank 2 respectively in Eq. (7)
and (8) as suggested in Ref. 33

DS̄
Dt

=
dS̄
dt
− L̄ S̄, (7)

DS̄
Dt

=
dS̄
dt
− L̄ S̄− S̄L̄T

. (8)

Applying divergence on both sides of Eq. (5), we get
(

1− λ1
D

Dt

)
∇ · S̄ = µ∇ · Ā1, (9)

operating(1 + λ1(D/Dt)) on both side of Eq. (2) and then
eliminating(1 + λ1(D/Dt))∇ · S̄ from Eq. (9), we obtain

(
1− λ1

D

Dt

)(
ρ
dV̄
dt

+∇p

)
= µ∇ · Ā1 . (10)

The second factor on left side of the above equation is a
vector, using Eqs. (7) and (1), Eq. (10) takes the following
form in components
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x-component:

ū
∂ū

∂x̄
+ v̄

∂ū

∂ȳ
= −1

ρ

∂p

∂x̄
− λ1

ρ

(
ū

∂2p

∂x̄2
+ v̄

∂2p

∂x̄∂ȳ

− ∂ū

∂x̄

∂p

∂x̄
− ∂ū

∂ȳ

∂p

∂ȳ

)
+ v

(
∂2ū

∂x̄2
+

∂2ū

∂ȳ2

)

− λ1

(
v̄2 ∂2ū

∂ȳ2
+ 2ūv̄

∂2ū

∂x̄∂ȳ
+ ū2 ∂2ū

∂x̄2

)
, (11)

y-component:

ū
∂ū

∂x̄
+ v̄

∂ū

∂ȳ
= −1

ρ

∂p

∂ȳ
− λ1

ρ

(
v̄
∂2p

∂ȳ2
+ ū

∂2p

∂x̄∂ȳ

− ∂v̄

∂x̄

∂p

∂x̄
− ∂v̄

∂ȳ

∂p

∂ȳ

)
+ v

(
∂2v̄

∂x̄2
+

∂2ū

∂ȳ2

)

− λ1

(
v̄2 ∂2v̄

∂ȳ2
+ 2ūv̄

∂2v̄

∂x̄∂ȳ
+ ū2 ∂2v̄

∂x̄2

)
, (12)

The boundary conditions of the current flow problem are
[29]

ū = cx̄, v̄ = 0 at ȳ = 0,

ū = ax̄ + bȳ, as ȳ →∞, (13)

wherea, b and c are positive constants having dimension
(time)−1. By using boundary layer approximation [31], the
above equations reduce to the following form

ū
∂ū

∂x̄
+ v̄

∂ū

∂ȳ
= −1

ρ

∂p

∂x̄
− λ1

ρ

(
− ∂ū

∂ȳ

∂p

∂ȳ

)
+ v

∂2ū

∂ȳ2

− λ1

(
v̄2 ∂2ū

∂ȳ2
+ 2ūv̄

∂2ū

∂x̄∂ȳ
+ ū2 ∂2ū

∂x̄2

)
, (14)

Introducing the following transformation as suggested by
Labropuluet al. [29]

x = x̄

√
c

v
, y = ȳ

√
c

v
, u =

1√
vc

ū,

v =
1√
vc

v̄, P =
1

ρvc
p, (15)

We obtain the following equation in dimensionless form

u
∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
+ λ1c

(
− ∂u

∂y

∂p

∂y

)
+ v

∂2u

∂y2

− λ1c

(
v2 ∂2u

∂y2
+ 2uv

∂2u

∂x∂y
+ u2 ∂2u

∂x2

)
, (16)

and boundary conditions take the form as

u = x, v = 0 at y = 0,

u =
a

c
x +

b

c
y, as y →∞ (17)

Let us assume that ambient temperature of the fluid is
T∞ and the temperature of the stretching plate isTw. The en-
ergy equation in dimensionless form using the transformation
given in Eq. (15) reduces to the following form

u
∂T

∂x
+ v

∂T

∂y
=

1
Pr

∂

∂y

((
1

+
4
3
Rd(1 + (θw − 1)T )3

)
∂T

∂y

)
, (18)

and boundary conditions are

T (0) = 1, T (∞) = 0, (19)

where Pr is the Prandtl number,θw is the surface temperature,
and Rd is the radiation parameter defined as:

