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Theb-boundary is a mathematical tool used to attach a topological boundary to incomplete Lorentzian manifolds using a Riemaniann metric,
called the Schmidt metric, on the frame bundle. In this paper we give the general form of the Schmidt metric in the case of Lorentzian
surfaces. Furthermore, we write the Ricci scalar of the Schmidt metric in terms of the Ricci scalar of the Lorentzian manifold and give some
examples. Finally, we discuss some applications to general relativity.
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1. Introduction e a condition on the curvature,

One of the biggest surprises that General Relativity (GR) has  ® an appropriate initial or boundary condition,

given us is that under certain circumstances the theory pre-
dicts its own limitations. There are two physical situations

where we expect the theory to break down. The first one IS Ust be geodesically incomplete [2].

the gravitational collapse of certain massive stars when their . .
g P One would like to attach a boundary to the incomplete

nuclear fuel is spent. The second one is the far past of the ) . X
universe when the density and temperature were extreme. ﬁ‘oacetlme to understand the singularity better. The procedure
attach a boundary to a Lorentzian manifold can be done in

both cases, we expect that the geometry of spacetime Wi}P ) . :
show some pathological behaviour. several nonequivalent ways. In this work we will focus on the

b-boundary method [3]. This method allows a classification
The nature of a gravitational singularity is a delicate is-of singularities in terms of parallel propagated frames, it dis-
sue. It might be tempting to define a gravitational singularitytinguishes between points at infinity and points at a finite dis-
following other physical theories (such as electromagnetismjance, and it generalizes the idea of affine length to all curves
as the location where the relevant physical quantities are Unagardiess of them being geodesic or not. Other common
defined. However, in the gravitational case this prescriptiofechniques to attach boundaries to Lorentzian manifolds are
does not work due to the identification of the spacetime backgzonformal boundaries [1, 4] and the causal boundaries [1, 5]
ground with the gravitational field. As a result, the conceptsyhich we describe below. In addition, we would like to men-
of ‘spatial location’ and ‘temporal duration’ have meaning tjon other constructions such as theboundary [6, 7] and
only in the domain where the gravitational field is defined.youndaries constructed from light rays [8].
This represents a problem because the size, place and shape e conformal boundary allows us to study the structure
of singula_lrities can not be straightforwardly characterised byy¢ the metric at “infinity”. The idea of conformal compact-
any physical measurement. ification is to bring points at “infinity” on a non-compact
The first mathematical description of a gravitational sin-pseudo-Riemannian manifo{d\, ¢) to a finite distance (in a
gularity comes from Penrose and Hawking seminal theoremsiew metric) by a conformal rescaling of the megie- Q2g.
They characterised singularities as obstructions to geodesithis precise definition of conformal compactification only
completeness and managed to show that this happens undmplies to an asymptotically simple spacetimeM, g) is
certain conditions [1]. Broadly speaking, the theorems estabasymptotically simple, if there are another smooth Lorentz
lish that a spacetimeM, ¢) that satisfies simultaneously: manifold and associated metfid1, §) such that:

e and a global causal condition,
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e M is an open sub-manifold of1 with smooth bound-  only in the Riemannian case geodesic completeness implies
ary M called the conformal boundary; that every curve is complete; the notion ietompleteness

implies completeness of every curve in both signatures. The

o there exists a smooth scalar fiellon M such that  gefinition of a curve we are using here is a piecewide-
g =0%gonM, andQ = 0,d) # 0 onOM; curve.

o every null geodesic i\l acquires a future and past The structure of this paper is as follows. In Sec. 2 we
endpoints oM. give a general overview of the mathematical preliminaries

needed. In Sec. 3 we describe how the Schmidt metric
This technique has the evident drawback that it can onlyand theb-boundary are constructed following the procedure
be applied to this kind of spacetimes [4]. Moreover, no-by Schmidt [3]. In Sec. 4 we discuss the geometry of the
tice that in Minkowski spacetime the conformal boundaryorthonormal-bundles fot + 1 conformally flat spacetimes.
is given byOM = #~ U T (where.#~ corresponds to In the last section, namely Sec. 5, we discuss the results in
null-past infinity and# * corresponds to null-future infinity) the context of gravitational singularities in general relativty.
whilei°, i+, i~ which correspond to spacelike infinity, future
timelike infinity, and past timelike infinity respectively do not
belong to the conformal boundary (the thorough reader ca

