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We study the Jost solutions for the scattering problem of a von Neumann-Wigner type potential, constructed by means of a two times iterated
and completely degenerated Darboux transformation. We show that for a particular energy the unnormalized Jost solutions coalesce to give
rise to a Jordan cycle of rank two. Performing a pole decomposition of the normalized Jost solutions we find the generalized eigenfunctions:
one is a normalizable function corresponding to the bound state in the continuum and the other is a bounded, non-normalizable function. We
obtain the time evolution of these functions as pseudo-unitary, characteristic of a pseudo-Hermitian system. An explicit calculation of the
cross section as a function of the wave numbesveals no sign of the bound state in the continuum.
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1. Introduction tion) [17]. Further development in the techniques for this
purpose was made in the following years. A. A. Andrianov
Bound states in the continuum (BICs) are a wave pheand A. V. Sokolov studied a non-Hermitian Hamiltonian in
nomenon that refers to states whose wave functions remathe whole axis with complex von Neumann-Wigner type po-
localized among a continuum of radiating waves with posi-tential obtained with SUSY methods, and found the normal-
tive energies. This phenomenon of localized waves has beeped eigenfunction and associated eigenfunction and their or-
identified in atomic and molecular physics, optics, acoustics$hogonal relations; as the Hamiltonian is non-Hermitian and
and other fields [1-5]. One review concerning this type ofself-orthogonality of the normalized eigenfunction occurs,
bound states was recently published [6]. they related the BIC to an exceptional point [18]. A. Khe-
BICs were first proposed by von Neumann and Wigner inlashvili and N. Kiknadze established a one to one correspon-
1929 [7], since then they have stimulated many experimentalence between the decay law in von Neumann-Wigner type
and theoretical research in various branches of physics. Thsotentials and the asymptotic behaviour of the wave func-
first experimental evidence in this direction was reported bytions representing the bound states [19], while T. A. Weber
F. Capasset al., they found an electronic bound state with and D. L. Pursey showed that by truncating a von Neumann-
energy greater than the barrier height in a semiconductor sw/igner potential the BIC manifest itself as a resonance [20].
perlattice [8]. More recently, BICs have been observed irg. Herrandezet al. studied a particular spectral singularity
optical waveguide arrays [9-11]. M. Koirakt al. found  produced by the coalescence of two BICs [21].
a class of critical states embedded in the continuum in a . ] .
one-dimensional arrangement of waveguides [12], and M. I. N this paper, in an attempt to develop further results in

Molina et al. observed surface bound states in the continuunthis field, particularly concerning the nature of the eigenfunc-
in a linear optical band of a discrete lattice [13]. tion corresponding to a BIC, we study the Jost solutions of

In quantum physics, there exists a particular type of po@ radial Hamiltonian with a real von Neumann-Wigner type

tentials that support BICs and are solely defined by their osPOtential and obtain the Jordan cycle of length two of gener-
cillatory asymptotic behaviour. Typically, a radial potential &liZ€d eigenfunctions, one of which is the BIC, and their re-
with an oscillatory asymptotic behaviour that falls to zero SPective time evolution. Although the exact model presented

slowly, in this paper may not be readily applied to a real physical

sin br 1 ) system, it may prove useful in determining further properties

Vi =™ o

r

(1) of more realistic Hamiltonians. The paper is organized as
follows: In Sec. 2, by performing a two times iterated and
supports a BIC with energfy = b2 /4, if the parameters completely degenerated Darboux transformation with initial
andb satisfy the relatiota| > |b| [14]. Potentials of the form  Hamiltonian the free particle, a von Neumann-Wigner type
(1) are known as von Neumann-Wigner potentials [7], andootential is obtained supporting a BIC with enedy= ¢>.
have been studied with methods of supersymmetric quanturim Sec. 3, the set of Jost solutions normalized to unit flux
mechanics (SUSY QM) [15], Darboux transformation [16] are explicitly constructed and it is shown that the unnormal-
and the inverse scattering method (Gel'fand-Levitan equaized Jost solutions coalescekat= ¢ to give rise to a Jordan
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chain of rank two. In Sec. 4, the generalized eigenfunctionsvith eigenvalueE = ¢ andd(q) an arbitrary phase shift
are found from the pole decomposition of the normalized Josivhich sets the parameters of the system. In this case, differ-
solutions and the corresponding Jordan chain is establishedntiation with respect to the enerdyis equivalent to differ-
The time evolution of the generalized eigenfunctions is de-entiation with respect to wave numbeiin expressions (5)
scribed in Sec. 5. In Sec. 6, the scattering matrix is oband (6), and in what follows we derive with respectto

tained as a function of and the cross section is calculated.

