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We study the Jost solutions for the scattering problem of a von Neumann-Wigner type potential, constructed by means of a two times iterated
and completely degenerated Darboux transformation. We show that for a particular energy the unnormalized Jost solutions coalesce to give
rise to a Jordan cycle of rank two. Performing a pole decomposition of the normalized Jost solutions we find the generalized eigenfunctions:
one is a normalizable function corresponding to the bound state in the continuum and the other is a bounded, non-normalizable function. We
obtain the time evolution of these functions as pseudo-unitary, characteristic of a pseudo-Hermitian system. An explicit calculation of the
cross section as a function of the wave numberk reveals no sign of the bound state in the continuum.
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1. Introduction

Bound states in the continuum (BICs) are a wave phe-
nomenon that refers to states whose wave functions remain
localized among a continuum of radiating waves with posi-
tive energies. This phenomenon of localized waves has been
identified in atomic and molecular physics, optics, acoustics
and other fields [1–5]. One review concerning this type of
bound states was recently published [6].

BICs were first proposed by von Neumann and Wigner in
1929 [7], since then they have stimulated many experimental
and theoretical research in various branches of physics. The
first experimental evidence in this direction was reported by
F. Capassoet al., they found an electronic bound state with
energy greater than the barrier height in a semiconductor su-
perlattice [8]. More recently, BICs have been observed in
optical waveguide arrays [9–11]. M. Koiralaet al. found
a class of critical states embedded in the continuum in a
one-dimensional arrangement of waveguides [12], and M. I.
Molina et al. observed surface bound states in the continuum
in a linear optical band of a discrete lattice [13].

In quantum physics, there exists a particular type of po-
tentials that support BICs and are solely defined by their os-
cillatory asymptotic behaviour. Typically, a radial potential
with an oscillatory asymptotic behaviour that falls to zero
slowly,

V (r) = a
sin br

r
+O

(
1
r2

)
, (1)

supports a BIC with energyE = b2/4, if the parametersa
andb satisfy the relation|a| > |b| [14]. Potentials of the form
(1) are known as von Neumann-Wigner potentials [7], and
have been studied with methods of supersymmetric quantum
mechanics (SUSY QM) [15], Darboux transformation [16]
and the inverse scattering method (Gel’fand-Levitan equa-

tion) [17]. Further development in the techniques for this
purpose was made in the following years. A. A. Andrianov
and A. V. Sokolov studied a non-Hermitian Hamiltonian in
the whole axis with complex von Neumann-Wigner type po-
tential obtained with SUSY methods, and found the normal-
ized eigenfunction and associated eigenfunction and their or-
thogonal relations; as the Hamiltonian is non-Hermitian and
self-orthogonality of the normalized eigenfunction occurs,
they related the BIC to an exceptional point [18]. A. Khe-
lashvili and N. Kiknadze established a one to one correspon-
dence between the decay law in von Neumann-Wigner type
potentials and the asymptotic behaviour of the wave func-
tions representing the bound states [19], while T. A. Weber
and D. L. Pursey showed that by truncating a von Neumann-
Wigner potential the BIC manifest itself as a resonance [20].
E. Herńandezet al. studied a particular spectral singularity
produced by the coalescence of two BICs [21].

In this paper, in an attempt to develop further results in
this field, particularly concerning the nature of the eigenfunc-
tion corresponding to a BIC, we study the Jost solutions of
a radial Hamiltonian with a real von Neumann-Wigner type
potential and obtain the Jordan cycle of length two of gener-
alized eigenfunctions, one of which is the BIC, and their re-
spective time evolution. Although the exact model presented
in this paper may not be readily applied to a real physical
system, it may prove useful in determining further properties
of more realistic Hamiltonians. The paper is organized as
follows: In Sec. 2, by performing a two times iterated and
completely degenerated Darboux transformation with initial
Hamiltonian the free particle, a von Neumann-Wigner type
potential is obtained supporting a BIC with energyE = q2.
In Sec. 3, the set of Jost solutions normalized to unit flux
are explicitly constructed and it is shown that the unnormal-
ized Jost solutions coalesce atk = q to give rise to a Jordan
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chain of rank two. In Sec. 4, the generalized eigenfunctions
are found from the pole decomposition of the normalized Jost
solutions and the corresponding Jordan chain is established.
The time evolution of the generalized eigenfunctions is de-
scribed in Sec. 5. In Sec. 6, the scattering matrix is ob-
tained as a function ofk and the cross section is calculated.
In Sec. 7, a summary of the results and conclusions is pre-
sented.