T _ TN r o
find in [1] formal definitions of.s™, .7, i",i"). The As afirst step, let us present some of the required concepts of

reason for this is becaugbM is not a smooth manifold at differential geometry. We present the basic concept of fibre

;Ziiig;ﬂfs'aDeI‘ic’g(;tteotg:j’dthiz(;:lg?efgr?zlsgg?gggnheizlf:gundIes,G—principaI bundles, solder forms and connections.
yapp y y he manifolds we consider in this paper are paracompact,

ativity [4] and to the AdS-CFT correspondence [9, 10]. o

On the other hand, the causal boundary of a spacetimg » connected, and Hausdorf.
consists on attaching a boundary that depends only on thf1
causal structure. However, this implies on this particular con="""

struction that one is not able to distinguish between bOUﬂdA Fibre bundlewith fibre F is a manifoldE with a surjetive

ary points and points at infinity. Moreover one has to assUMganr . £ — M where there is a neighbourhottiat each
that(,M, g) is strongly causal. This construction relies on in- pointp of M such thatr— (/) is isomorphic td/ x F, i.e.,

decomposable past sets (IP) and indecomposable future sgts o,.h poinp € U there is a diffeomorphism, of 7~ (p)

(IF), which we now define. An open sBtis an IP if it sat- 0 = such that the map(p) = (x(p), b)) is a diffeo-

isfies/~(U) ¢ U and cannot be expressed as the union ofy,phism. We call\ the base space of the fibre bundie
two proper-open subsets and W, satisfying/™ (V) c V A G-principal bundle P over a manifoldM is a fibre

_ ) ' g
and_I (W) C W respectively. Slmlla_rl_y usmg onecan  pndie where the fibre is a lie grou@ with a continuous
define IF. The class of IPs can be divided into two classesr'ight actionR, that acts freely:

9 :

proper IPs (PIPs) which are of the forfim (p) for p € M,
and terminal IPs (TIPs) which are not formed by the history (B,g) € Px G — Ry(p) € P

=~
of any point in M. We shall denote byM the set of all o . _ .
IPs of the spacéM, g) and M the set of all IFs of the and satisfies that is the quotient space d?f by the equiv-

space( M, g). Originally, one defines a suitable topology on alence relation induced by [12].

g. Preliminaries

Fibre Bundles andG-Principal Bundles

Ny S Let M be an-dimensional manifold. Arame{E“}, at
M, M 1o identify IFs and IPs and one can form a spacepoint p is an ordered basis df,. Let L(M) be the set of all
M* = M|JA whereA is called the causal boundary [1]. frames{E®} at all points onM with the projectionr sending
However, this topology presents some problems that have lea frame atp to p. Then thegeneral linear groupGL(n,R)
to several redefinitions. A full revision of the causal bound-has a natural action of£%}, i. e., given({E®}, A%) the ac-
ary and its relationship with the conformal boundary can beion of AY € GL(n,R) on{E®} is {E® = A’E“}. If {29}
found in [5]. Also its relation with boundaries in Riemannian are coordinates oM and we choose the fran{éd/0z)},
and Fislerian manifolds can be found in [11]. then it can be shown that the coordinates$, 3;) are a local
There is also thé-boundary. This is a method devel- coordinate system of. M, where g7 represent theb ele-
oped by Schmidt, which allows one to attach a boundaryment for the change of basis matrixbetween{(9/0x%)}
OM called theb-boundaryto any incomplete spacetimet  and any other fram@E®}. In fact this choice makes (M)
(or even to any manifold with a connection). The procedurea G-principal bundle called th&ame bundle Moreover, if
consists on constructing a Riemannian metric for the framave have a metric inM and we restrict the frames to just
bundle L(M) or the orthonormal bundl® (M), called the orthonormal frames, we obtain anoth@rprincipal bundle
Schmidt metric. This metric is then used to generalise thealled theorthonormal frame bundl€(AM). The associ-
idea of affine length to all curves. This generalisation is im-ated Lie Group toO(M) is then theorthonormal group
portant because it helps to unify some elements of RiemanSO(n,R) or SO*(1,n,R). This last definition is signature
nian geometry with Lorentzian geometry. For example, whiledependent.
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Every tangent spacg;P of a G-principal bundleP has
a subspace called theertical subspacé’. This subspace
is given by the kernel of the differentiddz restricted afp.
Explicitly,