Pr =
µcp

k
, θw =

Tw

T∞
, Rd =

4σ ∗ T 3
∞

k(αr + σs)
. (20)

By using the continuity equation, we define the stream
functionψ such that

u =
∂ψ

∂y
, v = −∂ψ

∂x
(21)

Now substituting Eq. (21) in Eqs. (16-19)

∂ψ

∂y

(
∂2ψ

∂x∂y

)
− ∂ψ

∂x

(
∂2ψ

∂y2

)
+ β

( (
∂ψ

∂x∂y

)2
∂3ψ

∂y3

− 2
∂ψ

∂y

∂ψ

∂x

∂3ψ

∂x∂y
+

(
∂ψ

∂y

)2
∂3ψ

∂x2∂y

)

= −∂P

∂x
+ β

∂2ψ

∂y2

∂P

∂y
+

∂3ψ

∂y3
(22)

∂ψ

∂y

∂T

∂x
− ∂ψ

∂x

∂T

∂y
=

1
Pr

∂

∂y

((
1 +

4
3

×Rd(1 + (θw − 1)T )3
)

∂T

∂y

)
, (23)

y = 0 : ψ = 0,
∂ψ

∂y
= x, T = 1

y →∞ : ψ =
a

c
xy +

1
2
γy2, T = 0, (24)

where β = λ1c is a dimensionless number called Debo-
rah number, which represents the fluidity of the material and
γ = b/c represents the shear in the free stream. Suppose
that the solution of Eqs. (22,23) subjected to the boundary
conditions defined in Eq. (24) is of the form

ψ = xf(y) + g(y), T = θ(y), (25)

where the functionsf(y) andg(y) are normal and oblique
component of the flows. Using the Eq. (25) in Eqs. (22-24),
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we get

f ′(y)(xf ′(y) + g′(y))− f(y)(xf ′′(y) + g′′(y))

+ β((f(y))2(xf ′′′(y) + g′′′(y))

− 2f(y)f ′′(y)(xf ′(y) + g′(y)))

= −∂P

∂x
+ β(xf ′′(y) + g′′(y))

∂P

∂y

+ xf ′′′(y) + g′′′(y), (26)

∂

∂y

[{
1 +

4
3
Rd(1 + (θw − 1)θ)3

}
θ′

]

+ Prfθ′ = 0, (27)

y = 0 : f(y) = 0, f ′(y) = 1,

g(y) = g′(y) = 0, θ = 1

y →∞ : f ′(y) =
a

c
, g′(y) = γy, θ = 0. (28)

After eliminating the pressure, Eq. (26) takes the form as

f ′(y)(xf ′(y) + g′(y))− f(y)(xf ′′(y) + g′′(y))

+ β((f(y))2(xf ′′′(y) + g′′′(y))

− 2f(y)f ′′(y)(xf ′(y) + g′(y)))

= x
(a

c

)2

−Aγ + xf ′′′(y) + g′′′(y), (29)

whereA is a constant that accounts the boundary layer dis-
placement. After comparing the coefficients ofx1 andx0 in
Eq. (29), following system of equations is obtained

f ′′′+ff ′′−(f ′)2+
(a

c

)2

+β(2ff ′f ′′−f2f ′′′) = 0 (30)

g′′′ + fg′′ − f ′g′ + β(2ff ′′g′ − f2g′′′) = Aγ, (31)

Energy equation is

∂

∂y

[{
1 +

4
3
Rd(1 + (θw − 1)θ)3

}
θ′

]
+ Prfθ′ = 0 (32)

and boundary conditions are

y = 0 : f(y) = 0, f ′(y) = 1,

g(y) = g′(y) = 0, θ(y) = 1,

y →∞ : f ′(y) =
a

c
,

g′(y) = γy, θ(y) = 0. (33)

Where the prime denotes the derivative with respect toy.
For the simplicity, a new variable is introduced which is de-
fined asg′(y) = γh(y), Eq. (31) with boundary conditions
reduce to

h′′ + fh′ − f ′h + β(2ff ′′h− f2h′′) = A, (34)

h(0) = 0h′(∞) = 1. (35)

It is necessary to mentioned here that for a Newtonian
fluid (β = 0) and orthogonal stagnation point flow (γ = 0)
Eqs. (30) and (32) reduce to Eqs. (6) and (7) as reported by
Popet al. [31]. The dimensionless components of velocity
are

u =
∂ψ

∂y
= xf ′(y) + g′(y),

v = −∂ψ

∂x
= −f(y). (36)

