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Casimir energy in a bounded Gross-Neveu model
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We study the Casimir energy and forces associated with the vacuum of the massless Gross-Neveu (GN) model in a finite spatial dimension
for different boundary conditions. The standard solution given by the Hartree-Fock method is considered using the generalized method of
the zeta function, with the aim of studying the dynamic generation of mass and the associated beta function. It is found that the beta function
does not depend on the boundary conditions. Then, considering several boundary conditions, the corresponding Casimir energies and forces
were obtained. We obtain that the nature of the forces depends as much on the type of contour condition as on the magnitude of the space.
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1. Introduction

The Gross-Neveu (GN) model describes a system of mass-
less fermions with self-interacting fermions which generates
a dynamical mass. The GN model was born as a toy model of
Quantum Chromodynamics (QCD) [1]. At first, it was stud-
ied using semiclassical functional methods, which is rigor-
ously justified in the large N limit. In the traditional context,
the GN model has shown a rich phase structure, in particu-
lar, there we have chiral symmetry breaking. Which, at first
sight, it could not be allowed in 1+1 dimensions due to in-
frared fluctuations, unless it is invoked the large N limit [2].
Despite its simplicity, it keeps many exciting features, such
as discrete chiral symmetry, dynamical mass generation, and
asymptotic freedom.

Curiously, this model has also application in condensed
matter physics, where it describes the conductivity in some
polymers. In particular, it can be mentioned the case of trans-
polyacetylene, which, in a simplified continuous model, is
described by the symmetric GN model [3]. Besides, the mas-
sive GN model has a condensed matter analog in the mod-
elization of polymers with non-degenerate ground states [4].

The standard approach to the GN model leads to an
homogeneous condensate solution,i.e., independent of the
space coordinates. After several years, it was realized that
there are crystal solutions of the model, giving a rich inter-
pretation in the realm of condensed matter physics [5]. The
spatial dimension could be constrained to a finite size to con-
sider Casimir type forces. Without having in mind any par-
ticular model, we asked ourselves to consider many bound-
ary conditions (BC’s) to simulate a broad variety of possible
physical scenarios. Those are periodic, antiperiodic and con-
fining BC’s.

Having a limited spatial extension leads us to consider the
Casimir energy associated with such spaces. We found that
the Casimir energies and forces are sensitive to the BC’s and
parameters involved. Using the generic name of “universe”
for the spatial dimension we identified the stable, metastable,

attractive or repulsive regimes, depending on the parameters
and BC’s we use

There is previous work in the direction we propose. In
particular, in [6], it was computed the Casimir energy with
MIT Bag Model boundary condition, obtaining the behav-
ior of the Casimir energy as a function of the distance be-
tween the points and the mass of the fermionic field. On the
other side, the renormalization issue of the GN model was
addressed in [7], using the worldline Montecarlo approach.

In our study, we shall concentrate on the homogeneous
solutions of the GN model for a finite space of fixed sizeL.
We are interested in the behaviour of physical parameters for
different boundary conditions (BC’s). The boundary condi-
tions considered are periodic, antiperiodic and two types of
confining conditions.

The HF approximation implies the use of a large momen-
tum cutoff. Since we shall deal with systems of finite spatial
size, the momentum integrals must be replaced by summation
on discrete modes, meaning that the natural regularization to
be used is the zeta regularization technique [8].

In this work, we first ask about the ultraviolet dependence
of the physical parameters on the BC’s, considering the GN
model at zero bare mass (m0 = 0) where temperature and
chemical potential are not considered. We assume that the
spatial lengthL is a fixed parameter, so, if the physical mass
is independent of the cutoff, it implies that the beta function
does not depend on the BC’s. There appears an arbitrary mass
scale and the functional dependency of the dynamical mass
depends on the BC’s.