2.2. Solder form and Connections
Thesolder formof a frame bundld.(M) is the map:
0:TLM) -R":Q — ﬁ_l(Dw(Q))

where( is an element of ;LM andp is a linear map from

R™ to T ) that sends the canonical vectors to a choice o

431
3. The Schmidt metric

If one thinks of a singularity in classical Newtonian gravity,
the statement that the gravitational field is singular at a cer-
tain location is unambiguous. As an example, take the gravi-
tational potential of a spherical mass in Cartesian coordi-

nates
GM

Vit 2+ 22

whereG is the gravitational constant, and the potential ex-
hibits a singularity at the point = y = z = 0, for any
time ¢t in R. The location of the singularity is well defined
because the coordinates have an intrinsic character which is
independent of/.

f However, in the case of GR the prescription given above

V(t,z,y,2) =

basis on},5 . The solder form for the orthonormal bundle can not work. This is due to the identification of the back-

O(M) is defined similarly. Notice that; C ker(9).

A connectiorV on aG-principal bundle is an assignmen
of a subspacéf; called thehorizontal subspacef T3 (P) for
all pin P, such that:

[ TT’P == Hﬁ @ Vﬁ, and

e Hy, = DR, (Hy) for everyp € P andg € G.

A connection formz of a connectiorV in a G-principal
bundle is aC*> map

w:TP — g
with the following properties:
e if w(X) = 0thenX € Hyfor somepin P,

e forall gin G and allC*>*® mapsX : P — TP
@w(DRy(X)) = ad.(97")w(X), and

o forall g € g,w(X;) = g where X} is the tangent
vector att = 0 of a curve given byy(t) = Rexpt5(D)-

Let us remind the reader that connections and connectiog

forms uniquely determine one another.
In coordinates, the connection form is written asw =
> @3F% where

w‘zzg

C

(B7H%dBy + > (B4 %854 |, (1)
d,e

where(371)< is the inverse of the matrig?, andl'% . are the
Christoffel symbols.

The solder forn® is then given by = >~ 6“e® where

9° = Z(ﬂ—l)acdxc7

c

()

ande® is the natural basis &™ [12].

ground spacetime with the gravitational field. Hence, only in

¢ the regions where the gravitational field is defined it is mean-

ingful to talk about locations. Consider the spacetime with
the line element

1
ds? = —t—th2 + dz® + dy? + d2?,

defined on the manifold(t, z, y, z) € R\{0} x R3}. If we

say that there is a singularity at the point& 0, we will be
speaking too soon for two reasons. The first one isttkat)

is not part of the manifold. It makes no sense to talk about
t = 0 as a location where the field diverges. The second thing
is that the lack of an intrinsic meaning of the coordinates in
GR must be taken seriously. By making the coordinate trans-
formationn = log(t), we obtain the line element

ds? = —dn? + da?* + dy?® + d2*

onR*, which is an isometric extension of the previously de-
fined spacetime. This spacetime is, of course, Minkowski
spacetime which is non-singular [1].

Another idea is trying to define a singularity in terms of
invariant quantities, such as invariant scalars. The reason
for this is that if these quantities diverge then it matches our
hysical idea that objects must suffer stronger and stronger
eformations as we encounter the singularity. These scalars
are usually constructed from contractions of the Riemann ten-
sor and its derivatives. Unfortunately, these scalars are not
well-suited to define the complete geometry. Consider the
metric

ds? = dudv + H;;(u)z' 2 du® — da'dx’,

given in the coordinate@:, v, z!, %) and whered (u) is C*.

This spacetime is known agpg-wave spacetime and it can be
shown that every polynomial curvature-scalar vanishes, de-
spite the fact that in general the spacetime is not flat [13].