2. Von Neumann-Wigner potentials and Dar-
boux transformations

A particular class of completely degenerated Darboux trans-
formations, with initial Hamiltonian the free particle, gener-
ates new potentials of von Neumann-Wigner type supporting
any number of bound states embedded in the continuum [16].
These transformations are obtained from Crum’s theorem, a
generalization of the Darboux transformation, which states
that the function

ψE =
W (φ1, φ2, . . . , φn, φE)

W (φ1, φ2, . . . , φn)
(2)

is an eigenfunction of the Hamiltonian

Hn = − d2

dr2
+ Un, (3)

with eigenvalueE, and the potentialUn is given by

Un = V0 − 2
d2

dr2
ln W (φ1, φ2, . . . , φn). (4)

The auxiliary or transformation functionsφi are eigenfunc-
tions of the initial HamiltonianH0 with eigenvaluesEi,
i = 1, . . . , n, andφE is also an eigenfunction ofH0 with
eigenvalueE. In the above expressionsW (φ1, φ2, . . . , φn)
is the Wronskian of the eigenfunctionsφi [22,23].

The completely degenerated case occurs when we take
all Ei energies close to each other,i.e. Ei → Ē + εi with
εi ¿ 1, and later taking the limitεi → 0. After this proce-
dure, all eigenfunctionsφi coalesce inφ and the respective
eigenvaluesEi in Ē. From Crum’s theorem it follows that
the function

ψE =
W (φ, ∂φ, . . . , ∂n−1φ, φE)

W (φ, ∂φ, . . . , ∂n−1φ)
(5)

is an eigenfunction of the HamiltonianHn, with eigenvalue
E, and the potentialUn is substituted byVn given as

Vn = V0 − 2
d2

dr2
ln W (φ, ∂φ, . . . , ∂n−1φ). (6)

The partial derivative is with respect to the energyĒ.
From here on, we consider as the initial Hamiltonian the

free particle in spherical coordinates with potentialV0 = 0,
and auxiliary eigenfunction

φ = sin(qr + δ(q)) (7)

with eigenvalueĒ = q2 and δ(q) an arbitrary phase shift
which sets the parameters of the system. In this case, differ-
entiation with respect to the energȳE is equivalent to differ-
entiation with respect to wave numberq in expressions (5)
and (6), and in what follows we derive with respect toq.

Let us consider now the simplest case that produces a von
Neumann-Wigner potential:n = 2. The HamiltonianH2 is
given in (3), with the potentialV2 obtained from (6) as

V2(r) = −2
d2

dr2
ln W (φ, ∂φ), (8)

and calculating the WronskianW2 ≡ W (φ, ∂φ) with (7) we
obtain:

W2(r) =
1
2

(sin 2θ − 2qγ) , (9)

where

θ = qr + δ(q), (10)

γ = r + δ′(q), (11)

and as a convenient notation the prime inδ′(q) indicates the
first derivative ofδ(q).

Using (9) in (8) the potential obtained is:

V2(r) = 32q2 (sin θ − qγ cos θ) sin θ

(sin 2θ − 2qγ)2
, (12)

with asymptotic behaviour given by:

V2(r) = −4q
sin 2θ

r
+O

(
1
r2

)
, (13)

and comparing it with (1) we see that it is a potential of von
Neumann-Wigner type and, given thata = −4q andb = 2q,
supports a bound state in the continuum with energyE = q2.