The physical quantity of interest is the local Nusselt num-
ber, which is defined as

Nux =
x̄qw

k(Tw − T∞)
and

qw = −
[(

16σT̄ 3

3(αr + σs)
+ k

)
∂T̄

∂ȳ

]
(37)

Upon using dimensionless variables given in Eq. (15) the
above equation reduces to

Nux(Rex)−1/2 = −
(

1 +
4
3
Rdθ3

w

)
θ′(0). (38)

3. Numerical method
Non-linear equations (30), (32), and (34) subject to the
boundary conditions (33) and (35) have been solved numeri-
cally by using parallel shooting method [34]. For the solution
of highly non-linear problems, the parallel shooting method
is better as compared to the simple shooting method because
the simple shooting method is hard to use due to its depen-
dence on initial guess. The method of parallel shooting is
very efficient for the solution of this kind of problems. The
method is described as follows

(i) Equations (30), (32) and (34), are reduced in the sys-
tem of first order differential equations by lettingf =
f1, h = f4 andθ = f6

f ′1 = f2, f ′2 = f3,

f ′3 = 1
1−βf2

1

(−f1f3+f2
2−2βf1f2f3−

(
a
c

)2 )

f ′4 = f5,
f ′5 = 1

1−βf2
1
(−f1f5 + f2f4 − 2βf1f3f4 + A)

f ′6 = f7,

f ′7 =
(
1 + 4

3Rd(1 + (θw − 1)f6)3
)−1

×(
(−4Rd(θw−1)(1+(θw−1)f6)2)(f7)2−Prf1f7

)





and boundary conditions are expressed as

f1(0) = 0, f2(0) = 1, f2(y∞) =
a

c
,

f4(0) = 0. f5(y∞) = 1,

f6(0) = 1, f6(y∞) = 0
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TABLE I. The Numerical values off ′′(0), h′(0) andA for the different valuesa/c, for Newtonian fluid (β = 0).

a/c
f ′′(0) h′(0) A

Ref. 31 present Ref. 31 present Ref. 31 present

0.1 -0.96938 -0.96939 0.26278 0.26338 0.79170 0.79170

0.3 -0.84942 -0.84942 0.60573 0.60633 0.51949 0.51950

0.8 -0.29938 -0.29939 0.93430 0.93473 0.11452 0.11453

1 0 0 1 1 0 0

2 2.01750 2.01749 1.16489 1.16521 -0.41040 -0.41041

3 4.72928 4.72924 1.23438 1.23464 -0.69305 -0.69305

4 8.00042 8.00036 1.27272 1.27300 -0.91650 -0.91650

(ii) The domain [0, y∞] is divided into n subintervals
[0, y1], [y1, y2], [y2, y3] . . . [yn−1, yn = y∞]. For con-
vergence of solution, n can be increased sufficiently.

(iii) The problem is solved over each subinterval such that
it satisfies the boundary conditions aty∞.

(iv) Initial guess is supplied for the first interval and then
the obtained solution is taken as initial guess for the
next interval and so on.

(v) Algorithm is developed in MATLAB R2010a.

4. Results and discussion

The nonlinear ordinary differential Eqs. (30), (32), and (34)
with boundary conditions (33) and (35) have been solved nu-
merically. The numerical values off ′′(0), h′(0), A and Nus-
selt number are shown in tables. In Table I, the comparison is
given forf ′′(0), h′(0), and boundary layer displacement ‘A’
with results obtained by Labropuluet al. [32] whenβ = 0.
It is found that the calculated results are highly accurate and
in good agreement with Labropulu [32]. It can be seen from

FIGURE 2. Variation in horizontal velocity profileu alongy for the
different values ofβ, whena/c = 0.1, 0.4, 2.0 andγ = 0.

FIGURE 3. Variation in horizontal velocity profileu alongy, for
the different values ofβ, when (a)a/c = 0.2, (b) a/c = 2.0 and
γ = 2.0 are fixed.

the Table I that the value off ′′(0) is increasing with the
increase ofa/c. The comparison of Nusselt number with
the result obtained by Popet al. [31] is shown in Table II.
The results shown in braces are reported by Popet al. [31].
Present results as a limiting case are shown in the Tables I
and II, which establish a good agreement with the previous
results. However, a small difference arises due to change
in numerical technique. In present study the parallel shoot-
ing method is used where Popet al. [31] solved with the
help of simple shooting method. For infinite domain, simple
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TABLE II. The Numerical values of Nusselt number for the different values ofβ, a/c and Pr.