The second step in our work is to study the Casimir en-
ergy and force due to the quantum fluctuation of the effec-
tive free system that arises from the HF approximation. We
consider the non-dimensional parameterµ = mL, since the
value ofm is fixed by ultraviolet considerations, the variation
of µ is equivalent to the variation ofL. We find that the value
of energy and Force are sensitive to the BC’s. In particular,
the signature of the energy clearly differs in the small size
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limit, but it is universally positive for infinite size limit. On
the other hand, the force is also sensitive to the BC’s, imply-
ing situations where the forces are such that they compress or
expand our space depending on the BC’s used. There is also
a universal metastable point where the force becomes zero in-
dependently of the BC’s used. For the largeL limit, the force
becomes negative for any BC’s considered.

2. The Gross-Neveu Model

The Gross-Neveu Lagrangian is given by

LGN = ψ̄iiγµ∂µψi +
1
2
g2

{
(ψ̄iψi)2 − λ(ψ̄iγ5ψ

i)2
}

−m0ψ̄
iψi, (1)

wherei runs from 1 toN . For the sake of simplicity, from
now, we suppress the indexi. The Euler Lagrange equation
from (1) is given by

iγµ∂µψ + g2
{
ψ̄ψ − λ(ψ̄γ5ψ)γ5

}
ψ −m0ψ = 0. (2)

In the framework of Hartree-Fock relativistic approxima-
tion, it is assumed the expectation value〈ψ̄γ5ψ〉 = 0 and
〈ψ̄ψ〉 = Nρ.

It was introduced a finite mass in order to consider a gen-
eral expression and using the convention

γ0 =
(

0 −1
−1 0

)
, γ1 =

(
i 0
0 −i

)
,

γ5 =
(

0 i
−i 0

)
, (3)

we end up with the expression

(iγµ∂µ −m)ψ(x) = 0, (4)

wherem = m0 − g2Nρ andρ = 〈ψ̄ψ〉/N .
From (4) we obtain a free Dirac equation

i
∂ψ

∂t
= Hψ =

(
0 −i
i 0

)
(−i∂x)ψ −m

(
0 1
1 0

)
ψ. (5)

In order to obtain a stationary solution, we use the usual
decomposition

ψ(x) = e−iλnt

(
φ(x)
χ(x)

)
. (6)

Making the redefinition of the fields

f = χ + φ, g = χ− φ, (7)

we obtain a general solution

f(x) =
α√

λn + m
cos(Ωx)− β√

λn + m
sin(Ωx), (8)

g(x) =
α√

λn −m
sin(Ωx) +

β√
λn −m

cos(Ωx), (9)

whereΩ =
√

λ2
n −m2 and the constantsα andβ are not

independent since they are determined by the boundary con-
ditions.

3. Hartree-Fock for different boundary condi-
tions

Following the standard procedure [9], it is possible to com-
pute the negative energy in an infinite space taking the value
of m as a parameter to be determined

E
N

= −2
∫

|k|≤Λ

dk

2π

√
m2 + k2

n +
m2

2G
, (10)

whereG = Ng2 andΛ is a momentum cut off.

Since we have a finite spatial size, the wave numberk is
discretized

kn = (2πn + φ)/rL,

implying
∫

dk/(2π) → 1
rL

∑
,

wherer is a number which depends on boundary conditions.
So, we have

E
N

= − 2
rL

∑
n

(
m2 + k2

n

)1/2
+

m2

2G
. (11)

Dealing with the summation implies a treatment of Ep-
stein zeta function

ζE(s; a, b) =
∞∑

n=−∞

(
a2 + (n + b)2

)−s
, (12)

using properties of gamma function and by means of Jacobi
inverse summation formulae [8], we have

ζE(s; a, b)=
√

π

Γ(s)

[ ∞∫

0

ts−3/2e−ta2
dt+2

∞∑
n=1

cos (2πbn)

×
∞∫

0

ts−3/2e−ta2−π2n2/tdt

]
. (13)

From the above integral, we can recognize a gamma func-
tion and a second kind Bessel function [10], leading us to the
general expression

ζE(s; a, b) =
√

π

Γ(s)

[
a−2s+1Γ

(
s− 1

2

)
+ 4

∞∑
n=1

cos(2πbn)

