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In the present paper, the linear and non-linear optical properties of GaAs/AlGaAs with on-center and on-edge delta doping are studied within
the effective mass approximation. The delta potential is analytically modeled within each quantum well potential to obtain the energy levels
and the corresponding wave functions using the robust finite difference method. The linear and non-linear optical absorption coefficients and
changes in the refractive index are studied in the presence of a static magnetic and a periodic laser field using the density matrix approach.
The obtained results show that the position of resonances and the amplitude of the optical absorption coefficients and the refractive index
changes can be modified by varying the magnetic field and strength and position of doping potential. Lastly, an increase of the optical
intensity appreciably changes the total absorption coefficient, as well as the total refractive index changes. Obtained results are important for
the design of various electronic components such as high-power FETs and infrared photonic devices based on the intersubband transition of
electrons inδ-doped MQWs.
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1. Introduction

The study of the optical properties of low-dimensional semi-
conductor heterostructures with impurity doping attracts
much interest given the vast possibility of purposeful manip-
ulation by means of external influences. Elevation in growth
methodologies have made it possible to introduce dopants
which can be confined in a single atomic layer. Delta (or
δ-) doping was given the name to the procedure of embed-
ding highly localized impurity sheets within a semiconduct-
ing layer. Such a kind of growing impurity gives rise to a
high-density quasi-two-dimensional electron or hole gas in
low-dimensional semiconductor heterostructures. Using this
doping technique, we can adjust the width and the profile of
confinement potential of the heterostructure. The first report
of such a dopant deposition is due to Bass [1], who found
that a strong surface adsorption of Si to GaAs surface results
in sharp doping spikes. The versatility of dopant deposition
was realized by Woodet al [2], who mentioned that com-
plex doping profiles can be achieved by “atomic plane” dop-
ing. Such tapering doping profiles can be mathematically de-
scribed by Dirac’s delta function. The atomic plane doping
profile was first implemented in a high electron mobility field
effect transistor proposed asδ-FETs by Schubertet al [3,4].
Many modernistic structures based onδ-doped structures can
be experimentally realized and studied using various assem-
bling techniques [5-8]. In recent years, the physics commu-
nities have devoted a great deal of attention to carry out ex-
perimental studies ofδ-doped quantum well structures. Lee
et al [9] carried out experiments to study the transport and
optical properties in the conduction band ofδ-doped quan-
tum wells. Tribuzyet al [10] studied the quantum confined

Stark effect in GaAs/AlGaAs MQW structures containing a
nipi δ-doping superlattice. Photoluminescence studies were
carried out in theδ-doping and on the parabolic quantum well
by Tobata [11]et alLuo et al [12], studied transport measure-
ments on aδ-doped quantum well system with extra modu-
lation doping and proposed that their results may be useful
for simplifying circuitry design for low-temperature ampli-
fiers, and devices for space technology and satellite commu-
nications. Very recently, excitonic light emission decay time
measurements in moderatelyδ-doped GaAs MQWs using a
time-correlated single photon counting system was investi-
gated by Kundrotaset al [13].

Not only experimental but also theoretical studies of low-
dimensional semiconductor heterostructures withδ-doping
have gained great importance due to their potential applica-
tions in optoelectronic and photonic devices [14,15]. Local-
ization of impurities inδ-doped structures is used in devices
to give a surge to quantum confinement of carriers. Further-
more, suchδ-doped quantum well structures have many ad-
vantages, such as marked radiative recombination rates and
notable values of the oscillator strength [16] that accounts
for the large dipole moment expectation values. Ozturket
al [17] studied the linear and non-linear intersubband optical
absorption inn-typeδ doped GaAs semiconductor quantum
wells. The effect of theδ doping location on the linewidth of
the intersubband absorption in GaN/AlGaN quantum wells
was reported by Edmundset al [18]. Tulupenkoet al [19]
have calculated the intersubband absorption coefficients for
either center, or edgeδ-doped quantum wells. The multi-
subband electron mobility in a barrierδ-doped GaAs double
quantum well structure using the self-consistent solution of
the coupled Schrödinger equation and Poisson’s equation was
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studied by Daset al [20]. Almansouret al [21] have inves-
tigated the effects of the concentration and the thickness of
Si δ-doped layer on optical absorption and refractive index
changes in an InAlN/GaN single quantum well taking into
account the piezoelectric polarizations.