Newtonian fluid (β = 0) Maxwell fluid (β = 0.2)

a/c Pr θw = 1.1 θw = 2 θw = 1.1 θw = 2

Rd=1 Rd=10 Rd=1 Rd=10 Rd=1 Rd=10 Rd=1 Rd=10

0.05 0.11617 0.25815 0.17507 0.47034 0.11395 0.25587 0.17287 0.46827

(0.1159) (0.2587) (0.1750) (0.4737)

0.1 0.5 0.52056 0.98655 0.72129 1.64850 0.50358 0.96460 0.69977 1.62669

(0.5194) (0.9861) (0.7210) (1.6473)

1.0 0.83618 1.53603 1.15670 2.47460 0.81017 1.49404 1.11685 2.43044

(0.8337) (1.5335) (1.1550) (2.4763)

1.5 1.09838 2.00807 1.53495 3.16612 1.06728 1.94792 1.48047 3.09981

(1.0946) (2.0040) (1.5318) (3.1654)

0.05 0.21346 0.53127 0.34720 1.00664 0.21240 0.53059 0.34608 1.00489

(0.2131) (0.5305) (0.3465) (1.0013)

0.5 0.5 0.72884 1.74413 1.15842 3.246117 0.72128 1.73363 1.14868 3.23508

(0.7267) (1.7461) (1.1573) (3.2408)

1.0 1.06582 2.51678 1.68455 4.64451 1.05397 2.49782 1.66709 4.62336

(1.0621) (2.5121) (1.6823) (4.6404)

1.5 1.33262 3.12665 2.10291 5.73795 1.31792 3.09850 2.07912 5.70632

(1.3268) (3.1194) (2.0988) (5.7386)

0.05 0.28805 0.73736 0.47746 1.40927

(0.2888) (0.7517) (0.4772) (1.4104) 0.28805 0.73736 0.47746 1.40927

0.5 0.91092 2.33066 1.50985 4.45631 0.91092 2.33066 1.50985 4.45631

1.0 (0.9081) (2.3283) (1.5085) (4.4574) (4.4574)

1.0 1.28824 3.29605 2.13525 6.30218 1.28824 3.29605 2.13525 6.30218

(1.2833) (3.2882) (2.1315) (6.2985)

1.5 1.57778 4.03682 2.61515 7.71856 1.57778 4.03682 2.61515 7.71856

(1.5699) (4.0268) (2.6098) (7.7089)

0.05 0.39551 1.02982 0.66345 1.98097 0.39506 1.01129 0.65865 1.90525

(0.3948) (1.0292) (0.6627) (1.9811)

0.5 1.18876 3.17994 2.02722 6.18570 1.20143 3.18483 2.04074 6.14863

2.0 (1.1842) (3.1738) (2.0242) (6.1801)

1.0 1.64141 4.43873 2.81466 8.68359 1.66308 4.46166 2.84334 8.67191

(1.6332) (4.4280) (2.8093) (8.6779)

1.5 1.97902 5.38551 3.39844 10.57659 2.00662 5.42352 3.44386 10.58412

(1.9675) (5.3690) (3.3938) (10.5729)

shooting method is hard to use due to its dependence on ini-
tial guess. In present study, the boundary edge reaches to
y = 200, for large value of radiation parameter and small
Prandtl number. It is observed from the Table II, with the
increase of radiation parameter Rd the Nusselt number in-
creasesi.e. heat transfer rate increases with Pr,a/c and keep-
ing θW fixed. It is further observed that the value of Nusselt
number increases with increase of Prandtl number (Pr) due to
reason that the Prandtl number is directly proportional to the

viscosity of the fluid. Increase in Prandtl number, physically
means viscosity of the fluid increases.

The effects of parameters namely, the velocity ratio pa-
rametera/c, the Deborah numberβ, the shearing parameter
γ, the radiation parameter Rd, and the surface heating param-
eterθw on the velocity and temperature profiles are shown
through Figs. 2-8. In Fig. 2, it is seen that due to stretching
and straining velocities two boundary layer structures appear
as reported by Mahapatra and Gupta [27]. Figures 2 and 3

Rev. Mex. Fis.64 (2018) 420–428



426 A. GHAFFARI, T. JAVED, AND I. MUSTAFA

FIGURE 4. Variation in temperature profileθ(y) for the different values of Rd, when Pr = 0.05,β = 0.2, γ = 5.0, andθw = 2.0 are fixed.