Let us consider now the simplest case that produces a von

In Sec. 7, a summary of the results and conclusions is pr&Neumann-Wigner potentiah = 2. The HamiltonianHs is

sented.

2. Von Neumann-Wigner potentials and Dar-
boux transformations

A particular class of completely degenerated Darboux transebtain:

formations, with initial Hamiltonian the free particle, gener-

ates new potentials of von Neumann-Wigner type supportin

given in (3), with the potential, obtained from (6) as

2
_2@ IHW(¢7 8¢)7 (8)

and calculating the Wronskid, = W (¢, 0¢) with (7) we

VQ(T‘) =

any number of bound states embedded in the continuum [16].

These transformations are obtained from Crum’s theorem,
generalization of the Darboux transformation, which state
that the function

_ W((blvd)% .. 'a¢na¢E)

v = W(d1, P2, én) )
is an eigenfunction of the Hamiltonian
H, = —f—; + Uy, 3)
with eigenvalueZ, and the potentidl,, is given by
d2
Un:VO—2@IHW(¢1,¢2,...,¢R). (4)

The auxiliary or transformation functions are eigenfunc-
tions of the initial HamiltonianH, with eigenvaluesE;,
i =1,...,n, and¢g is also an eigenfunction aoff, with
eigenvalueE. In the above expression® (¢1, ¢, ..., dn)
is the Wronskian of the eigenfunctions [22, 23].

The completely degenerated case occurs when we ta
all E; energies close to each otheg. E; — E + ¢; with
€; < 1, and later taking the limi¢; — 0. After this proce-
dure, all eigenfunctions,; coalesce inp and the respective
eigenvaluesF; in £. From Crum's theorem it follows that
the function

wE _ W(¢, a¢v e 7an71¢a ¢E)
W (¢, 00,...,0n 1)

is an eigenfunction of the HamiltoniaH,,, with eigenvalue
E, and the potentidl/,, is substituted by, given as

(5)

2

d o
V=V, — 203 InW(p,d¢,...,0" 1¢). (6)

The partial derivative is with respect to the enefgy

Wa(r) = 5 (sin 26— 2q7), ©)
here
a 6 =qr+94(q), (10)
s
y=r+08(q), (11)

and as a convenient notation the primeyify) indicates the
first derivative of5(q).
Using (9) in (8) the potential obtained is:

(sinf — gy cosf)siné

= 324> 12
Va(r) =32q G20 — 202 (12)
with asymptotic behaviour given by:
in 260 1
nn -1 o(5).

and comparing it with (1) we see that it is a potential of von
Neumann-Wigner type and, given that= —4q andb = 2gq,
supports a bound state in the continuum with endtgy ¢2.

A requirement for the validity of the Darboux transfor-
mation is the absence of singularities in the new potential not
l%resent in the initial potential. From (12) we see that the sin-
gularities ofl%, occur at the zeros df/;. The WronskiariV,
as a function of- grows linearly with a negative slope, and
has only one real zero.

As the HamiltonianH- is defined in the positive semi-
axis, we set the condition

W5(0) <0, (14)

which locates the real zero for negativeénd therefore set-
ting the potential’, an analytical function of in the physical
space. Condition (14) provides a differential relation for the
phase shifty(¢) as a function of;. Evaluating (9) in- = 0

we get,

L0

Wa(0) dg

% (sin 25(q)

From here on, we consider as the initial Hamiltonian the

free particle in spherical coordinates with poteniigl= 0,
and auxiliary eigenfunction

¢ = sin(qr 4+ 6(q)) (7)
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and defining:(¢) = tan §(g) we can write condition (14) as

dt(q)

a4 (15)

—t(q) > 0.
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and from the linear behaviour efin r for large values of-
\ we find the asymptotic behaviour:
2\, 0.5
“ II \\\ 1 ikr
wo 7 s oot ) = =02 = )40 ()] e @
0 \/I * /—/(\\—/—)/:\ AN =40
\/ Hence, to obtain the two Jost solutions &f, normalized
to unit flux at infinity, we must divide (20) by the factor
_2 —05 _(k,Z _ q2)
0 5 10 15 ’
r +
=+ . f (kv T)
FIGURE 1. PotentialV; (continuous line) and density probability Fx(k,r) = = k2 — g2 (22)
of the eigenfunction of the bound state embedded in the continuum
(dashed line) for parameters values= 2, 3 = 3 andg = 1. and the Jost solutions exhibit a simple polé at q.