A requirement for the validity of the Darboux transfor-
mation is the absence of singularities in the new potential not
present in the initial potential. From (12) we see that the sin-
gularities ofV2 occur at the zeros ofW2. The WronskianW2

as a function ofr grows linearly with a negative slope, and
has only one real zero.

As the HamiltonianH2 is defined in the positive semi-
axis, we set the condition

W2(0) < 0, (14)

which locates the real zero for negativer and therefore set-
ting the potentialV2 an analytical function ofr in the physical
space. Condition (14) provides a differential relation for the
phase shiftδ(q) as a function ofq. Evaluating (9) inr = 0
we get,

W2(0) =
1
2

(
sin 2δ(q)− 2q

dδ(q)
dq

)
,

and definingt(q) = tan δ(q) we can write condition (14) as

q
dt(q)
dq

− t(q) > 0. (15)
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FIGURE 1. PotentialV2 (continuous line) and density probability
of the eigenfunction of the bound state embedded in the continuum
(dashed line) for parameters valuesα = 2, β = 3 andq = 1.

This relation is readily solved by considering a positive
constantβ to eliminate the inequality, and solving the result-
ing differential equation yields the result

δ(q) = arctan(αq − β), (16)

with α andβ real constants, andβ > 0.
The potentialV2 in (12) is now determined by the param-

etersα andβ. Figure 1 shows the potentialV2 as a function
of r for a given choice of parameters.

3. Jost solutions of the HamiltonianH2

The Schr̈odinger equation for the scattering problem of po-
tentialV2 is

H2f
±(k, r) = k2f±(k, r), (17)

for positive energiesE = k2, wheref±(k, r) are the two
linearly independent unnormalized Jost solutions of Hamil-
tonianH2, which behave asymptotically as outgoing and in-
coming spherical waves [24]. They are obtained from the
Darboux transformation in (5) withn = 2 andφE are the
free particle wave solutionse±ikr with eigenvalueE = k2:

f±(k, r) =
W (φ, ∂φ, e±ikr)

W (φ, ∂φ)
.

As the last column of the Wronskian in the numerator is pro-
portional toe±ikr, the above expression can be written as

f±(k, r) =
w±(k, r)
W2(r)

e±ikr, (18)

with w±(k, r) a complex function of real argumentsk andr
defined as

w±(k, r) = −1
2
(k2 + q2) sin 2θ

+ (k2 − q2)qγ ± i2kq sin2 θ. (19)

Using the expressions (9) and (19) in (18), we can write
the unnormalized Jost solutions in explicit form as

f±(k, r) =
[
2(k2 − q2)qγ − (k2 + q2) sin 2θ

± 4ikq sin2 θ
] e±ikr

sin 2θ − 2qγ
, (20)

and from the linear behaviour ofγ in r for large values ofr
we find the asymptotic behaviour:

f±(k, r) =
[
−(k2 − q2) +O

(
1
r

)]
e±ikr. (21)

Hence, to obtain the two Jost solutions ofH2 normalized
to unit flux at infinity, we must divide (20) by the factor
−(k2 − q2),

F±(k, r) = −f±(k, r)
k2 − q2

, (22)

and the Jost solutions exhibit a simple pole atk = q.
In Appendix A, it is shown that the previous results can

be obtained in an alternative way using the confluent case of
the intertwining method of SUSY QM.

HamiltonianH2 has its spectrum defined for positive en-
ergies and, for each spectral point, there exist two linearly
independent eigenfunctions. However, at the pointk = q the
two unnormalized Jost solutions coalesce. The Wronskian
of the unnormalized Jost solutions can be obtained with the
asymptotic behaviour given in (21):

W (f+, f−) = −2ik(k2 − q2)2, (23)

which vanishes at the pointk = q and therefore the unnor-
malized Jost solutions are linearly dependent at that spectral
point. An eigenfunction is lost and the basis of linearly in-
dependent eigenfunctions of the HamiltonianH2 appears to
be incomplete. In its place a Jordan chain of two generalized
eigenfunctions is formed. The subspace spanned by the gen-
eralized eigenfunctions is in the domain ofH2 for E = q2.

