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Coupled reaction-diffusion waves in a chemical system via
fractional derivatives in Liouville-Caputo sense
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In this paper, we have generalized the fractional cubic isothermal auto-catalytic chemical system (FCIACS) with Liouville-Caputo, Caputo-
Fabrizio-Caputo, and Atangana-Baleanu-Caputo fractional time derivatives, respectively. We apply the Homotopy Analysis Transform
Method (HATM) to compute the approximate solutions of FCIACS using these fractional derivatives. We study the convergence analysis of
HATM by computing the residual error function. Also, we find the optimal values ofh so we assure the convergence of the approximate
solutions. Finally we show the behavior of the approximate solutions graphically. The results obtained are very effectiveness and accuracy.
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1. Introduction

Travelling reaction-diffusion waves occur in many situations
of interest in chemistry, biology, physics, engineering. In
some cases, such waves are isolated events, travelling inde-
pendently of other chemical processes. Many chemical sys-
tems exhibit chemical waves,i.e., reactants are converted into
products as the front propagates through the reaction mix-
ture, in which autocatalytic reaction couples with molecu-
lar diffusion to give constant waveform and constant velocity
fronts [1-3].

In this paper we consider reaction-diffusion travelling
waves that can be initiated in a coupled isothermal chemical
system governed by cubic autocatalysis. We assumed that
reactions take place along semipermeable membrane inter-
faces with the reaction on one interface (regionI). The cubic
isothermal, auto-catalytic reaction step in region (I) is given
by

U + V → 2V (rater1uv2), (1)

with the step of the linear decay

V → W (rater2v), (2)

whereu andv are the concentrations of the reactantU and
auto-catalystV , r1 and r2 are the rate constants andW is
some inert product of reaction. The non-dimensional equa-
tions are given by

∂u1

∂ξ
=

∂2u1

∂ς2
− u1v

2
1 + γ(u2 − u1), (3)

∂v1

∂ξ
=

∂2v1

∂ς2
+ u1v

2
1 − kv1, (4)

∂u2

∂ξ
=

∂2u2

∂ς2
− u2v

2
2 + γ(u1 − u2), (5)

∂v2

∂ξ
=

∂2v2

∂ς2
+ u2v

2
2 , (6)

with the boundary conditions

lim
ς→±∞

ui(ς, ξ) = 1, lim
ς→±∞

vi(ς, ξ) = 0. (7)

In the above equations we assume that cubic autocatalytic
is only present in the other regionII with the same rater1.
The two regions were considered to be coupled through a lin-
ear diffusive interchange of the auto-catalyticV . The param-
etersγ andk refer to the couple between the two regions and
the strength of the auto-catalyst decay [4].

In fractional differentiation analysis, there are many dif-
ferent definitions of fractional derivatives. The Liouville-
Caputo fractional derivative involve the convolution of the lo-
cal derivative of a given function with power law function [5].
Recently, Caputo and Fabrizio in [6], proposed a novel frac-
tional derivative based on the exponential decay law with-
out singularities [7-10]. Atangana and Baleanu in [11], intro-
duced a fractional derivative based in the Mittag-Leffler law
(this function is of course the more generalized exponential
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function) and permits describe complex physical problems
that follows at the same time the power and exponential de-
cay law [12-14].

Many numerical methods for solving fractional differ-
ential equations have been developed over the past few
years, such as homotopy analysis method, proposed by Liao,
has been successfully applied to solving many problems in
physics and engineering [15-18]. The homotopy analysis
method is based on construction of a homotopy which con-
tinuously deforms an initial guess approximation to the exact
solution of the given problem. Another powerful methods for
finding exact solutions have been found in [19-24].

In this paper we obtain analytical approximate solutions
to fractional cubic isothermal auto-catalytic chemical system
model by applying Liouville-Caputo, Caputo-Fabrizio and
Atangana-Baleanu fractional order derivatives in Liouville-
Caputo sense using HATM.

2. Basic definitions

Fractional calculus unifies and generalizes the notions of
integer-order differentiation. Now, we give some basic defi-
nitions and properties of FC theory.
Definition 1. The Liouville-Caputo operator (C) with order
(α > 0) is defined as follows [5]

C
(

0Dβ
θ (·)

)
=

1
Γ(m− β)

θ∫

0

(θ − t)m−β−1D(m)(·) dt,

m− 1 < β ≤ m, (8)

for m ∈ N, t > 0, f ∈ Cm
µ , µ ≥ −1.