The understanding of the electronic and optical proper-
ties of doping in the quantum wells heterostructures is im-
perative because the optical, electrical, and transport proper-
ties of devices made from these materials show exotic be-
havior in the presence of external fields [22-25]. Among
various electronic and optical properties in semiconductor
quantum wells, the optical absorption and refractive index
changes have drawn great interest in theory and experiment
[26,27] In this study, we have investigated the intersubband
optical absorption coefficients and refractive index changes
in a GaAs/AlxGa1−xAs MQWs which includes an attrac-
tive δ-doping potential in the middle of each quantum well.
The time-independent Schrödinger equation for this compos-
ite potential is solved numerically using the finite-difference
technique to yield the allowed values of energy eigenvalues
and eigenstates. The linear and non-linear optical properties
are then investigated within the compact-density matrix for-
malism. The paper is organized as follows: In Sec. 2, we
describe the model and theoretical framework. The Hamilto-
nian and the relevant eigenenergies and eigenfunctions, ob-
tained using the effective mass approximation are presented
analytically. The analytical expressions for the linear and
non-linear optical absorption coefficients and refractive in-
dex changes, obtained using the density matrix approach are
also presented in Sec. 2. The numerical results and detailed
discussions are given in Sec. 3. Finally, a brief conclusion is
made in Sec. 4 followed by references. Our results obtained
with this model show that the position and the magnitude of
the linear, non-linear and total optical absorption coefficients
and refractive index changes are sensitive to not only the op-
tical wave but the strength of the static magnetic field and
location and strength ofδ-potential also affect the positions
and intensity of resonance.

2. Outlook on the theoretical model

2.1. Energy eigenvalues and eigenfunctions

The heterostructure system under study consists of symmet-
ric GaAs/AlxGa1−xAs coupled quantum wells exhibiting the
properties of a collection of single quantum wells in the pres-
ence of a static magnetic field. The potential profile of such
a heterostructure can be described as:

V (z) =
∞∑
n

V (z − nl), (1)

where,

V (z − nl) =
{

V0 if |z − nl| > L/2
0 if |z − nl| < L/2

where n is the number of quantum wells, with periodl.
We assume, for simplicity, that in the coupled quantum
well structure under consideration the neighbouring potential
wells are so far apart that the wave functions of the individual
potential wells do not overlap. The size of each well isL and
the thickness of the barriers is fixed equal to the thickness
of the wells. Apart from this, each well is having on-center
δ-doping. A one-dimensional doping profile in a semicon-
ductor can be treated to be like aδ-function, if the thickness
of the doped layer is smaller as compared to other admissi-
ble length scales, which causes a conduction band bending.
Such profile is described by the equation∆(z) = βδ(z−γL)
whereβ is the strength of theδ-potential andγ specifies the
location of the impurity within the quantum wells. The struc-
ture becomes a MQW with finite potential with each quantum
well doped in a singleδ-spike.

In order to study the optical properties related to inter-
subband energy transitions in such a system, we consider
the time-independent Schrödinger equation within the frame-
work of effective mass approximation,