4. Poles of the Jost solutions and Jordan chain

To obtain the generalized eigenfunctions, we rewrite the nor-
malized Jost solution as a decomposition of its pole in a sum
of singular and regular parts. From (22) and using (20) we
can write

F±(k, r) =
[
1 + 4q

(q cos θ ∓ ik sin θ) sin θ

(k2 − q2)(sin 2θ − 2qγ)

]
e±ikr, (24)

which can also be written as

F±(k, r) =
ψB(q, r)
k2 − q2

+ ψ±R(k, r), (25)

with the following defined functions:

ψB(q, r) = lim
k→q

(k2 − q2)F±(k, r)

= 4q2 sin θ

sin 2θ − 2qγ
e∓iδ(q) (26)
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and

ψ±R(k, r) = F±(k, r)− ψB(q, r)
k2 − q2

, (27)

whereψB(q, r) is a square integrable function ofr, while
ψ±R(k, r) are analytic functions ofk, and behave asymptot-
ically in r as outgoing and incoming spherical waves. The
explicit form ofψ±R(k, r) obtained form (27) is

ψ±R(k, r) = e±ikr +

[
e±i(k−q)r − 2q

k+q

k − q

− e±i((k+q)r+2δ(q))

k + q

]
ψB(q, r)

2q
, (28)

and its expression ink = q is given by

ψ±R(q, r) = e±iqr +
[
1− e±2iθ ± i2qr

]ψB(q, r)
4q2

. (29)

After some algebraic manipulation the previous expression
can be written as

ψ±R(q, r) = (1∓ iqδ′)
ψB(q, r)

2q2
+ ψA(q, r), (30)

andψA(q, r), the associated eigenfunction toψB(q, r), is de-
fined as

ψA(q, r) = − 2qγ cos θ

sin 2θ − 2qγ
e∓iδ(q), (31)

which is a bounded, non-normalizable function.
As eigenfunctions of the HamiltonianH2, the normalized

Jost solutions satisfy the time independent Schrödinger equa-
tion

H2F
±(k, r) = k2F±(k, r) (32)

for all k, exceptk = q whereF±(k, r) is not defined. To
explore the limitk → q we substitute (25) in (32):

H2

(
ψB(q, r)
k2 − q2

+ ψ±R(k, r)
)

= k2

(
ψB(q, r)
k2 − q2

+ ψ±R(k, r)
)

. (33)

Multiplying (33) by (k2 − q2) and taking the limitk → q we
obtain:

H2ψB(q, r) = q2ψB(q, r), (34)

the square integrable solutionψB(q, r) representing the
bound state embedded in the continuum is an eigenfunction
of H2 with energyE = q2. Figure 1 shows|ψB(q, r)|2 as a
function ofr.

Using the result (34) in (33) and taking the limitk → q
we get

H2ψ
±
R(q, r) = q2ψ±R(q, r) + ψB(q, r). (35)

However, as the additive term proportional toψB(q, r) in (30)
satisfies (34) it can be omitted and we can write

H2ψA(q, r) = q2ψA(q, r) + ψB(q, r), (36)

with ψA(q, r) the associated eigenfunction. Thus,ψB(q, r)
and ψA(q, r) are generalized eigenfunctions of the Hamil-
tonian H2, and they form a Jordan chain of rank two for
E = q2. The Jordan chain is the result of the coalescence
of two energy levels [25], for a direct proof see Appendix B.