A more troublesome feature of using scalars for defining
singularities is that they are ‘too local’ in the sense that they
are evaluated at given points. Therefore, if the point is re-
moved, the scalar cannot be computed directly and we need
an approximation procedure.
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A precise mathematical way to approximate the “missingL(M). We use the solder forhon L(M) and the connec-
points” is to use convergent sequences of points on the marion formw on L(M) associated to the Levi-Civita connec-
ifold. In this case the formal statement is: “The sequencdion V on M to do this. Explicitly, the Schmidt metric is

{R(z,)} diverges while the sequen{e,, } converges tg”,  given by
whereR(x,,) is some scalar curvature invariant evaluated at
z,, in M andy is some point not necessarily jw. 9(X,Y) =0(X)-0(Y) + w(X) e w(Y), 3)

In Riemannian geometry, the notion of distance allows us hereX. Y € T-P and he i d R and
to define Cauchy sequencés,, } and therefore a notion of Wfren; € ipi7and, e are the INNer pro ucts an
convergence. Moreover, if every Cauchy sequence convergds™ R™ respectively. The construction of the Schmidt met-

in M then every geodesic can be extended indefinitely. Thi&iC IS more general and can be applied to any manifold with a
means we can take the domain of every geodesic f.He connection. This connection does not necessarily need to be

this case, we say that! is geodesically completeln fact, & metric compatible connection [3]. However, as mentioned

the converse is also true: M is geodesically complete then 2POVe, we will use the Levi-Civita connection because we

M is metrically completei, e., every Cauchy sequence con- Will @lways assume a metric on the mar11|fold.

verges to a point in\{ [14]. This allows us to use Cauchy =~ L€t7 : [a,b] — M be a piecewis&" curve througty

sequences or sequences of points along geodesics as our &M A curve? : [a,b] — L(M) in L(M) is called thelift

quences of points. of the curvey if it satisfiesw(7) = v .andDw.(@ = 4. The
The Riemannian case is an useful example, but as soon H9th ofy with respect to the Schmidt metric is

we move to Lorentzian geometry, which we take as the cor- b

rect geometrical setting for GR, the previous discussion can- Lo(b) = / ||7(.77)H*d77

not be used as stated. The reason is that Lorentzian metrics do K g

not have a distance function defined and, therefore, Cauchy e

sequences cannot be defined. Thus, one is restricted to thghich is called thegeneralised affine-lengtbf v. We can

notion of geodesically complete manifolds in the Lorentzianthen use this to re-parametrisewhich generalises the no-

case. tion of an affine parameter. In the case wheiie a geodesic
Moreover, the existence of three kinds of vectors avail-parametrised b)Lm, it is parametrised with respect to an

able in any Lorentzian metric defines three nonequivalent noaffine parameter. |% every curve in a spacetivewith finite

tions of geodesic completeness —depending on the charactgeneralised-affine-length has endpoints, we call this space-

of the tangent vector of the curve— spacelike completenesgime b-completelfitis not b-complete, we say that the space-

null completeness and timelike completeness, which are, unime isb-incomplete.

fortunately, not equivalent. It is possible to construct space- Notice that if there is a curvein M that has finite affine-

times with the following characteristics [15, 16, 19]: length and no endpoint, then the lift cur§ecannot have an

endpoint. Otherwise, ip is the endpoint ofy, 7(p) = p

would be an endpoint of contradicting the incompleteness

of 7. The previous remark shows that geodesic incomplete-

ness implied-incompleteness. The converse is not true as

¢ timelike complete, spacelike and null incomplete,

spacelike complete, timelike and null incomplete,

e null complete, timelike and spacelike incomplete, Geroch’s example [16] showsbaincomplete spacetime that
o o is geodesically complete. Thereforeincompleteness is a
e timelike and null complete, spacelike incomplete, generalisation of geodesic incompleteness.

Now given an incomplete spacetirde(, using the Rie-
mannian metricg on L(M), we can ‘Cauchy complete’

spacelike and null complete, timelike incomplete, or

o timelike and spacelike complete, null incomplete. Lgﬁg Let us denote by.(M) the Cauchy completion of
L .
Furthermore, there are examples of a geodesically null, time- We define the quotient spadel = L(M)/G™*, where

like and spacelike complete spacetimes with an inextendibl&'* is the connected component of the identityf (n; R)
timelike curve of finite length [16, 19]. A particle following under the equivalence of orbitsi.e., (p,g) € L(M) ~
this trajectory will experience bounded acceleration and ing,¢’) € L(M) if p = g and there ish € GL(n;R) such
a finite amount of proper time its spacetime location wouldthatg = hg’. This quotient induces a topology i by tak-
stop being represented as a point in the manifold. ing the finest topology that makes the map L(M) — M