[
− ~2

2m∗
∂2

∂z2
+∆(z)+V (z)+

B2z2

2m∗
]
ψ(z) = Eψ(z) (2)

whereψ(z) is the wave function of an electron in the con-
duction band,V (z) is the confining potential in the growth
z-direction andm∗ is the effective mass of an electron. The
magnetic field B is taken along the growthz-direction. Equa-
tion (2) can be solved numerically by using a self-consistent
method based on a very sensitive and versatile technique,
finite-difference technique [28], to yield the allowed values
of energy eigenvalues and eigenstates. The motivation be-
hind using this computational technique is that it is fast to ex-
ecute and light on memory and is more efficient for the eval-
uation of eigenstates of complex nanostructures with specific
geometries. It employs a uniform grid structure to formulate
sparse, structured Hamiltonian matrices, and thus provides a
great advantage for dealing with arbitrary and complex struc-
tures [29,30]. By using this method, the solution of Eq. (2)
gives the energy spectrum and the corresponding wave func-
tions as a function of the position ofz, depending upon the
width and depth of eachδ doped well.

2.2. Linear and non-linear intersubband optical absorp-
tion coefficients and refractive index changes

In this section, we present a brief derivation of the linear and
the non-linear optical absorption coefficients and refractive
index changes. Consider that our quantum system is excited
by an electromagnetic field. If the wavelength of the pro-
gressive electromagnetic wave is larger than dimension of a
MQW, the amplitude of electromagnetic wave may be con-
sidered as a constant throughout, so that dipole approxima-
tion becomes valid. Then the electric field of an incident
wave can be expressed as

E(t) = 2E0 cos(ωt) = E0e
iωt + E0e

−iωt (3)
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When an electromagnetic radiation propagates through
the material it produces changes in the spatial and tempo-
ral distribution of electrical charges in material and mainly
the valence electrons are perturbed from their normal orbit.
This perturbation is responsible for the induced polarization.
In case of a weak radiation field, the induced polarization in
the material is directly proportional to the applied field, but in
the presence of an intense field, the induced polarization be-
comes a non-linear function of the applied field. The induced
electronic polarization caused by the incident field is

P̃ (t) ∼= ε0χ
(1)(ω)Ẽ0e

iωt + ε0χ
(2)(2ω)Ẽ2

0e2iωt

+ ε0χ
(3)(3ω)Ẽ3

0e3iωt + c.c (4)

The tilde (∼) in P andE represent their rapid variation
in time. Here the terms up to the third-order in are retained.
The termsχ(1)(ω), χ(2)(2ω) andχ(3)(3ω) are known as the
linear, the second and the third-order non-linear optical sus-
ceptibilities, respectively, andε0 is the electrical permittivity
of vacuum. We use the compact density matrix method [31-
34] to derive the expressions for various orders of electric
susceptibilities and polarization components. The mathemat-
ical procedure is relatively simple and clear.

Considering the medium and the applied field as a united
system, the time variation of density matrix in the presence
of damping is governed by the equation

∂ρ

∂t
=

1
i~

[H, ρ(t)]− Γ(ρ− ρ(0)) (5)

whereH = H0 + HI(t) is the total Hamiltonian,H0 is the
Hamiltonian without electromagnetic field andHI(t) is the
interaction Hamiltonian of the whole system. Here,ρ is the
density matrix operator. The second term in above equation
is phenomenologically introduced to explain the relaxation
influence of damping effect on the density matrix.Γ repre-
sents the relaxation rate. Equation (5) can be solved using an
iterative procedure,

ρ(t) =
∑

k

ρ(k)(t), (6)

with

∂ρ
(k+1)
ij

∂t
=

1
i~

{[
H0, ρ

(k+1)

]

ij

− i~Γijρ
(k+1)
ij

}

− 1
i~

[
qz, ρ(k)

]

ij

E(t). (7)

The electronic polarizationP (t) and susceptibilityχ(t)
are defined by the dipole operatorM and the density matrix
ρ as

P (t) =
1
v
Tr(ρM), (8)

whereV andρ are the volume and the one-electron density
matrix of the system, respectively.