×
(πn

a

)(s− 1
2 )

Ks− 1
2
(2πan)

]
. (14)
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We are interested in the values = −1/2, but there is a
singularity in such point, so we can isolate that term by mean-
ing of a series expasion in term ofs = −1/2+ε, whenε → 0,
giving us the expression for the Epstein zeta function

ζE (ε; a, b) =
a2

2ε
− a2

2
− a2 ln

(a

2

)

− 2a

π

∞∑
n=1

cos(2πbn)
n

K1(2πan). (15)

where we use tha fact thatKn(x) = K−n(x). Note that there
is a diverging term, which can be seen as an ultraviolet cut-
off. Since the power1/2 in the summation is replaced by
a term1/2 − ε, it appears a mass scaleη by means of the
regularization procedure [8].

We have the following momentum decomposition for the
BC’s to be considered:

Periodic kn=2πn/L n∈(−∞,∞),

Antiperiodic kn=(2n + 1)π/L n∈(−∞,∞), (16)

Zero current i) kn=(2n)π/2L n∈(−∞,∞),

Zero current ii) kn=(2n + 1)π/2L n∈(−∞,∞).

We note that the imposed boundary conditions overkn

have the general structure

k2
n =

(2πn + φ)2

r2L2
. (17)

Introducing the parameter of massη and rewriting the en-
ergy density we have

L2E
N

= −2L

r
η2s+1

(
2π

rL

)−2s

×
∞∑

n=−∞

(
µ2r2

4π2
+

(
n +

φ

2π

)2
)−s

+
µ2

2G
. (18)

As we see, the summation term can be expressed as an
Epstein zeta function, so we have

E
N

= − µ2

2πεL2
+

µ2

2πL2
− µ2

πL2
ln

2η̃

µ

+
4µ

πrL2

∞∑
n=1

cosφn

n
K1(µrn) +

µ2

2GL2
. (19)

Minimizing the energy density respect toµ we can obtain
a dimensionless expression

L2

Nµ

∂E
∂µ

≡ Xµ = − 1
πε

+
2
π
− 2

π
ln

(
2η̃

µ

)

− 4
π

∑
n=1

cos(φn)K0(µrn) +
1
G

, (20)

asXµ = 0, the coupling parameterG is given by

G = π

{
1
ε
− 2 + 2 ln

(
2η̃

µ

)

+
4
π

∞∑
n=1

cos(φn)K0(µrn)

}−1

. (21)

For the four considered BC’s, we obtained the following
expressions for the energy density:

• Periodic BC

EP

N
= − µ2

2πεL2
+

µ2

2πL2
− µ2

πL2
ln

(
2η̃

µ

)

+
4µ

πL2

∞∑
n=1

K1(µn)
n

+
µ2

2GL2
. (22)

• Anti periodic BC

EAP

N
= − µ2

2πεL2
+

µ2

2πL2
− µ2

πL2
ln

(
2η̃

µ

)

+
4µ

πL2

{ ∞∑
n=1

K1(2µn)
n

−
∞∑

n=1

K1(µn)
n

}

+
µ2

2GL2
. (23)

• Zero current BC

E i

N
= − µ2

2πεL2
+

µ2

2πL2
− µ2

πL2
ln

(
2η̃

µ

)

+
2µ

πL2

∞∑
n=1

K1(2µn)
n

+
µ2

2GL2
, (24)

E ii

N
= − µ2

2πεL2
+

µ2

2πL2
− µ2

πL2
ln

(
2η̃

µ

)

+
2µ

πL2

∞∑
n=1

(−1)n K1(2µn)
n

+
µ2

2GL2
. (25)

where it was introduced the non-dimensional variablesµ =
mL andη̃ = ηL.

In the following step, we minimize the energy densities
with respect toµ. Then, we use (21) and obtain for each BC
an expression forG , which can be resumed to the form

G = π

{
1
ε
− 2 + 2 ln

(
2η̃

µ

)
+ finite terms

}−1

, (26)

whereε = s+1/2 goes to zero and must be considered as the
ultraviolet cut-off. On the other side, the finite terms depends
on the BC’s.