In Appendix A, it is shown that the previous results can
be obtained in an alternative way using the confluent case of
the intertwining method of SUSY QM.

Hamiltonian H, has its spectrum defined for positive en-

é(¢q) = arctan(ag — 3), (16)  ergies and, for each spectral point, there exist two linearly
with oo and 3 real constants, and > 0. independent e_igenfunctions. _However, at the phist ¢ the .

The potentiaVs in (12) is now determined by the param- two unnormallzgd Jost solutlo_ns coalesce. The Wronsklan

etersa and 3. Figure 1 shows the potenti&h as a function of the unnormalized Jost solutions can be obtained with the

of r for a given choice of parameters. asymptotic behaviour given in (21):

This relation is readily solved by considering a positive
constants to eliminate the inequality, and solving the result-
ing differential equation yields the result

b o2 2)2
3. Jost solutions of the HamiltonianH, W 7)) = =2k =), (23)

The Schodinger equation for the scattering problem of po-Which vanishes at the poiiit = ¢ and therefore the unnor-
tential Vs is malized Jost solutions are linearly dependent at that spectral

n 5 ot point. An eigenfunction is lost and the basis of linearly in-
Hof*(k,r) = k2 f=(k, ), 17) dependent eigenfunctions of the Hamiltonidp appears to
for positive energieds = k2, where f*(k,r) are the two  be incomplete. In its place a Jordan chain of two generalized
linearly independent unnormalized Jost solutions of Hamil-eigenfunctions is formed. The subspace spanned by the gen-
tonian H>, which behave asymptotically as outgoing and in-€ralized eigenfunctions is in the domainids for £ = ¢°.
coming spherical waves [24]. They are obtained from the
Darboux transformation in (5) with = 2 and ¢ are the

free particle wave solutions™*" with eigenvaluefs = k*: 4. Poles of the Jost solutions and Jordan chain
+ W<¢7 a(ba eiikr)
ok, r) = T W(,00) To obtain the generalized eigenfunctions, we rewrite the nor-

As the last column of the Wronskian in the numerator is pro_mallzed Jost solution as a decomposition of its pole in a sum

portional toe=?*", the above expression can be written as of singular and regular parts. From (22) and using (20) we

. can write
-+ _wER,T) ik
f2 (k) = W (r) e (18) 4 B (gcos@ F iksin®)sinb | o,
F (ka T) - 1 + 4q 2 2 . 9 € Y (24)
with w® (k, ) a complex function of real argumeritsandr (k* —¢*)(sin 20 — 2q7)
defined as 1 which can also be written as
wr(k,r) = —=(k? + ¢®) sin 260
; Pk r) = LEOT) |y (25)
+ (k* — ¢*)qy £ i2kqsin’ 6. (19) ’ k2 — ¢2 RATED
Using the expressions (9) and (19) in (18), we can Writevvith the following defined functions:
the unnormalized Jost solutions in explicit form as
FEk, ) = [2(k2 — gy — (K + ¢?)sin 20 Up(a.r) = Jim (k* — ¢*)F*(k.r)
+ikr :
o e g2 S0 s
=+ 4ikqsin 9] Sn20 g’ (20) 4q Y 2q7€ (26)
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and with ¢4 (g, r) the associated eigenfunction. Thus;(q, )

YE(k,r) = FE(k,r) — wf(q’?’ (27) andda(q,r) are generalized eigenfunctions of the Hamil-
k* —q tonian H,, and they form a Jordan chain of rank two for
where s (q,7) is a square integrable function of while ~ E = ¢2. The Jordan chain is the result of the coalescence
wﬁ(k,y-) are analytic functions ok, and behave asymptot- of two energy levels [25], for a direct proof see Appendix B.
ically in » as outgoing and incoming spherical waves. The
explicit form ofwﬁ(k;, r) obtained form (27) is