Using this, the analytical expressions for the absorption
coefficients and the refractive index changes based on lin-
ear susceptibility,χ(1)(ω), and the third order susceptibility,
χ(3)(ω), corresponding to an optical transition between two
levels in a quantum system can be written as:

ε0χ
(1)(ω) =

|Mfi|2σ
Efi − ~ω − i~Γfi

(9)

ε0χ
(3)(ω) = − |Mfi|2σẼ2

Efi − hω − ihΓfi

×
[

4|Mfi|2
(Efi − hω)2 + (hΓfi)2

− (M22 −M11)2

(Efi − ihΓfi)(Efi − hω − ihΓfi)

]
(10)

whereEfi = Ef − Ei = En′m′ − Enm is the energy inter-
val between the energy levels of minibands considered for
the study of absorptive transition andMfi = 〈ψf |ez|Ψi〉
is the electron dipole moment of the transition from state
i to f . Here the polarization of electromagnetic radia-
tion is chosen asz-direction. σ is the carrier density and
Γ is the phenomenological relaxation rate, caused by the
electron-phonon, electron-electron and other collision pro-
cesses. Non-diagonal matrix elementΓfi(i 6= f) of operator
Γ is the inverse of the relaxation timeτfi · ε0 denotes the
dielectric permittivity of the vacuum.

The susceptibilityχ(ω) is related to the changes in the re-
fractive index∆n(ω)/nr and the absorption coefficientα(ω)
as follows

∆n(ω)
nr

= Re

(
χ(ω)
2n2

r

)
(11)

α(ω) = ω

√
µ

εr
Im(ε0χ(ω)) (12)

whereµ is the permeability of the material,εr is the real part
of the permittivity of the medium,c is the speed of light in
vacuum andnr represents the refractive index of the material
of quantum well.

Using this approach, the linear and the third-order non-
linear optical absorption coefficients are obtained analytically
as follows:

α(1)(ω) = ω

√
µ

εr

|Mfi|2σ~Γfi

(Efi − ~ω)2 + (~Γfi)2
(13)
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α(3)(ω, I) = −ω

√
µ

εr

(
I

2ε0nrc

) |Mfi|2σhΓfi

[(Efi − hω)2 + (hΓfi)2]2

×
[
4|Mfi|2 −

|Mff −Mii|2
[
3E2

fi − 4Efihω + h2(ω2 − Γ2
fi)

]

E2
fi + (hΓfi)2

]
(14)

HereI is the incident optical intensity.

I = 2
εr

µ
|Ẽ(ω)|2 =

2nr

µc
|Ẽ(ω)|2

The total absorption coefficientα(ω, I) is

α(ω, I) = α(1)(ω) + α(3)(ω, I) (15)

The linear and the third-order non-linear refractive index changes are obtained using above analysis as follows:

∆n(1)(ω)
nr

=
σ|Mfi|2
2ε0n2

r

Efi − ~ω
(Efi − ~ω)2 + (~Γfi)2

(16)

∆n(3)(ω, I)
nr

= −σ|Mfi|2
4ε0n3

r

µcI

[(Efi − ~ω)2 + (~Γfi)2]2
×

[
4(Efi − ~ω)|Mfi|2 − |Mff −Mii|2

(Efi)2 + (~ω)2

×
(

(Efi − ~ω)
[
Efi(Efi − ~ω)− (~Γfi)2

]
− (~Γfi)2(2Efi − ~Γ)

)]
(17)

Therefore, the total refractive index change∆n(ω)/nr

can be written as

∆n(ω)
nr

=
∆n(1)(ω)

nr
+

∆n(3)(ω, I)
nr

(18)

In the next section, we present the obtained results and
the implications related to them.

3. Numerical Results and Discussion

In the system developed in this study, the linear and non-
linear optical properties such as linear and non-linear absorp-
tion coefficients and the refractive-index changes as a func-
tion of photon energy are analyzed given by Eq. (13-18) for
the GaAs/AlxGa1−xAs MQW with δ-doping. We have used
the following physical parameters for the numerical compu-
tation, µ = 4π × 10−7NA−2, refractive indexnr = 3.2,
ε0 = 8.854× 10−12Fm−1 andεr = 1.218ε0.