FIGURE 5. Variation in temperature profileθ(y) for the different values ofθw, when Pr = 0.05,β = 0.2, γ = 5.0, and Rd= 2.0 are fixed.

FIGURE 6. Variation in temperature profileθ(y) for the different values of Pr, whenθw = 1.5, β = 0.2, γ = 5.0, and Rd= 2.0 are fixed.

depict the behavior of orthogonal stagnation point flow and
oblique stagnation point flow (γ = 0) respectively for the
different values ofβ. From Fig. 2, It is observed that for
a/c < 1 boundary layer thickness and velocity decrease with
the increase in values ofβ but fora/c > 1 velocity increases
and the boundary layer thickness decreases, with the increase

in values ofβ. In Fig. 3(a), it is observed that the effect ofβ is
very small for small values ofa/c. It is noticed that the veloc-
ity of the fluid increases with the increase of whena/c < 1
and it decreases with the increase inβ whena/c > 1.

Figure 3 illustrates that the velocity in the case of non-
orthogonal stagnation point flow is greater than that of or-
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FIGURE 7. Variation in temperature profileθ(y) for the different values ofa/c, when Pr = 0.05,β = 0.2, γ = 5.0, andθw = Rd = 2.0 are
fixed.

FIGURE 8. Variation in temperature profileθ(y) for the differ-
ent values ofa/c, when Pr = 0.05,β = 0.2, γ = 5.0, and
θw = Rd = 2.0 are fixed.

thogonal stagnation point flow. Figures 4 and 5 show the
temperature profiles for the different values of the radiation-
conduction parameter Rd and surface heating parameter re-
spectively. In both figures, the thermal boundary layer thick-
ness increases with the increase of radiation-conduction pa-
rameter and surface heating parameter. Figure 6 shows the
effects of Prandtl number on the temperature profile for small
and large values ofa/c. It depicts that with the increase
of Prandtl number, the thermal boundary layer thickness de-
creases, meaning that fluids of high Prandtl number are re-
sponsible for more heat transfer. The effects of Deborah
numberβ on temperature profile have also been shown in
Fig. 7(a,b) for both small and large values of Prandtl number.
Figure 7(a) shows the temperature profile fora/c = 0.1. In
this case thermal boundary thickness increases with increase
in the values ofβ. On the other hand, Fig. 7(b) shows an
opposite behaviori.e thermal boundary thickness decreases
with increase in the values ofβ. In Fig. 8, the temperature
profile for the different values ofa/c (ratio of straining and
stretching) is shown which depicts that with increase ofa/c,
thermal boundary layer thickness decreases respectively.

FIGURE 9. Streamlines for oblique flow (a)γ =
10(dashedlines), γ = 30(solidlines) (b) γ =
−10(dashedlines) γ = −30(solidlines). when β = 0.2,
a/c = 0.5 are fixed.

Figures 9 and 10 show the flow pattern of the oblique
stagnation point flows (γ 6= 0). Both cases of favorable
(γ > 0) and unfavorable (γ < 0) are considered. Figure 9 il-
lustrates the increase in obliqueness with increase in the val-
ues of shearing parameterγ. In the stagnation point region
the velocity of the fluid increases with increase in the values
of |γ|. Figure 10 further shows that by increasing free stream
velocity, the streamlines of oblique stagnation point flow look
like those of the orthogonal stagnation point flow.
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FIGURE 10. Stream lines for oblique flow, whenβ = 0.1 and
γ = 5 for the different values ofa/c.

5. Concluding remarks

The radiation effects on the flow of Maxwell fluid near the
oblique stagnation point over a stretching sheet is studied.
The effects of different parameters on heat and fluid flow are
discussed through graphs and tables. This study concludes
that the boundary layer thickness decreases with increase of
a/c in the oblique stagnation point flow. The thermal bound-
ary layer thickness increases with the increase of radiation-
conduction and surface heating parameters. It is also noted
that with the increase of free stream velocity the tempera-
ture of the fluid decreases near the wall. On the other hand,
temperature of the fluid increases with increase of stretching
velocity. The velocity of the fluid also increases with the in-
crease of shearing parameterγ.
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