5. Pseudo-unitary time evolution of the gener-

eFilk—ar _ 2¢_ alized eigenfunctions
+ +ikr k+q
gk, r) =" + | ——————
k—q The two generalized eigenfunctions; (¢, ) and v 4(q, )
eFi((+0r+26(@) | 4h(q, 1) belong to thg same spectral poitit,= g2; in consequence,
} - (28)  they evolve in time together. Hence, it should be convenient
k+q 2q to introduce a matrix notation to deal with the two together.
and its expression ih = ¢ is given by From (34) and (36) we can write them as
. : Hy¥(q,r) =H(q)¥(q,r), 37
/l/)ﬁ (q,T) — B:I:zqr + |:1 o e:EQZG Zl: 'L2q7‘:| 1/’B4(q27 T) . (29) 2 (q T) (q) (q T) ( )
e where
After some algebraic manipulation the previous expression U(q,r) = (1/)3(61,7“)) (38)
can be written as Yalg,r)
N ¥5(g,r) is the two component vector of the doublet, and
Vrlgr) =0 Fi0) = 3= +valer),  (80) 2 g
. _ | 7ﬂ@:(% 2) (39)
andy 4(q, r), the associated eigenfunctiomte (¢, r), is de- q
fined as 2qycosd is the2 x 2 energy matrix.
Yalg,r) = — T, (31) The time dependent generalized eigenfunctions are
sin 20 — 2g~y
which is a bounded, non-normalizable function. U(r,t) =U(q, t)¥(q,71), (40)

As eigenfunctions of the Hamiltoniai,, the normalized
Jost solutions satisfy the time independent 8dimger equa- Wherel{(g, ) is the2 x 2 matrix of time dependent coef-
tion ficients and gives the time evolution of the wave function
HyFE(k,r) = K2F*(k,r) (32) ¥(gr).
Substitution of¥ (r, t) in the time dependent Sabdinger
equation gives the following set of coupled equations written
in matrix form

H, (ﬁf(f;z) - wﬁ(kﬂa)) iauéz’t)‘l’(w) =U(a,)H>¥(g,7)

for all k, exceptk = ¢ where F*(k,r) is not defined. To
explore the limitk — ¢ we substitute (25) in (32):

_ g2 (if(_q,qrz) Tk (h, T)> . (33) =U(g: )H(@)¥(g,r).  (41)
Making abstraction of (¢, ), we obtain
Multiplying (33) by (k2 — ¢?) and taking the limit: — ¢ we (g, 1)
obtain: I8 D~ U (g, t)H(q)- (42)
Hys(q,r) = *¥(a.7), (34) ot

the square integrable solutioftz(gq,r) representing the Integrating equation (42) we get

bound state embedded in the continuum is an eigenfunction U(g,t) = e M@t (43)
of H, with energyE = ¢%. Figure 1 showsyz(q,7)|* as a
function ofr. writing H(q) in explicit form in (43), and computing the ex-
Using the result (34) in (33) and taking the lingit— ¢ ponential, we obtain
we get
+ 2+ Ulg,t) =" ( i1 > ' (44)
Hypp(a,7) = (e, 7) + ¥5(a, 7). (35) —it 1
However, as the additive term proportionatitg (g, ) in (30) Substitution of the expression (44) in (40) gives the evolu-
satisfies (34) it can be omitted and we can write tion in time of the two generalized components of the doublet
U(r,t):
Hapa(g,r) = ¢*algr) + ¥n(g,7), (36) ¥p(r,t) = ¥p(g,r)e " (45)
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and which can be written as