In order to overcome this, Schmidt provided an elegantontinuous and, therefor®1 is a topological space. How-
way to generalise the idea of affine length to all curves, reever, it does not imply that1 is a manifold. Finally, we can
gardless of such curves being geodesic or not. This corzharacterise the-boundary as the sé&tM = M\ M.
struction in the case of incomplete curves allows to attach We repeat the same construction for subgroups of
to the spacetimg a topological boundar§ M called theb- GL(n;R). In particular, a common choice in the Lorentzian
boundary. The procedure for constructing the Schmidt metricase is the subgroup of all Lorentz transformations preserv-
consists in building a Riemannian metric in the frame bundléng both orientation and direction of time, which is called
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the proper orthochronous Lorentz group, and it is denoted The orthonormal basis prescribed above is not unique.
by SO*(1,n). In a completely analogous way we can form Any other orthonormal basis is of the form

the quotientM = O(M)/SO*(1,n;R) and define the-

boundary as the séM = M\M. The completion us- E = Coshx—g + sinh Y= 19 (7)

ing SO™(1,n) is homeomorphic to the completion using Qov Q ow

GL(n;R) [17]. The advantage of this construction is that
O(M) is a manifold of dimension + (n(n — 1)/2) instead

of then + n? dimensions ofL(M). Also, the construction
can be carried in a manifold with a Riemannian metric, in
that caseM is homeomorphic to the Cauchy completion of
M [23]. This reinforces the conviction that ttheboundary

is a natural way to attach boundaries to manifolds with con-

nections. coshy sinhyx
P=q <Slnh X coshy and

- 10 10
Ey = coshxQ e + sinh XQ 50 (8)
for somey € R.

Let us notice that the coefficients of such a basis with re-
spect to(9/ v, 8/8w) define an unique non-singular matrix
B3 with inverses !

©)

4. The Schmidt metric of 1+1 spacetimes g1 g coshx  —simhy
o —sinhy coshy /°

In this section, we locally construct the Schmidt metric for

generall +1 spacetimes. Moreover, we find a relationship be'These matrices are important in the sense that they are useful

g) and the scalar curvature of{, g). Finally, we give several

explicit examples. 1 b ] 0
Notation: We use overlines to denote the Riemanniange- { ¥» > (Cosh x% + sinh X@w) ,
ometric quantities that belongs &@(M) while the geomet-

ric quantities without any overline belong to the Lorentzian o o

i — sh xy = + sinh y — R (1
manifold M. ) <COb X5, Tsin X@v) |(v,w) € M, x € (10)
4.1. The Schmidt metric for 1+1 conformal spacetimes As stated in Sec. 3, the Schmidt mefitor anyX, Y €

Let M be a 2-D manifold with a Lorentzian metricand an 1 (M) onO(M) is given by

orthonormal bundle)(M). Then, we can find coordinates

(v, w) which locally transform the line element of the metric 93X, Y) s w(X) - w(Y) +0(X) - 0(Y) (11)

g to the following form [20]: wherew is the connection form o® (M) andé the solder
ds® = Q2 (v, w)(—dv® + dw?). (4 form. _ _
Now let us consider a curv*( ) in O(M) given by
An orthonormal basis is then given by the vector fields 5 : 5 € [a,b] — (v(s),w(s),%(s)) and evaluatd(7) and
10 w(ﬁ). Explicitly we have
E1 =—— and (5)
Q Ov . o
. © cosh xy — wsinh x
10 © 9@)—9( N h,), (12)
2_9510' —vsinh y + wcosh x
| and
o 0 X+ &((0uQ) + (9,2)0)
== 5+ @i+ 0.0 0 ’ 49

where we have used 1 and 2. Then, the line element for the Schmidt metric using a general inner product can be written as:

ds* = Q*(v, w)[(a11 cosh? X + aoo sinh? X)dv? — 2(ay1 + agz) sinh x cosh ydvdw + (agz cosh? X + a1 sinh? x)dw?