For finiteε, it gives the impression that the running of G
should depend on the BC’s. But, if we fix the value ofG in
an arbitrary scale, the limitε → 0 is universal, independent
of any BC.
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FIGURE 1. The running ofG, for different BC’s fixing the param-
eters in order to haveG = 1 for ε = 1.

We observe from the general relation (21), that there is
dependency of the constantsµ andη̃ for each BC through the
transcendental equation:

2 ln
(

2η̃

µ

)
+

4
π

∞∑
n=1

cos(φn)K0(µrn) = C, (27)

beingC an arbitrary constant.
Considering the traditional point of view where the phys-

ical µ must be independent of the cutt-offε we have a renor-
malization group equation

ε2
dµ

dε
= ε2

∂µ

∂ε
+ ε2

∂G

∂ε

∂µ

∂G
+ ε2

∂η̃

∂ε

∂µ

∂η̃
= 0. (28)

For any BC, it is computed the beta function

β = ε2
dG

dε
, (29)

meaning an universal behaviour ofG(ε) as it is shown in
Fig. 1.

4. Casimir Energy for global boundary condi-
tions

Imposing BC’s of the form
(

f(x + L)
g(x + L)

)
=M

(
f(x)
g(x)

)

In Eqs. (8) and (9) we have solutions of the form
(

f(x)
g(x)

)
=

(
f1(x) f2(x)
g1(x) g2(x)

) (
α
β

)
(30)

where the values ofα, β depend on the imposed BC on the
problem. If we define the invertible matrix

H(x) =
(

f1(x) f2(x)
g1(x) g2(x)

)
, (31)

the constants are given by
(

α
β

)
= H−1(0)

(
f(0)
g(0)

)
(32)

meaning that
(

f(x)
g(x)

)
= H(x)H−1(0)

(
f(0)
g(0)

)
≡M

(
f(0)
g(0)

)
(33)

The BC can be expressed as
(

f(L)
g(L)

)
= M

(
f(0)
g(0)

)
, (34)

Then, the eigenvalue condition is given by

det
[
M−H(L)H−1(0)

]
= 0. (35)

We can include the periodic and anti periodic case by the
parametrization

M =
(

exp (iφ) 0
0 exp (iφ)

)
.

From (8) and (9), we have

H(x) =




cos(Ωx)√
λn+m

− sin(Ωx)√
λn+m

sin(Ωx)√
λn−m

cos(Ωx)√
λn−m


 .

Eq. (35) leads to the condition

cosΩL = cos φ → Ω2 =
(2πn + φ)2

r2L2
, n ∈ Z.

SinceΩ =
√

λ2 −m2, we have

λ2
n = m2 +

(2πn + φ)2

r2L2

=
4π2

r2L2

[
µ2r2

4π2
+

(
n +

φ

2π

)2
]

. (36)

Whereµ = mL and r a parameter which depends of
the boundary conditions, so the general expression for the
Casimir energy for spinor field is given by

ECas = −1
2

∑
n

λ−2s
n = − lim

s→−1/2

1
2

(
2π

rL

)−2s

×
∞∑

n=−∞

[
µ2r2

4π2
+

(
n +

φ

2π

)2
]−s

. (37)

We can recognize that the summation term in (37) an Ep-
stein zeta function, so we use the representation in (15) in
order to obtain the Casimir energy. We redefine the Casimir
energy given by

ξCas ≡ LECas =
µ2r

8π
− µ2r

4π
ln

2ηL

µ

+
µ

π

∞∑
n=1

cosφn

n
K1(µrn). (38)
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The Casimir Force can be obtained by the usual way
FCas = −dECas/dL, but considering the redefinition given
before and̃η ≡ ηL, we have

FCas = − r

8π
+

r

4π
ln

2η̃

µ
+

r

π

∞∑
n=1

cos(φn)K0(µrn)

+
1

µπ

∞∑
n=1

cos(φn)
n

K1(µrn), (39)

whereFCas = F/m2.