Definition 2. The Caputo-Fabrizio fractional order derivative
in the Liouville-Caputo sense (CFC) with order(α > 0) is
given by [6]

CFC
(

0Dβ
θ (·)

)
=

M(β)
m− β

×
θ∫

0

exp
(
− β

m−β
(θ−t)

)
D(m)(·)dt,

m− 1 < β ≤ m, (9)

whereM(β) is a constant of normalization that depend ofβ,
which satisfies that,M(0) = M(1) = 1.
Definition 3. The Atangana-Baleanu fractional derivative in
the Liouville-Caputo sense (ABC) with order(α > 0) is de-
fined as follows [11]

ABC
(

0Dβ
θ (·)

)
=

M(β)
m− β

θ∫

0

Eβ

×
(
− β

m− β
(θ − t)

)
D(m)(·)dt,

m− 1 < β ≤ m, (10)

where

Eβ(Ξ) =
∞∑

k=0

Ξk

Γ(βk + 1)

is the Mittag-Leffler function andM(β) = M(0) = M(1) =
1.

If, 0 < β ≤ 1, then we define the Laplace trans-
form for the Liouville-Caputo, Caputo-Fabrizio-Caputo and
the Atangana-Baleanu-Caputo fractional derivatives, respec-
tively as follows

L
(

C
0 Dβ

ξ {u(ς, ξ)}
)

= sβL{u(ς, θ)}

−
m−1∑

k=0

u(k)(ς, 0+)sβ−k−1, (11)

L
(

CFC
0 Dβ

ξ {u(ς, ξ)}
)

= M(β)

×
(

sL{u(ς, ξ)}(s)− u(ς, 0)
s + β(1− s)

)
, (12)

L
(

ABC
0 Dβ

ξ {u(ς, ξ)}
)

= M(β)

×
(

sβL{u(ς, ξ)}(s)− sβ−1{u(ς, ξ)}
sβ (1− β) + β

)
. (13)

Considering these fractional order derivatives, we de-
velop a new model FCIACS by replacing partial derivatives
with respect toξ by time fractional derivatives of orderβ.
Then the set of the Eqs. (3)-(6) become

(·)
0 Dβ

ξ u1 = u1,ςς − u1v
2
1 + γ(u2 − u1), (14)

(·)
0 Dβ

ξ v1 = v1,ςς + u1v
2
1 − kv1, (15)

(·)
0 Dβ

ξ u2 = u2,ςς − u2v
2
2 + γ(u1 − u2), (16)

(·)
0 Dβ

ξ v2 = v2,ςς + u2v
2
2 , (17)

where the operator(·)0 Dβ
ξ can be of type Liouville-Caputo

C
0 Dβ

ξ , Caputo-Fabrizio-CaputoCFC
0 Dβ

ξ , and Atangana-

Baleanu-CaputoABC
0 Dβ

ξ time fractional derivatives with or-
derβ.

3. Solution of the problem

In this section, we apply the HATM [25-26] on FCIACS
model. We take the initial conditions to satisfy the bound-
ary conditions, namely

ui(ς, 0) = 1− ai exp(−ς2), (18)

vi(ς, 0) = bi exp(−ς2), (19)

wherei = 1, 2.
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As we know that HAM is based on a particular type of
continuous mapping [27-32]

ui(ς, ξ) → φi(ς, ξ; %), vi(ς, ξ) → ψi(ς, ξ; %), (20)

such that, as the embedding parameterq increases from0 to
1; φi(ς, ξ; %), ψi(ς, ξ; %) varies from the initial iteration to the
exact solution.

Involving Eqs. (8)–(13) and [27-32] we can present the
following nonlinear operators as

N1(φ1(ς, ξ; %)) = L (φ1(ς, ξ; %))− 1
s
u1(ς, 0)

− Ω(·)(s, β)L
(
φ1,ςς(ς, ξ; %)

− φ1(ς, ξ; %)ψ2
1(ς, ξ; %) + γ(φ2(ς, ξ; %)

− φ1(ς, ξ; %)
)
,

M1(ψ1(ς, ξ; %)) = L (ψ1(ς, ξ; %))

− 1
s
v1(ς, 0)− Ω(·)(s, β)L(

ψ1,ςς(ς, ξ; %)

− kψ1(ς, ξ; %) + φ1(ς, ξ; %)ψ2
1(ς, ξ; %)

)
,

N2(φ2(ς, ξ; %)) = L (φ2(ς, ξ; %))