5. Pseudo-unitary time evolution of the gener-
alized eigenfunctions

The two generalized eigenfunctionsψB(q, r) and ψA(q, r)
belong to the same spectral point,E = q2; in consequence,
they evolve in time together. Hence, it should be convenient
to introduce a matrix notation to deal with the two together.
From (34) and (36) we can write them as

H2Ψ(q, r) = H(q)Ψ(q, r), (37)

where

Ψ(q, r) =
(

ψB(q, r)
ψA(q, r)

)
(38)

is the two component vector of the doublet, and

H(q) =
(

q2 0
1 q2

)
(39)

is the2× 2 energy matrix.
The time dependent generalized eigenfunctions are

Ψ(r, t) = U(q, t)Ψ(q, r), (40)

whereU(q, t) is the 2 × 2 matrix of time dependent coef-
ficients and gives the time evolution of the wave function
Ψ(q, r).

Substitution ofΨ(r, t) in the time dependent Schrödinger
equation gives the following set of coupled equations written
in matrix form

i
∂U(q, t)

∂t
Ψ(q, r) = U(q, t)H2Ψ(q, r)

= U(q, t)H(q)Ψ(q, r). (41)

Making abstraction ofΨ(q, r), we obtain

i
∂U(q, t)

∂t
= U(q, t)H(q). (42)

Integrating equation (42) we get

U(q, t) = e−iH(q)t, (43)

writing H(q) in explicit form in (43), and computing the ex-
ponential, we obtain

U(q, t) = e−iq2t

(
1 0
−it 1

)
. (44)

Substitution of the expression (44) in (40) gives the evolu-
tion in time of the two generalized components of the doublet
Ψ(r, t):

ψB(r, t) = ψB(q, r)e−iq2t (45)
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and

ψA(r, t) = ψA(q, r)e−iq2t − itψB(q, r)e−iq2t. (46)

The componentψB(r, t), describing the time evolution of
the bound state eigenfunction embedded in the continuum,
exhibits a unitary evolution in time, while the component
ψA(r, t) has a linear growth with time. Therefore, the wave
function Ψ(r, t) grows linearly with timet. This type of
behaviour has been found by Longhiet al. [26] in a non-
Hermitian Hamiltonian.

The above result is a direct consequence of the pseudo-
Hermiticiy of HamiltonianH2 atE = q2, represented as the
matrixH(q) in (39). An operator is pseudo-Hermitian if there
exists a linear, invertible, Hermitian operatorη such that [27]

H† = ηHη−1. (47)

The general form ofη satisfying (47) forH(q) in (39) is

η =
(

a b
b 0

)
, (48)

with a andb any real parameters. In turn,U(q, t) is pseudo-
unitary because HamiltonianH2 at E = q2 is a pseudo-
Hermitian operator. An operator is pseudo-unitary if its in-
verse and its adjoint satisfy the transformation [27]

U† = η U−1η−1, (49)

as it may be verified by substitution of (44) and (48).
Therefore, the generalized eigenfunctionsψB(q, r) and

ψA(q, r) in the Jordan cycle have a pseudo-unitary time evo-
lution.

6. Cross section and scattering matrix

In this section, we will show that the scattering matrix has no
singularities at the corresponding spectral pointk = q, con-
trary to the case of conventional bound states with negative
energies.

The scattering solution is defined as [24]:

ψs(k, r) =
i

2
[F−(k, r)− S(k)F+(k, r)], (50)

whereF±(k, r) are the Jost solutions in (22) andS(k) is the
scattering matrix defined as

S(k) =
F−(k, 0)
F+(k, 0)

, (51)

andF+(k, 0) is the Jost function.
From (20) and (22) evaluated atr = 0 we obtain

F±(k, 0) and a direct substitution in (51) gives:

S(k)=
2(k2−q2)qδ′−(k2+q2) sin 2δ−4ikq sin2 δ

2(k2−q2)qδ′−(k2+q2) sin 2δ+4ikq sin2 δ
(52)

which can be written as

S(k) = e2i∆(k), (53)

where∆(k) is the phase shift and is given by

∆(k)=− arctan
(

4kq sin2 δ

2(k2−q2)qδ′−(k2+q2) sin 2δ

)
. (54)