+ 2a15(cosh 2ydvdw — sinh 2x (dv? + dw?))] + (bag + 2boy + bay) <dx + = q <gﬁd + g—ﬂd )> . (14)

whereA = (a;5), B = (b;;) are symmetric matrixes with positive eigenvalues.
It can be shown that using two different inner products produce two unifomly equivalent metrics [18].
In application it is commonly used the Euclidean innner product which give the line element for the Schmidt:
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4.3. The Schmidt metric of Friedmann-Robertson-
) ) ) ) Walker (FRW) spacetime
ds® = Q% (v, w)(cosh(2x)(dv® + dw?) — 2sinh(2x)dvdw)
1 /09 o0 2 For simplicity, let us consider the case of thet 1 FRW
+ (dX+ a <8vdw+ awdv>) (15)  cosmological model which can be obtained from the
dimensional one by collapsing two spatial coordinates. This

We avoid quoting long tensorial expressions for the cur4s equivalent to considering the injection map
vature tensors and give only the result for the Ricci scalar of

éli\?e)rinb;erms of2 and its derivatives, but we have th&tis B () = (g 20) s M= N = M xS, (24)

whereX is a suitable two dimensional manifold. This way

) (R — Qo) Q — (Q?ﬂ _ Qi))2 —2. (16) the four dimensional metric reduces to

208
Taking into account that ds?® = ni(—dn® + dz?), (25)

R:

R— _i((wa C Q)0 — (22— 02)) 17) for any_value ofy > 0. The Ric_ci scalar corresponding to the
Q4 spacetime described by (25) is

This means that Eq. (16) becomes

g R=—qn 7" (26)

R= —§R2 -2 (18)

Notice that in (18) is the relationship between both scalar F0M EQ. (15) the Schmidt metric (M), for our case
curvatures. As direct consequence, we can establish tigudy: takes the form
negativity of the Ricci scalar for any Schmidt metric in the

Lorentzian signature. In Sec. 5 we give counterexamples that ds* = n?(cosh(2x)(dn? + dz?)

such a condition does not hold in the Riemannian case. Also, 9

Eq. 18 has been obtained using the Levi-Civita connection. — 2sinh(2x)dndz) + (dX + qu) ) (27)
Therefore, using another connection, even in the Lorentzian n

case, may not hold.
Now we calculate such scalar curvatures for some physi- Using computer algebra we calculated the Ricci tensor

cal spacetimes. for the line element (27). In components it is given by
4.2. The Schmidt metric of Minkowski spacetime — 1
P Ryy = gan ™" (4n*"" = g cosh(2y)),

We can write the Schmidt metric in the form )
R/, = — 72(3""‘1) 3 _ 16 4+2q _ 16 4-+2q
ds?*=(dt*+dz?) cosh(2x)—2dtdx sinh(2x) + dx?. (19) vz = 351 (¢ Ul qn

_ 2+q
Now let us consider the change of coordinatés:= 4q(5 + 2¢)y™"* cosh(2x)),

u+ 0,z = u — v and write: —= 15
Ry =-2+ §q277 2(2+q)7

ds® = 2(cosh 2 + sinh 2x)du? )
Rye = 2¢*(3 + q)n ™"~ sinh(2x),

+ 2(cosh 2y — sinh 2y)do? + dx? (20)
or in an equivalent manner R, = iq(z + q)n 3" sinh(2x),
ds® = 2e*Xdu® + 2e7*Xdv* + dx>. (22) —

1 5
wa _ Eqn 5 2q(q2 _ 16,'74+2q

We explicitly calculateR,,;, and get
— 4(2 4 ¢)n*T cosh(2x)).

Ry = -2, (22)

and all other components are zero. The Ricci scalar is then And the Ricci scalar is

R=-2. (23) R=_9_ 1q2,7—2(2+q) (28)
8 )

Hence, the geometry in the bundle is not flat even if
Minkowski spacetime is flat. which can equivalently be obtained from Eq. (18).
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4.4. The Schmidt metric of De Sitter and Anti-De Sitter We identifyQ) = 1/ay and using Eqg. (15) we obtain
spacetimes
] ] . ] ds?® = 5 (cosh(2x) (dt* + dy?)
Let us now consider the De Sitter and Anti-De Sitter mod- oty
els and study the behaviour of the corresponding curvature 1 \?2
scalars. First, consider the De Sitter case. The two dimen- — 2sinh(2x)dtdy) + (dx — dt) .
sional De Sitter spacetime for closed spatial sections is de- y
fined with the line element Where the non-vanishing components of the Ricci tensor are
ds®> = —dr? + a2 cosh?(a7)dw?. Ry = —2 +a* — a® cosh(2y)
242 ’
To obtain the conformal form we make the change 9 1 a2 cosh(?
tan(n/2) = tanh(a7/2), which leads to Ry, = _M;—O;(X),
Yy
1
ds? = ————(—dn® + dw?). 29 - 4
= e @) Fom 24
In these coordinate), w) De Sitter space is conformal _ a2 cosh(y) sinh(x)
to the static Einstein universe [1]. The Ricci scalar for (29) is Ry = 2 )
then .
R =202 (30) & __—4+a
tx — 2y )
Using Eq. (15) we get
) and its trace is given by
ds® = ————(cosh(2x)(dn* + dw®
5 = oy OO + du?) =, a
5