− 1
s
u2(ς, 0)− Ω(·)(s, β)L

(
φ2,ςς(ς, ξ; %)

− φ2(ς, ξ; %)ψ2
2(ς, ξ; %)

+ γ(φ1(ς, ξ; %)− φ2(ς, ξ; %)
)
,

M2(ψ2(ς, ξ; %)) = L (ψ2(ς, ξ; %))− 1
s
v2(ς, 0)

− Ω(·)(s, β)L
(
ψ2,ςς(ς, ξ; %)

+ φ2(ς, ξ; %)ψ2
2(ς, ξ; %)

)
, (21)

whereΩ(·)(s, β) can be of type Liouville-Caputo

Ω(C)(s, β) =
1
sβ

,

Caputo-Fabrizio-Caputo

Ω(CFC)(s, β) =
β(1− s) + s

sM(β)
and Atangana-Baleanu-Caputo

Ω(ABC)(s, β) =
β

(−1 + s−β
)

+ 1
M(β)

.

Using the embedding parameter%, we develop the fol-
lowing set of equations

(1− %)L(φi(ς, ξ; %)− ui,0(ς, ξ))

= %hH(ς, ξ)Ni(φi(ς, ξ; %)),

(1− %)L(ψi(ς, ξ; %)− vi,0(ς, ξ))

= %hH(ς, ξ)Mi(ψi(ς, ξ; %)), (22)

with initial conditions

φi(ς, 0; %) = ui,0(ς, 0), ψi(ς, 0; %) = vi,0(ς, 0),

whereh 6= 0 is the auxiliary parameter andH(ς, ξ) 6= 0 is
the auxiliary function.

Expanding in Taylor seriesφi(ς, ξ; %) andψi(ς, ξ; %) with
respect to%, we get

φi(ς, ξ; %) = ui,0(ς, ξ) +
∞∑

j=1

ui,j(ς, ξ)%j ,

ψi(ς, ξ; %) = vi,0(ς, ξ) +
∞∑

j=1

vi,j(ς, ξ)%j , (23)

where

ui,j(ς, ξ) =
1
j!

∂jφi(ς, ξ; %)
∂%j

|%=0,

vi,j(ς, ξ) =
1
j!

∂jψi(ς, ξ; %)
∂%j

|%=0. (24)

If we let % = 1 in Eq. (23), the series become

ui(ς, ξ) = ui,0(ς, ξ) +
∞∑

j=1

ui,j(ς, ξ),

vi(ς, ξ) = vi,0(ς, ξ) +
∞∑

j=1

vi,j(ς, ξ). (25)

Considering [25-26], themth-order deformation equation
is constructed of the following manner

L(ui,j(ς, ξ)−Xjui,(j−1)(ς, ξ)) = hH(ς, ξ)R(·)
j (ui),

L(vi,j(ς, ξ)−Xjvi,(j−1)(ς, ξ)) = hH(ς, ξ)R(·)
j (vi), (26)

and

Xj =
{

0 if j ≤ 1,
1 if j > 1.

with initial conditionsui,j(ς, 0) = 0 andvi,j(ς, 0) = 0, for
j > 1

R
(·)
j (u1) = L (

u1,(j−1)(ς, ξ)
)− 1

s
u1(ς, 0)(1−Xj)

− Ω(·)(s, β)L
(
u1,(j−1),ςς(ς, t)

− u1,(j−1)(ς, ξ)v2
1,(j−1)(ς, ξ) + γ(u2,(j−1)(ς, ξ)

− u1,(j−1)(ς, ξ))
)
,
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R
(·)
j (v1) = L(j−1)

(
v1,(j−1)(ς, ξ)

)− 1
s
v1(ς, 0)(1−Xj)

− Ω(·)(s, β)L
(
v1,(j−1),ςς(ς, ξ) + u1,(j−1)(ς, ξ)v2

1,(j−1)(ς, ξ)− kv1,(j−1)(ς, ξ)
)
.