The electron density is considered a unity. The parame-
ters are suitable for GaAs/AlxGa1−xAs MQW. In our calcu-
lations, we have taken a position dependent electron effective
mass,m∗ = (0.067 + x ∗ 0.083)me whereme is the free
electron mass withx = 0.25 as the stoichiometric ratio or
Aluminium concentration ratio.

We consider a combined system of isolatedδ doped five
wells system with the barrier height of each well kept con-
stant at 0.3 eV. Eq. (2) for this system is solved numer-

ically by using the finite-difference technique to provide the
allowed values of energy eigenvalues and eigenstates. The
solution gives the energy spectrum and the corresponding
squared wave functions as a function of the position ofz as
shown in Fig. 1. Results show that energy levels coincide
with their single-well positions and are five-fold degenerate
in absence of magnetic field, as can be observed from Fig. 2.
At B = 0 T, we have three minibands each consisting of five

FIGURE 1. Schematic representation of formation of minibands,
first three energy levels in each miniband and corresponding
squared wavefunctions as a function of position in a five period
on-center delta doped MQW structure whenB = 0.
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FIGURE 2. Magnetic field dependence of energy levels in mini-
bands inδ-doped MQWs.

energy levels within the confining potential. The difference
between energy levels in a miniband is close to zero in the ab-
sence of magnetic field. Further it is observed thatδ doping
gives rise to better quantum confinement of electrons which
leads to lowering of energy levels inδ-doped MQW structure
as compared to undoped structure. We represent the energies
of the levels byEnm wherem andn correspond to the quan-
tum numbers representingmth level in thenth miniband. Eg:
the eigenvalue labelledE11 corresponds to the energy of first
level in the first miniband;E21 corresponds to the energy of
first level in the second miniband, etc. The presence of a
magnetic field breaks the degeneracy and the energy levels
get apart from each other leading to a nonequidistant energy
separation between them as can be seen from Fig. 2.

In this paper we perform the calculations for transitions
from staten = 2, m = 1 to n′ = 3, m′ = 1 statei.e. from
the first level in the second miniband to the first level in the
third miniband. The matrix elements involved in intersub-
band transitions are〈n′m′|eE · r|nm〉. In Fig. 3 we show
the linear absorption coefficientα(1)(ω), the third-order non-
linear absorption coefficientα(3)(ω, I), and the total absorp-
tion coefficientsα(ω, I) as a function of the incident pho-
ton energy,~ω. The relaxation time and laser field inten-
sity are kept constant at 0.04 ps and 42.7 MW/cm2, respec-
tively. The curves are plotted for three different values of the
static magnetic field,B = 2T , 4T and6T . We notice that
α(1)(ω), α(3)(ω, I) andα(ω, I) have observable peaks that
correspond to the position where maximum absorption or res-
onance occurs when the energy of incident photon coincides
with the interlevel difference of energy between the consid-
ered minibands. Besides for all values of a static magnetic
field, the linear absorption coefficientα(1)(ω) is observed to
be positive whereas the non-linear oneα(3)(ω, I) is observed
to be negative. This is expected from Eq. (13) and (14). How-
ever, the linear term makes a larger part of the total coefficient
α(ω, I), therefore, the total absorption is also positive but

FIGURE 3. Plot of optical absorption coefficients as a function of
the incident photon energy for different values ofB.

with a decreased magnitude. We observe that the variations
of peak values ofα(1)(ω), α(3)(ω, I) and α(ω, I) are not
a monotonous function of magnetic field The two factors-
change in interlevel energy difference and change in dipole
matrix element between the levels considered in the transi-
tion account for the observed behavior.