— 2sinh(2x)dndw) + (dx — tan(n)dw)?. 31
(2x)dndw) =+ (dx (m)d) (31) Notice that for spacetimes that behave asymptotically as

The Ricci tensor is computed by takifig= 1/a cos(n).  Anti-De Sitter spacetime, the curvature would behave sim-

The non-vanishing components are: ilarly as in the Anti-De Sitter case as one approaches the
) asymptotic region. Moreover, in many applications such as
Ry =— (1 + & cosh(2x)> sec2(), in thg_ Ad_S/CFT correspondan.cg one uses a conformal com-
pactification. In those cases it is neccesary to compute the
4 curvature again because the curvature is not a conformal in-

Roo = Z(1 + (—144a"%) cos(2n) variant.

—2 —2 sh(2 sec? ) i i
a2 cosh(2x)) sec?(n) 5. Discussion

— (6%
Ry = =2+ 7, In our exposition, we obtained Eq. (15) which is the line ele-
_ ) ) ) ment of the Schmidt metric for all+- 1 Lorentzian manifolds
Ry = a” cosh(x) sec” (1) sinh(x), M. This line element determines, via the curvature, all the
_ al local isometric invariants. 1®M = (, then the3-manifold
Rox = (‘2 + 2) tan(n). corresponds to the orthonormal bundle where the fibres of
the bundle areSO*(1,1) = R. Therefore,O(M) is not
Thus the Ricci scalar is compact. IfoM # 0, then the3-manifold is not necessar-
o o ily a G-bundle (the group may not act freely or transitively).
R=-2- - In fact there are general geometric conditions on the curva-

ture to guarantee that the fibres above a boundary point are
Notice that in the limit agx — 0 we recover the Minkowski  degenerate [24]. This is, for example, the case whéns

limit once again. the Friedmann-Robertson-Walker spacetime. ThéM) is
Now let us look at the Anti-De Sitter spacetime. The two not aG-bundle as the fibre over the singularity is a point in-
dimensional Anti-De Sitter metric has the line element stead of a copy o5O(1,1)*(M). Moreover, if there is a
1 singularity not only in the past but also in the future both sin-
ds® = o202 (—dt® + dy?) gularities are identified as the same boundary point [23]. The
Y degeneracy of the fibre also affects the topology6fwhich
with y > 0. The Ricci scalar is in the Friedmann-Robertson-Walker case is no longer Haus-
) dorff. In fact this topological behaviour is expected in gen-
R=—2a". (32)  eral spacetimes when the fibre totally degenerates such as in
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Schwarzschild and Kasner metrics [24]. However, there had\ppendix
been mathematical developments which allow to circumvent
this undesirable situation by taking a canonical minimum re-A. The Riemannian case
finement of the topology in the completiad which 7'2-
separates the spacetimé and its boundary M [25]. No- As it was mentioned in Sec. 5, in the Riemannian case there
tice that this result does not guarantee that points which on@e three conformally distinctly connected Riemann surfaces
may consider physically different such as the initial and fi-(the disc, the plane and the sphere). Moreover, in this case the
nal singularity in a closed Friedmann-Robertson-Walker scefibres inO(M) areSO(n, R) which is a compact group. Be-
narios are not identified. In order to achieve such separdoW we give the Schmidt metric for the general case af 1
tion, certain modifications to the completion process havétiemannian manifolds and compute the curvature scalar for
been suggested [23]. Theboundary has also given some the disc, the sphere and the hyperbolic plane.
results that link the geometry of principal bundles with that N the Riemannian case it is a well know fact thag\f
of the base manifold [26] and with non-commutative geom-is & 2-D manifold with a Riemannian metric we can find co-
etry [27] Moreover, it has been shown that in four dimen_ordinateS(U,U)) which transform |Oca”y the line element of
sions the Friedmann-Robertson-Walker and Schwarzsthild the metric to a conformally flat form. Therefore, we have
completiond M is a point [21, 23, 28]. ) 9 ) )