Galr1) = palar)e "~ ityp(q,r)e 0t (46) S(k) = 0, (53)
The componentyz(r,t), describing the time evolution of whereA (k) is the phase shift and is given by
the bound state eigenfunction embedded in the continuum, 4kgsin® 6
L i o i A(k)= ¢ 4 (54)
exhibits a unitary evolution in time, while the component T S 20 — (k2 rq?) sin20 )
Ya(r,t) has a linear growth with time. Therefore, the wave _ o
function ¥(r,t) grows linearly with timet. This type of  1aking the limitk — g we getA(q) = 4. Hence, the scatter-
behaviour has been found by Longgi al. [26] in a non- NG matrix evaluated &t = ¢ is finite and equal to
Hermitian Hamiltoniar_m _ lim S(k) = £2i8(q) (55)
The above result is a direct consequence of the pseudo- k—q
Hermiticiy of Hamiltoniant, at £ = ¢*, represented asthe  yvever, there can be singularities $k) for different

matrix7{(¢) in (39). An operator is pseudo-Hermitian if there \ 51 es oft.. The singularities 08 (k) are the zeros of the Jost
exists a linear, invertible, Hermitian operatpsuch that [27] function -+ (ko, 0) = 0:

HE = nHy (47) (2¢0" — sin 20)kg + (4igsin® §)ko
The general form ofj satisfying (47) forH(q) in (39) is — (299" 4 sin28)¢> = 0, (56)
a b which is a quadratic equation fég. In terms ofa and we
= ( b 0 > ; (48) have
Bka + 2iq(aq — B3)*ko — 2aq + 3= 0. (57)

with « andb any real parameters. In tur“,(ga t) is pseudo-  The zeros in the fourth quadrant of the compleplane near
unitary because Hamiltoniafl; at £ = ¢ is a pseudo-  the real axis may be resonances, while zeros on the imagi-
Hermitian operator. An operator is pseudo-unitary if its in-nary positive axis correspond to bound states with negative

verse and its adjoint satisfy the transformation [27] energy.
o The cross section is defined as
Ut =nu='nt, (49) i
o(k) = — sin® A(k), (58)
as it may be verified by substitution of (44) and (48). k

Therefore, the generalized eigenfunctiang(q,~) and  and with the explicit form ofA(k) in (54) we are able to
¥ a(gq,r) in the Jordan cycle have a pseudo-unitary time evo-observe its behaviour and dependence:ofrigure 2 shows
lution. o(k) as a function of; and for the chosen values of param-
etersa and 5 a resonance shape is found, belonging to the
valueky = v/2/3 — i/3, far from the valuek = ¢ = 1
of the BIC. The BIC has no effect in the cross section, only

In this section, we will show that the scattering matrix has ng//hen the system is perturbed the BIC may manifest itself as

singularities at the corresponding spectral péint ¢, con- a resonance [20].
trary to the case of conventional bound states with negative
energies.

The scattering solution is defined as [24]:

6. Cross section and scattering matrix

(k)

Yulk,r) = S (k) = SUIFH(k7)], (50)

whereF*(k, r) are the Jost solutions in (22) asgk) is the

scattering matrix defined as 10
F~(k,0)
S(k) = =——"—= 51
( ) FJF (k, 0) ’ ( ) 5
andF*(k,0) is the Jost function. N
From (20) and (22) evaluated at = 0 we obtain 03 1o '3 20 >3 30
F*(k,0) and a direct substitution in (51) gives: FIGURE 2. Cross sectiow (k) for parameters values = 2, 5 = 3
andq = 1. The Breit-Wigner peak imr(k) corresponds to a res-
2(k2—¢2)qd’ — (k2 +¢?) sin 20 —4ikqsin® § onance, far from the valug = ¢ = 1 of the BIC, located at
S(k)= ( Jad ) (52)  ky=+v2/3-1i/3.

2(k2—¢2)qd"'—(k2+q?) sin 20 +-4ikgsin® §
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7. Summary and conclusions Therefore, by applying (A.1) and usiig, given in (12),

we can find an explicit expression for the corresponding in-
In this work, we presented a von Neumann-Wigner typetertwining operator for the present problem. With= 0 we
potential V; constructed by means of a two times iteratedobtain the following equations:

and completely degenerated Darboux transformation. The dg(r)

Hamiltonian H, and the free particle HamiltoniaH, are -2 q +Ve=0 (A.5)
isospectral, and to each point in their continuous spectrum "

corresponds two linearly independent Jost solutions, which _dg(r) ,dh(r) +Vag(r) = 0 (A6)
behave at infinity as incoming and outgoing waves. However, dr? dr 20\1) = '
we have shown that in the continuous spectruntgfthere d2h(r)

is a singular point, with energlf = ¢2, such that the two un- gz Vah(r) = 0. (A7)

norr_nah_zed Jost solutions are linearly dependent a_nd CO?"ES%e notice that(r) in (A.7) satisfies the equivalent equation
to give rise to a Jordan chain of rank two of generalized eigen; A . : :