R
(·)
j (u2) = L (

u2,(j−1)(ς, ξ)
)− 1

s
u2(ς, 0)(1−Xj)

− Ω(·)(s, β)L
(
u2,(j−1),ςς(ς, t)− u2,(j−1)(ς, ξ)v2

2,(j−1)(ς, ξ) + γ(u1,(j−1)(ς, ξ)− u2,(j−1)(ς, ξ))
)
,

R
(·)
j (v2) = L(j−1)

(
v2,(j−1)(ς, ξ)

)− 1
s
v2(ς, 0)(1−Xj)

− Ω(·)(s, β)L
(
v2,(j−1),ςς(ς, ξ) + u2,(j−1)(ς, ξ)v2

2,(j−1)(ς, ξ)
)
. (27)

Applying inverse Laplace transform, we have

ui,j = Xjui,(j−1) + hL−1R
(·)
j (ui), vi,j = Xjvi,(j−1) + hL−1R

(·)
j (vi). (28)

FIGURE 1. Plotting theh-curves for5-terms of HATM solutions using the C, CFC and ABC operators withβ = 0.7, k = 0.01, γ = 0.4,
ς = 6, ξ = 0, a1 = 0.2, b1 = 0.1, a2 = 1 andb2 = 0.4. Solid line (C), Dotted line (CFC), and Dash - Dotted line (ABC).
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4. Numerical results

In this section we evaluate the first approximations for the
Liouville-Caputo, Caputo-Fabrizio-Caputo and Atangana-
Baleanu-Caputo operators respectively. The intervals of con-
vergence obtained by theh-curves, the averaged residual er-
ror, and the residual error function were evaluated. Further-
more, we will show the behavior of the HATM solutions for
different values of fractional derivativeβ.

We take the initial approximation as

ui,0(ς, ξ) = ui,0(ς, 0), vi,0(ς, ξ) = vi,0(ς, 0). (29)

For j = 1, we obtain the first approximation as following

u
(·)
i,1(ς, ξ) = hiL−1

(
L (ui,0(ς, ξ))− 1

s
ui(ς, 0)(1−X1)

−Ω(·)(s, β)L (
ui,0,ςς(ς, ξ)−ui,0(ς, ξ)v2

i,0(ς, ξ)
))

+ (−1)iγ(u1,0(ς, ξ)− u2,0(ς, ξ)), (30)

v
(·)
i,1(ς, ξ) = hiL−1

(
L(vi,0(ς, ξ))− 1

s
v(ς, 0)(1−Xj)

− Ω(·)(s, β)L(vi,0,ςς(ς, ξ)− (2− i)kv0(ς, ξ)

+ ui,0(ς, ξ)v2
i,0(ς, ξ))

)
. (31)

We can obtain the first approximation via Liouville-Caputo,
Caputo-Fabrizio-Caputo and Atangana-Baleanu-Caputo op-
erators, withΩC(s, β), ΩCFC(s, β) and ΩABC(s, β), re-
spectively.

And by the similar procedure we can evaluate the rest of
the approximations. We therefore have HATM solutions of
Eqs. (14)-(17)

u
(·)
i,m(ς, ξ) = ui,0(ς, ξ) +

m∑

j=1

ui,j(ς, ξ)
nj

, (32)

FIGURE 2. Plotting the average residual error for5-terms of HATM solutions using the Liouville-Caputo, Caputo-Fabrizio-Caputo and
Atangana-Baleanu-Caputo operators arranged from left to right withβ = 0.7, 0 ≤ ς, ξ ≤ 10, k = 0.001, γ = 0.4, a1 = 0.002, b1 = 0.002,
a2 = 0.001, b2 = 0.001.
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TABLE I. The average residual error for4-terms of HATM solu-
tions with β = 0.7, 0 ≤ ς, ξ ≤ 10, k = 0.001, γ = 0.4, a1 =
0.002, b1 = 0.002, a2 = 0.001, b2 = 0.001, using the C, CFC and
ABC operators, respectively.

Operators Optimal value ofhu1 Minimum of Eu1(h)

C −0.011844 1.542× 10−6

CFC −0.055422 1.465× 10−6

ABC −0.0973563 5.431× 10−7

Operators Optimal value ofhv1 Minimum of Ev1(h)

C −0.011811 1.542× 10−6

CFC −0.055427 1.466× 10−6

ABC −0.097383 5.438× 10−7

TABLE II. The average residual error for5-terms of HATM solu-
tions with β = 0.7, 0 ≤ ς, ξ ≤ 10, k = 0.001, γ = 0.4, a1 =
0.002, b1 = 0.002, a2 = 0.001, b2 = 0.001, using the C, CFC and
ABC operators, respectively.