5. Specific boundary conditions

5.1. Periodic and Anti Periodic BC’s

The Casimir energies for the periodic and antiperiodic BC’s
are given by

ξP
Cas =

µ2

8π
− µ2

4π
ln

(
2η̃

µ

)
+

µ

π

∞∑
n=1

1
n

K1(nµ), ξAP
Cas

=
µ2

8π
− µ2

4π
ln

(
2η̃

µ

)

− µ

π

∞∑
n=1

(
K1µn)

n
− K1(2µn)

n

)
, (40)

and the Casimir forces are

FP
Cas = − 1

8π
+

1
4π

ln
(

2η̃

µ

)

+
1
π

∞∑
n=1

K0(µn) +
1

µπ

∞∑
n=1

K1(µn). (41)

FAP
Cas = − 1

8π
+

1
4π

ln
(

2η̃

µ

)

− 1
π

∞∑
n=1

(
K0(µn)− 2K0(2µn)

)

− 1
µπ

∞∑
n=1

(
K1(µn)

n
− K1(2µn)

n

)
. (42)

5.2. Zero current BC

The confining condition is imposing the zero current condi-
tion at the borders

inµψ̄γµψ = 0
∣∣
x=0,L

. (43)

In terms of components, we have

ψ =
(

φ(x)
χ(x)

)
→ nµψ̄γµψ = φ(x)χ(x)∗ − φ(x)∗χ(x).

If φ(x) = |φ(x)| eα, χ(x) = |χ(x)| eβ , then

inµψ̄γµψ = 2i |φ(x)| |χ(x)| sin(α− β)

Sinceα andβ are constants, we must impose that at the
borders one of the fields must be zero, we can consider the
following cases:

i) χ(0) = 0, χ(L) = 0 or φ(0) = 0, φ(L) = 0,

ii) φ(0) = 0, χ(L) = 0 or χ(0) = 0, φ(L) = 0.

The conditions are

i) sin
(√

λ2 −m2L
)

= 0 → λ2
n = m2 +

(
nπ
L

)2
.

ii)
√

λ2

m2 − 1 cos
(√

λ2

m2 − 1µ

)
− sin

(√
λ2

m2 − 1µ

)
=

0, a transcendental equation that forn → ∞ behaves

asλ2
n = m2 +

(
(2n+1)π

2L

)2

.

Following the notation of (36), we have

λi,2
n = m2 +

n2π2

L2
→ r = 2 and φ = 0,

λii,2
n = m2 +

(2n + 1)2π2

(2L)2
→ r = 2 and φ = π. (44)

According to Ec. (38) withr = 2, the Casimir energy
and the Casimir force for this eigenvalues are given by

ξi
Cas =

µ2

4π
− µ2

2π
ln

(
2η̃

µ

)
+

µ

π

∞∑
n=1

K1(2µn)
n

, (45)

ξii
Cas=

µ2

4π
−µ2

2π
ln

(
2η̃

µ

)
+

µ

π

∞∑
n=1

(−1)n K1(2µn)
n

. (46)

F i
Cas = − 1

4π
+

1
2π

ln
(

2η̃

µ

)
+

2
π

∞∑
n=1

K0(2µn)

− 1
µπ

∞∑
n=1

K1(2µn)
n

, (47)

F ii
Cas = − 1

4π
+

1
2π

ln
(

2η̃

µ

)
+

2
π

∞∑
n=1

(−1)nK0(2µn)

+
1

µπ

∞∑
n=1

(−1)n K1(2µn)
n

. (48)

5.3. Limiting values

As can be seen from Figs. 2 and 3, the behaviour for smallµ
depends on the BC’s. In fact, the parameterφ determines the
sign of the force asµ goes to zero. We are interested in the
sign of the force forµ ∼ 0, where the force clearly goes to
±∞. Keeping the leading terms forµ ≈ 0:

F ≈ 1
µ2π

∞∑
n=1

cos(φn)
n2

+ constants. (49)
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FIGURE 2. Theµ dependency ofξ for different BC’s andη̃ = 1.
We observe thatξP and ξi never reach the zero point energy.
We have an asymptotic behaviour coincidingξP with ξAP andξi

with ξii.