. ; ' Hoh(r) = 0; thus,h(r) is readily obtained from (20) by tak-
functions and a Jordan block representation of the Hamlltoi—ng k— 0
nian H,. The normalized Jost solutions have a simple pole - ,8in 20 + 2¢~
at wave numbek = ¢ and after a pole decomposition the h(r) = — §in20 — 27
Jord_an chain and respective _genergllzed elg_enfunctlons are Using (A.5) in (A.6) we write:
obtained. One of the generalized eigenfunctions is normal-
izable and corresponds to the BIC, the other is a bounded, d <—1V2 +g%(r) — 2h(r)) —0,
non-normalizable function associated with the BIC. Finally, dr 2
we obtained the time evolution of the generalized eigenfuncand as we know botk, andh(r) we getg(r) as:
tions: the BIC has a unitary time evolution, while the asso- :
ciated elge_nfunctlon has a linear gro_vvth in time. 'I_'ogether, g(r) =+ /7‘/2 +2h(r) +c,
they exhibit a pseudo-unitary behaviour characteristic of a 2
pseudo-Hermitian system. Finally, we have shown that thavith ¢ an arbitrary integration constant. Usifg andh(r)
BIC is not associated with a singularity of the scattering ma-given in (12) and (A.8), respectively, we get

(A.8)

trix S(k) and, as a result, the BIC is not observed in the cross —
sectiono (k). — +./1602 sin” 0 242
9(r) \/ 6q (sin 20 — 2¢y)? terte
Appendix and choosing = —2¢? the functiong(r) is simplified to
sin? 6
A. Equivalence with the confluent case of SUSY 90r) = Ha g o o (A.9)

QM Differentiating (A.9) once with respect toand substituting
in (A.5), we conclude that we must take the positive root.

The completely degenerated case of the Darboux transformgtence, with (A.8) and (A.9) the intertwining operatBs in
tion and the confluent case of SUSY QM are equivalent metha, 4) is given by

ods for obtaining new, completely solvable, quantum systems

2 a2
from previously solved ones. By = % + q_bmi‘gi
In SUSY QM of second order the relation between the dr sin 260 — 2y dr
initial Hamiltonian H, and the transformed Hamiltonidti, 58in 260 + 2¢y
e - —. (A.10)
is given by [28] sin 260 — 2qy
HyBy = BoHy (A1) If ¢ is an eigenfunction off, with energy eigenvalue

E = k2, satisfying the eigenvalue equatidfy¢, = k2¢y,

where thenBy ¢y is an eigenfunction off, for the same eigenvalue

d? _ 12

Hy=— 5+ Vi (A.2) HyBa¢y, = k™ Ba . (A.11)
) Using the same eigenfunctions for the free particle of outgo-

Hy = ,% + Vo (A.3) in_g and in(_:oming waves; = e+ we get the following

dr eigenfunctions foi»:

d? d
By = 2 + g(r)& + h(r). (A.4) quf = [2(k2 —¢*)qy — (K* 4 ¢*) sin 20 + 4ikqsin® 0
eiikr

OperatorB; is known as the intertwining operator, and is « ’
a differential operator of second order, wigkrr) and h(r) sin 20 — 2qy

functions to be determined. (A.12)
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which are exactly the same Jost solutions in (20) obtaineavith respective energy eigenvalugs = ¢2 and B, = ¢3,
with the method of Darboux transformation, thus proving theand then consider the limit when both energy eigenvalues co-
equivalence of both methods. alesce.
The potentialUs is given by (4) withn = 2 andVj = 0.
B. Explicit coalescence of two energy levels and A calculation of the Wronskian af; and¢, gives

Jordan Chaln W(¢1, ¢2) = Q2 sin 91 (o)) 92 — @1 COS 91 sin 92, (BS)