The variation of these two factors is shown by bar graphs
in the inset of Fig. 3 and can be explained as follows: With
the increase in magnetic field strength the separation between
the energy levels increases, though the increase is not very
much pronounced. This occurs due to the fact that as the
magnetic field is increased, the energy of each individual
level increases and energy levels move away from each other,
however, due to avoided crossing (see magnified image in
Fig. 2) the increase in energy level spacing is not very much
significant. The increase in the magnetic field causes a small
blue-shift of the resonant peaks towards higher energy val-
ues. Further, the change in amplitudes of resonant peaks can
be accounted to change in the value of dipole matrix element.
The linear termα(1)(ω) is proportional to the second power
of transition dipole matrix element and the non-linear term
α(3)(ω, I), it is proportional to the fourth power of|Mfi|.
Since the change in the energy interval is not very much sig-
nificant, the values of|Mfi| are an influential factor in de-
termining the amplitudes of resonant peaks. The enhance-
ment in value of dipole matrix element results in an increase
of amplitudes of the linear as well as non-linear term of the
absorption coefficient and vice-versa. It is to be noted, how-
ever, that in our MQW system, the variation of dipole ma-
trix element shows complicated behavior with enhancement
in field strength as can be observed from bar graph in an in-
set of Fig. 3. This is because the value of dipole matrix
element depends on the overlap of the wave functions of the
energy levels which shows a complicated behavior due to the
involvement of five quantum wells. The wave functions that
are bound inside the MQW potential are confined to only a
few quantum wells and are not spread over the whole MQW
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FIGURE 4. Optical absorption coefficients as a function of the in-
cident photon energy for different values of the strength ofδ poten-
tial.

structure. This leads to steep fall in the value of dipole matrix
element for someB values as for the case ofB = 6T . In such
cases least value of dipole matrix elements indicates least ab-
sorption and light passes unattenuated through the system at
this magnetic field strength.

Now let us have a look at the results for the variation
of the linear absorption coefficientα(1)(ω), the third-order
non-linear absorption coefficientα(3)(ω, I), and the total ab-
sorption coefficientsα(ω, I) are plotted as a function of the
incident photon energy,~ω for different values of strength
of δ-potential,β = 2.88, 11.52 and 20.16 in units of eV̊A
as shown in Fig. 4. The laser field intensity and the mag-
netic field are kept constant at 42.7 MW/cm2 and 2T , re-
spectively. The behaviour of amplitudes of peak values of
absorption coefficients and stark shifts of resonant positions
so observed can be explained on the basis of variation of in-
terlevel spacing between levels of minibands and changes in
dipole matrix elements so considered. With the increase in
strength ofδ potential, confining potential of the quantum
well system changes and hence there is a change in interlevel
spacing between minibands. There is a steep fall in interlevel
spacing which starts increasing withβ ∼ 0.86 eVÅ upto
β ∼ 1.73 eVÅ and again it falls. This results in the blue stark
shift in the rangeβ ∼ 0.86 − 1.73 eVÅ and then red stark
shift afterwards. Further, it is seen that dipole matrix ele-
ment between the transition levels doesn’t show a monotonic
behaviour. Initially, dipole matrix element increases with the
increase in the value ofβ, it remains constant within a certain
range fromβ ∼ 0.15−1.15 eVÅ and then its value decreases
abruptly which result in loss of transition between the levels.
The decrease hence, results in loss of absorption of incident
light for higher values ofβ and hence we can conclude that
the strength ofδ potential can be used as a tool to adjust the
desired magnitude and position of optical absorption coef-
ficient by controlling the quantum confinement of electrons
and hence any device that is suitable for some specific pur-
poses can be designed byδ-doping of MQW system.

FIGURE 5. Optical absorption coefficients as a function of the inci-
dent photon energy for different values of doping positions in each
well.