Operators Optimal value ofhu2 Minimum of Eu2(h)

C −0.011900 3.133× 10−7

CFC −0.053997 3.486× 10−7

ABC −0.096408 1.633× 10−7

Operators Optimal value ofhv2 Minimum of Ev2(h)

C −0.011807 3.834× 10−7

CFC −0.055014 3.592× 10−7

ABC −0.097085 1.432× 10−7

FIGURE 3. Plotting the residual error functions for4-terms of HATM solutions withβ = 0.7, ξ = 20, k = 0.001, γ = 0.4, a1 = 0.002,
b1 = 0.002, a2 = 0.001, b2 = 0.001. Solid line (C), Dotted line (CFC), and Dash - Dotted line (ABC).

v
(·)
i,m(ς, ξ) = vi,0(ς, ξ) +

m∑

j=1

vi,j(ς, ξ)
nj

. (33)

Figures 1(a)-(d) shows the numerical solutions for
ui,ξ(ς, 0), vi,ξ(ς, 0) againsth with β = 0.7 k = 0.01, γ =
0.4, ς = 6, ξ = 0, a1 = 0.2, b1 = 0.1, a2 = 1 andb2 = 0.4.
We plot theh-curves of5-terms of HATM solutions (32)–(33)
with the aim to observe the intervals of convergence. In these
figures, the straight line that parallels theh-axis provides the
valid region of the convergence [30]. Now, we compute the
optimal values of the convergence-control parameters by the
minimum of the averaged residual errors [33-38].

Eui(h) =
1

(Ξ + 1)(Υ + 1)

×
Ξ∑

s=0

Υ∑

j=0

[
N

(
m∑

k=0

ui,k

(
10s

Ξ
,
10j

Υ

))]2

, (34)

Evi(h) =
1

(Ξ + 1)(Υ + 1)

×
Ξ∑

s=0

Υ∑

j=0

[
M

(
m∑

k=0

vi,k

(
10s

Ξ
,
10j

Υ

))]2

, (35)
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FIGURE 4. The plot of4-terms of HATM solutions using LC, CFC and ABC operators withβ = 0.4, k = 0.01, γ = 0.6, ξ = 15, a1 = 0.8,
b1 = 1, a2 = 1, b2 = 0.9. Solid line (C), Dash line (CFC) and Dash-Dot-Dash line (ABC).

FIGURE 5. The plot of4-terms of HATM solutions using LC,CFC and ABC operators withβ = 0.9, k = 0.01, γ = 0.6, ξ = 15,
a1 = 0.8, b1 = 1, a2 = 1, b2 = 0.9. Solid line: (C), Dash line: (CFC), and Dash-Dot-Dash line:(ABC).
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corresponding to a nonlinear algebraic equations

dEui
(h)

dh
= 0,

dEvi(h)
dh

= 0. (36)

Figure 2(a)-(d) and Tables I-II show the averaged resid-
ual error for the Liouville-Caputo (C), Caputo-Fabrizio-
Caputo (CFC), and Atangana-Baleanu-Caputo (ABC) oper-
ators. These figures show theEui(h) and Evi(h) for 4-
terms obtained with HATM. Solutions we set into (34) -
(35) Ξ = 10 and Υ = 10 with k = 0.001, γ = 0.4,
a1 = 0.002, b1 = 0.002, a2 = 0.001 andb2 = 0.001. Us-
ing the command “Minimize” of Mathematica we plotting
the residual error againsth to get the optimal valuesh. From
Fig. 2 and Tables I-II, we observe the average residual er-
ror of order10−6 − 10−7. This observation assures that the
HATM solutions for C, CFC and ABC are converging very
rapidly. Figure 3(a)-(d) shows the residual errors functions
with C, CFC and ABC operators for (14)-(15) atβ = 0.7
It can be seen from these figures the order of REF are very
small for all operators. Of Course, we can not say which the
better?, due to the operators have a different kernel.

Finally we plot the HATM solutions for C, CFC and ABC
fractional derivatives for different values ofβ. Figures 4-5
show the behavior of the new models with C, CFC and ABC
operators forβ = 0.4, and 0.9. From these figures, we noted
that these new operators identical as the fractional order ap-
proaches from the integer order.

5. Conclusion

In this paper, HATM was employed analytically to compute
the approximate solutions of FCIACS using the Liouville-
Caputo, Caputo-Fabrizio-Caputo and Atangana-Baleanu-
Caputo fractional derivatives. The interval of the conver-
gence of HATM and optimal value ofh were compute. Also
the residual error functions were obtained. The order of the
average residual error and residual error functions indicate
that the approximations that have been calculated by HATM
with C, CFC and ABC fractional derivatives to the accuracy
and effectiveness of our results.
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