In Sec. 2 the completely degenerated case of the Darboux_ o

transformation generalized in Crum’s theorem was presentedVith i = g¢ir + (q:). And the potential is

and the case = 2 was studied. An equivalent way of ap- 2 oy 22y 202 g

proaching the problem consists in performing the Darboux 7, (;) = —2 (97 — ¢5)(gz 8in” 61 — gj'sin” b5) (B.4)

transformation with two different transformation functions (g2 8in 01 cos B2 — g1 cos 0y sin f2)%°
¢1 = sin(q1r + 0(q1)) (B.1) Now we calculate the eigenfunctions of the Hamiltonian
. with potential (B.4) and study the limit when — ¢;. From
92 = sin(gar + 6(¢2)) (B.2) (2) with n = 2 and the free particle solutionsy = e,
| the eigenfunctions are obtained as
wi(la r) = q1(k? — q3) cos 01 sin 0y —.qg (k? — ¢?) sin 6 cos 9? Fik(q? — q3)sin b sin b, Gtk (B.5)
Q2 sin 01 cos 03 — gy cos 01 sin 6y
The Wronskian of the eigenfunctions is directly calcu-
lated and has the form and
W(p*, 7)) = —2ik(k? — ¢})(K* — g3), (B.6) .
. e (g+er)
and we see that for eigenvalués = ¢? and E = ¢3 the
Wronskian vanishes. In the limi, — ¢ = ¢ expression _ 4q® sin 0+6gesin  + O(€?) cFio(ate)
(23) is recovered. sin 20 —2qy—e(qd” +27sin® 0)+O(€2) ’
The respective eigenfunctions for the energies mentioned (B.10)
above are calculated by direct substitutios: ¢; andk = ¢»
in (B.5) and we obtain and taking the limit — 0 we get, respectively,
+ 01(q} — ¢3) sin By eT0(a) 5 . 5
) - . ; B.7 4 0 T+ (Q)
o) @2 sin 01 cos 03 — ¢p cos By sin Oy B.7) lim o*(q,7) = LA —p(g,r) (B.11)
e—0 sin 20 — 2q~y
and
2 — ¢3)sinfy eTa2) and
SDj:(qQ’T) _ q2(q1 QQ) 1 (B8)

4¢? sin § eF9(2)

sin 20 — 2q~y

"~ gosinf cosfy — qq cos by sinfy
Forq, # ¢2, the eigenfunctions™ (q;,r) andp™ (g, r) are

linearly independent. = —¢5(q,7), (B.12)
In order to study the coalescence of the two energy levels

we denotey; = g andgz = ¢ + ¢, and take the limit — 0. \yhich means that both eigenfunctions coalesce to the same
Because < 1 we consider the following series expansions square integrable functions (¢, ), defined in (26) and rep-

0, — sin 0 + 04 €2 (6” 0 ) . 9) N resenting the bound stated embedded in the continuum.
BHLY2 = S e eos 2 cosv T When two eigenfunctions and their respective eigenval-

lim ¢ (g +€,7) =

€2 ) ues coalesce, a Jordan chain of rank two is formed and the as-
cosfy = cosf — eysinb — 5 (6"sinf +~*cosf) +...,  sociated eigenfunction, completing the Jordan chain, is given
with v =7+ &'(g). by 25]
Iowiub:;mrjggsgi:r?sth series in (B.7) and (B.8), we get the fol- X (r)wia(qﬂ,) B (r)wi(g_,'_GJ)
gexp va(gr) = g Py . (B.13)
*(a.7) ot o 0

2 - 2
__4g¢°sin 0-+2qe(2qy cos 6+ 81211 0)+0(e*) Fi5@ (B9
sin 20—2qy—e(qd""+2v sin® 0)+O(e?)

Differentiating (B.9) and (B.10) with respect toand plug-
ging the results in (B.13) we obtain the following expression
for the generalized eigenfunction
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2q¢>

with ¢4 (¢, ) defined in (31). In expressions (B.11), (B.12)
and (B.14), obtained from the explicit coalescence of two enWe would like to thank C. Cafineo for his interest in this
ergy levels, we notice a global sign difference to their counfaper. E. Herandez would like to thank Professor A. Mon-
terparts in (26) and (30). This comes from the normalizatiordragdn for his advice and suggestions on this kind of prob-
factor — (k2 — ¢®) used to normalize the Jost solutions (22) lems and for his great human quality.

to unit flux at infinity.
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