The notion ofb-incomplete spaces allows us to describe ds”™ = Q% (v, w)(dv” + dw?). (A1)
incomplete curves in manifolds with connections. Our initial

motivation to study this, was to develop the language to de- An orthonormal basis is given by the vector fields

scribe pathologies in the geometry as we approach points that 19
in some sense are “boundary points” of the manifold. One En Qo and (A.2)
can describe how the main manifestation of gravity in GR, 19
the curvature of the manifold, can behave albrigcomplete E, 070 (A.3)

curves. This is the scheme proposed by Ellis and Schmidt to
classify singularities [29, 30]. In particular, they defined thatAny other orthonormal basis is constructed as a linear com-
if p € M and there is some scalar constructed from the tenpination of (A.2) as

SO0rsgqp, R%,., andr-covariant derivatives aR% _, that does

not behave in aC° way, thenp is a C™ scalar singularity. B :Cosxlﬁ +si

ny——, and A.4
Using this definition we have the following result Qv X0 ow (A-4)
Theorem 1 Let¥(s) : [0,a] — O(M) be allift from a curve By :Cosxli + siny = — (A.5)
y(t) : [0,b] — M such thaty(b) € OM. If R — —oo as Qow Qv

s—a then|R| — oo ast — band~(b)is a scalar singular- ¢, somey € R. Let us notice that the coefficients of basis

ity. (A.4) with respect tol-, -2 define a unique matrig and its
The proof follows directly from Eq. 18. inverses—1:
Notice that the hypothesis of this theorem together with )
the hypothesis of any of the Hawking and Penrose theorems 8= 1 (CPSX — s X) and
gives a singularity theorem in which it is guaranteed that cur- Q2 \sinx cosx
vature blow up exist. This is in contrast with the usual singu- cosy  siny
larity theorem in which only geodesic incompleteness can be gt = : : (A.6)
" y y g p —siny cosy
shown.

The theorem above and the singularity theorems implic-  Notice the main difference with the Lorentzian case in the
itly assume a characterisation of singularities in terms of indefinition of the matrix3.
complete curves. This notion of singularity captures the idea  The Schmidt metrig on O(M) is given by
that there are ‘obstructions’ within the history of point-like
observers. In the future one would like extending those the- 9 X,Y): w(X) w(Y)+0(X) -6(Y), (A7)
orems to relate these obstructions to curvature blow-up and
ill-possessedness of initial value problems of field equationsfor X,Y € TO(M). where
This approach constitutes most of the research program on

the Strong Cosmic Censorship conjecture [31, 32], the idea 0(4) = Q (” cos x — wsin X> (A.8)
behind generalised hyperbolicity [33—36] and field regular- USIY + W Ccos X
ity [37—-42]. | and
0 = (X + (0.2 + (0,0)0))
w(y) = . (A.9)
X + (0w + (0,2)0) 0

Rev. Mex. Fis64(2018) 429-438



LORENTZIAN SURFACES AND THE CURVATURE OF THE SCHMIDT METRIC 437

Eqg. (A.13) can be expressed in terms of isothermal coordi-

giving the line element for the Schmidt metric:
ds? = Q2 (v, w)(dv? + dw?) natestv, w) as

“(nal )

The plane
The euclidean metric on the plane is given by the line eleme

1 ds? = dv? + dw?).
dx + = ( )

Q

o) o0

(A.14)

(A.10) cosh? v

This metric is characterised by = 1.

In a similar manner as we did for the plane metric we use
Hed- (A.10) to get the line element for the Schmidt metric:
ds? = dv® + dw?

(All)  ge2 —

oo (dv? + dw?) + (dx — tanh(v)dw)?, (A.15)

which is characterised big = 0. -
Then using Eq. (A.10) we have that the line element forwith curvature scalaR = 3/2. Notice that in this case the
the corresponding Schmidt metric is curvature scalar is positive which for Lorentzian manifolds
can not happen as a result of Eq.18.

ds* = dv? + dw? + dx? (A.12)

which is just the flat metric irO(M) so we haveR = 0

which violates the bound given by Eq.18. Acknowledgments
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