Taking the limitk → q we get∆(q) = δ. Hence, the scatter-
ing matrix evaluated atk = q is finite and equal to

lim
k→q

S(k) = e2iδ(q). (55)

However, there can be singularities ofS(k) for different
values ofk. The singularities ofS(k) are the zeros of the Jost
functionF+(k0, 0) = 0:

(2qδ′ − sin 2δ)k2
0 + (4iq sin2 δ)k0

− (2qδ′ + sin 2δ)q2 = 0, (56)

which is a quadratic equation fork0. In terms ofα andβ we
have

βk2
0 + 2iq(αq − β)2k0 − 2αq + β = 0. (57)

The zeros in the fourth quadrant of the complexk-plane near
the real axis may be resonances, while zeros on the imagi-
nary positive axis correspond to bound states with negative
energy.

The cross section is defined as

σ(k) =
4π

k2
sin2 ∆(k), (58)

and with the explicit form of∆(k) in (54) we are able to
observe its behaviour and dependence onk. Figure 2 shows
σ(k) as a function ofk and for the chosen values of param-
etersα andβ a resonance shape is found, belonging to the
value k0 =

√
2/3 − i/3, far from the valuek = q = 1

of the BIC. The BIC has no effect in the cross section, only
when the system is perturbed the BIC may manifest itself as
a resonance [20].

FIGURE 2. Cross sectionσ(k) for parameters valuesα = 2, β = 3
andq = 1. The Breit-Wigner peak inσ(k) corresponds to a res-
onance, far from the valuek = q = 1 of the BIC, located at
k0 =

√
2/3− i/3.
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7. Summary and conclusions

In this work, we presented a von Neumann-Wigner type
potentialV2 constructed by means of a two times iterated
and completely degenerated Darboux transformation. The
HamiltonianH2 and the free particle HamiltonianH0 are
isospectral, and to each point in their continuous spectrum
corresponds two linearly independent Jost solutions, which
behave at infinity as incoming and outgoing waves. However,
we have shown that in the continuous spectrum ofH2 there
is a singular point, with energyE = q2, such that the two un-
normalized Jost solutions are linearly dependent and coalesce
to give rise to a Jordan chain of rank two of generalized eigen-
functions and a Jordan block representation of the Hamilto-
nian H2. The normalized Jost solutions have a simple pole
at wave numberk = q and after a pole decomposition the
Jordan chain and respective generalized eigenfunctions are
obtained. One of the generalized eigenfunctions is normal-
izable and corresponds to the BIC, the other is a bounded,
non-normalizable function associated with the BIC. Finally,
we obtained the time evolution of the generalized eigenfunc-
tions: the BIC has a unitary time evolution, while the asso-
ciated eigenfunction has a linear growth in time. Together,
they exhibit a pseudo-unitary behaviour characteristic of a
pseudo-Hermitian system. Finally, we have shown that the
BIC is not associated with a singularity of the scattering ma-
trix S(k) and, as a result, the BIC is not observed in the cross
sectionσ(k).

Appendix

A. Equivalence with the confluent case of SUSY
QM

The completely degenerated case of the Darboux transforma-
tion and the confluent case of SUSY QM are equivalent meth-
ods for obtaining new, completely solvable, quantum systems
from previously solved ones.

In SUSY QM of second order the relation between the
initial HamiltonianH0 and the transformed HamiltonianH2

is given by [28]

H2B2 = B2H0 (A.1)

where

H2 = − d2

dr2
+ V2 (A.2)

H0 = − d2

dr2
+ V0 (A.3)

B2 =
d2

dr2
+ g(r)

d
dr

+ h(r). (A.4)

OperatorB2 is known as the intertwining operator, and is
a differential operator of second order, withg(r) andh(r)
functions to be determined.