Figure 5 corresponds to the plot of the variation of ab-
sorption coefficients as a function of the incident photon en-
ergy,~ω for different doping positions in each well of MQW.
The magnetic field and laser field intensity are kept constant
at 2T and 42.7 MW/cm2, respectively. Threeδ-doping po-
sitions are considered: on-centre doping whenδ-doping ex-
ists at the centre of each quantum welli.e z = 0 and other
two close to the edges of each quantum well on either side
of z = 0 i.e. on-edge doping. In Fig. 5 it is possible to
detect a blue-shift in the resonant peak positions with the dis-
placement of impurity positions towards the edges. This shift
is accompanied by the decrease in amplitudes of linear and
non-linear peak values of absorption coefficients. The blue
shift can be accounted as arising due to the increase in inter-
level energy difference. The decrease in amplitudes of peak
values is due to fall in values of dipole matrix elements that
happens in turn due to the decrease in wave function overlap.
Further, it is observed that the interlevel energy difference
and dipole matrix are symmetrically placed about the posi-
tion of on-centre doping as can be observed from the inset
plot. This leads to the symmetrical behaviour of linear, third
order non-linear and total absorption coefficient for on-edge
doping on either side of on-centre doping.

The refractive index changes are another important opti-
cal parameters in optical studies of quantum nanostructures.
The outcome of analogous calculations for the influence of
various parameters on the linear, third order non-linear and
total refractive index changes as a function of incident pho-
ton energy is presented in Fig. 6 and 7. As seen from fig-
ures, the linear refractive index increases steadily with pho-
ton energy and reaches a maximum value. In that case, the
structure gives normal dispersion for any frequency of inci-
dent photon whered(∆n)/(dω) > 0. As the photon energy
approaches the resonance, the dispersion in the refractive in-
dex changes its sign. This anomalous dispersion, defined by
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FIGURE 6. Plot of refractive index changes as a function of the in-
cident photon energy for different values of strength ofδ potential.

FIGURE 7. Plot of refractive index changes as a function of the
incident photon energy for different doping positions.

d(∆n)/dω < 0, is found at each resonant frequency of the
system. This region is called an absorption band because the
photon is very strongly absorbed, the linear, third order non-
linear and total refractive index changes are equal to zero at
this resonance photon energy. The observed variation in the
amplitudes of the linear, third order non-linear and total re-
fractive index changes with the variation ofβ and position
of doping can be accounted to the growth or fall in the val-
ues of dipole matrix elements since refractive index changes

depend directly on the value of electric dipole moments, as
can be concluded from Eq. (16)-(18). The changes in peak
values are accompanied by the stark shifts in the resonance
position of refractive index changes coming from the incre-
ment or decrement in interlevel spacings between the mini-
bands. Growth in the interlevel spacing results in the blue-
shift (shift towards higher energy) and fall in the interlevel
spacing results in the redshift (shift towards lower energy) of
the resonance position of refractive index changes. As for the
total refractive index changes, the linear change generated by
the termχ(1) is positive, whereas the third-order non-linear
change generated by the termχ(3) is negative. The variations
in the Fig. 6 and 7 show the above characteristic features
and hence confirm our previous results. Therefore, the total
refractive index change is significantly reduced by the non-
linear contribution.

4. Conclusion

In this paper, we have presented a complete study of lin-
ear and non-linear intersubband optical properties in a MQW
with δ-doping under intense high-frequency laser field. The
analytic expression of the optical absorption coefficients and
refractive index changes was derived in detail by using the
compact-density-matrix approach and the iterative method.
The results of numerical calculations show that the opti-
cal absorption coefficients and refractive index changes are
strongly affected by the magnetic field; the position and
strength of theδ-doping potential, and the incident optical
intensity. It is noted that the strength and the doping posi-
tion are important factors in studying absorption spectra and
hence should be taken into consideration when we do both
theoretical calculation and experimental work. Moreover,
in such structures, a favorable Stark shift characteristic oc-
curs, which can be used to control and modulate the intensity
output of the device. To our knowledge, there are very few
reports of the absorption spectra inδ-doped quantum wells.
With respect to the lack of such studies, we believe that our
study makes an important contribution to the literature. The
theoretical investigation of the linear and non-linear optical
properties in such a system will lead to a better understanding
of the properties of quantum wells. Such theoretical studies
may have profound consequences about the practical applica-
tion of the electro-optical devices, and the optical absorption
studies also have extensive application in the optical commu-
nication.
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