Therefore, by applying (A.1) and usingV2, given in (12),
we can find an explicit expression for the corresponding in-
tertwining operator for the present problem. WithV0 = 0 we
obtain the following equations:

−2
dg(r)
dr

+ V2 = 0 (A.5)

−d2g(r)
dr2

− 2
dh(r)

dr
+ V2g(r) = 0 (A.6)

−d2h(r)
dr2

+ V2h(r) = 0. (A.7)

We notice thath(r) in (A.7) satisfies the equivalent equation
H2h(r) = 0; thus,h(r) is readily obtained from (20) by tak-
ing k = 0:

h(r) = −q2 sin 2θ + 2qγ

sin 2θ − 2qγ
. (A.8)

Using (A.5) in (A.6) we write:

d
dr

(
−1

2
V2 + g2(r)− 2h(r)

)
= 0,

and as we know bothV2 andh(r) we getg(r) as:

g(r) = ±
√

1
2
V2 + 2h(r) + c,

with c an arbitrary integration constant. UsingV2 andh(r)
given in (12) and (A.8), respectively, we get

g(r) = ±
√

16q2
sin4 θ

(sin 2θ − 2qγ)2
+ 2q2 + c,

and choosingc = −2q2 the functiong(r) is simplified to

g(r) = ±4q
sin2 θ

sin 2θ − 2qγ
. (A.9)

Differentiating (A.9) once with respect tor and substituting
in (A.5), we conclude that we must take the positive root.
Hence, with (A.8) and (A.9) the intertwining operatorB2 in
(A.4) is given by

B2 =
d2

dr2
+ 4q

sin2 θ

sin 2θ − 2qγ

d
dr

− q2 sin 2θ + 2qγ

sin 2θ − 2qγ
. (A.10)

If φk is an eigenfunction ofH0 with energy eigenvalue
E = k2, satisfying the eigenvalue equationH0φk = k2φk,
thenB2φk is an eigenfunction ofH2 for the same eigenvalue

H2B2φk = k2B2φk. (A.11)

Using the same eigenfunctions for the free particle of outgo-
ing and incoming wavesφ±k = e±ikr we get the following
eigenfunctions forH2:

B2φ
±
k =

[
2(k2 − q2)qγ − (k2 + q2) sin 2θ ± 4ikq sin2 θ

]

× e±ikr

sin 2θ − 2qγ
,

(A.12)
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which are exactly the same Jost solutions in (20) obtained
with the method of Darboux transformation, thus proving the
equivalence of both methods.

B. Explicit coalescence of two energy levels and
Jordan chain

In Sec. 2 the completely degenerated case of the Darboux
transformation generalized in Crum’s theorem was presented,
and the casen = 2 was studied. An equivalent way of ap-
proaching the problem consists in performing the Darboux
transformation with two different transformation functions

φ1 = sin(q1r + δ(q1)) (B.1)

φ2 = sin(q2r + δ(q2)) (B.2)

with respective energy eigenvaluesE1 = q2
1 andE2 = q2

2 ,
and then consider the limit when both energy eigenvalues co-
alesce.

The potentialU2 is given by (4) withn = 2 andV0 = 0.
A calculation of the Wronskian ofφ1 andφ2 gives

W (φ1, φ2) = q2 sin θ1 cos θ2 − q1 cos θ1 sin θ2, (B.3)

with θi = qir + δ(qi). And the potential is

U2(r) = −2
(q2

1 − q2
2)(q2

2 sin2 θ1 − q2
1 sin2 θ2)

(q2 sin θ1 cos θ2 − q1 cos θ1 sin θ2)2
. (B.4)

Now we calculate the eigenfunctions of the Hamiltonian
with potential (B.4) and study the limit whenq2 → q1. From
(2) with n = 2 and the free particle solutionsφE = e±ikr,
the eigenfunctions are obtained as

ϕ±(k, r) =
q1(k2 − q2

2) cos θ1 sin θ2 − q2(k2 − q2
1) sin θ1 cos θ2 ∓ ik(q2

1 − q2
2) sin θ1 sin θ2

q2 sin θ1 cos θ2 − q1 cos θ1 sin θ2
e±ikr. (B.5)

The Wronskian of the eigenfunctions is directly calcu-
lated and has the form

W (ϕ+, ϕ−) = −2ik(k2 − q2
1)(k2 − q2

2), (B.6)

and we see that for eigenvaluesE = q2
1 andE = q2

2 the
Wronskian vanishes. In the limitq2 → q1 = q expression
(23) is recovered.

The respective eigenfunctions for the energies mentioned
above are calculated by direct substitutionk = q1 andk = q2

in (B.5) and we obtain

ϕ±(q1, r) =
q1(q2

1 − q2
2) sin θ2 e∓iδ(q1)

q2 sin θ1 cos θ2 − q1 cos θ1 sin θ2
(B.7)

and

ϕ±(q2, r) =
q2(q2

1 − q2
2) sin θ1 e∓iδ(q2)

q2 sin θ1 cos θ2 − q1 cos θ1 sin θ2
. (B.8)

For q1 6= q2, the eigenfunctionsϕ±(q1, r) andϕ±(q2, r) are
linearly independent.

In order to study the coalescence of the two energy levels
we denoteq1 = q andq2 = q + ε, and take the limitε → 0.
Becauseε ¿ 1 we consider the following series expansions

sin θ2 = sin θ + εγ cos θ +
ε2

2
(
δ′′ cos θ − γ2 sin θ

)
+ . . .

cos θ2 = cos θ − εγ sin θ − ε2

2
(
δ′′ sin θ + γ2 cos θ

)
+ . . . ,

with γ = r + δ′(q).
Substituting both series in (B.7) and (B.8), we get the fol-

lowing expressions

ϕ±(q, r)

= −4q2 sin θ+2qε(2qγ cos θ+sin θ)+O(ε2)
sin 2θ−2qγ−ε(qδ′′+2γ sin2 θ)+O(ε2)

e∓iδ(q) (B.9)

and

ϕ±(q + ε, r)

=− 4q2 sin θ+6qε sin θ +O(ε2)
sin 2θ−2qγ−ε(qδ′′+2γ sin2 θ)+O(ε2)

e∓iδ(q+ε),

(B.10)

and taking the limitε → 0 we get, respectively,

lim
ε→0

ϕ±(q, r) = −4q2 sin θ e∓iδ(q)

sin 2θ − 2qγ
= −ψB(q, r) (B.11)

and

lim
ε→0

ϕ±(q + ε, r) = −4q2 sin θ e∓iδ(q)

sin 2θ − 2qγ

= −ψB(q, r), (B.12)

which means that both eigenfunctions coalesce to the same
square integrable functionψB(q, r), defined in (26) and rep-
resenting the bound stated embedded in the continuum.

When two eigenfunctions and their respective eigenval-
ues coalesce, a Jordan chain of rank two is formed and the as-
sociated eigenfunction, completing the Jordan chain, is given
by [25]

ψ±G(q, r) =
∂ϕ±(q,r)

∂ε − ∂ϕ±(q+ε,r)
∂ε

∂
∂εq

2 − ∂
∂ε (q + ε)2

∣∣∣∣∣
ε=0

. (B.13)

Differentiating (B.9) and (B.10) with respect toε and plug-
ging the results in (B.13) we obtain the following expression
for the generalized eigenfunction
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ψ±G(q, r) = (−1± iqδ′)
ψB(q, r)

2q2
− ψA(q, r), (B.14)

with ψA(q, r) defined in (31). In expressions (B.11), (B.12)
and (B.14), obtained from the explicit coalescence of two en-
ergy levels, we notice a global sign difference to their coun-
terparts in (26) and (30). This comes from the normalization
factor−(k2 − q2) used to normalize the Jost solutions (22)
to unit flux at infinity.
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