FIGURE 3. Behaviour ofξ for different BC’s and̃η = 4. We obtain
that thatξP andξi crosses the zero point energy for a certain region
of the parameterµ.

It is more clear to take the derivative to leading order

dF
dµ µ→0

≈ − 1
µ3π

[
Li2(eiφ) + Li2(e−iφ)

]
, (50)

whereLin(x) are Polylogarithm functions (see, for exam-
ple [11]). Since the positive derivative means a negative force
and vice versa. The regime changes for the non physical
value ofφ = φ∗ ≈ 1.328, as it is shown in the Fig. 5, notice
thatφ∗ does not depend oñη.

Another curious feature happen withFAP and F ii.
Whenη goes beyond a given valuẽη∗ = η̃∗(φ), the force
becomes positive, having an equilibrium pointsA (A′) and a
metastable pointB, as it is clear from Fig. 6.

FIGURE 4. Theµ dependency ofF for different BC’s andηL =

η̃ = 1. We can see thatFAP andF ii are always negative. It is
also seen an asymptotic behaviour coincidingFP with FAP and
F i with F ii.

FIGURE 5. Behaviour of the numerator in (50). which indicates
the slope of the force whenµ ≈ 0.

6. Conclusions and discussion

The first part of this article focused on the study of the ultravi-
olet behavior of the GN model for different BC’s, using zeta
function regularization and assuming a homogeneous solu-
tion. We found that the beta function is independent of the
type of boundary condition used, and that there appears a
mass scale of arbitrary value. The generated dynamical mass
should depend on the BC’s, if we have no prescription on the
arbitrary mass scale.

Later, assuming a homogeneous solution, we studied the
Casimir energy and forces for different BC’s, if we concen-
trate on the behavior ofξ/µ from Figs. 2 and 3, we notice the
following features:
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FIGURE 6. The values ofFAP andF ii for η̃ = 4. There it hap-
pens thatFAP andF ii acquire a positive value in regionA(A′)
and becomes zero in the pointB.

a) Anti periodic: ξ/µ < 0 for µ < µ? andξ/µ > 0 for
µ > µ?, for any positive value of̃η.

b) Periodic:ξ/µ has a minimum value for a certain value
of µ = µ†, having limiting values ofξ/µ → ±∞,
for µ → 0. The sign of the maximum value ofξ/µ,
depends on the parameterη̃.

c) Confining i: The same qualitative behavior of the peri-
odic case.

d) Confining ii: ξ/µ < 0 for µ < µ̃? andξ/µ > 0 for
µ > µ̃?, for any positive value of̃η, in a similar fash-
ion as the anti periodic case.

e) We found that there is a common singular value ofµ
for η̃ ≥ 4, whereξ/µ becomes zero.

For the Casimir forces, from Figs. 4 and 6, we conclude
that:

1) Anti periodic BC:FAP → −∞ for µ → 0 and
µ → ∞, for any value ofη̃. It also happen that for
η̃ ≥ 4, FAP can be positive in a finite range ofµ.

2) Periodic:FP → ∞ for µ → 0 andFP → −∞ for
µ →∞.

3) Confining i: It has the same qualitative behaviour as
the periodic case.

4) Confining ii: It has the same qualitative behaviour as
the anti periodic case.

It is shown in Fig. 6 that for̃η ≥ 4, there is a common
pointµ where the Casimir force becomes zero for any bound-
ary condition.

From the above considerations, we conclude that for BC’s
periodic and confining i, there are two regimes of forces, be-
ing positive for “small”µ, representing a universe that has an
expanding tendency. On the other hand, whenµ is “big”, our
universe is a shrinking one.

For the antiperiodic and confining ii, there is a more com-
plex situation, since its behavior depends on the value ofη̃.
For η̃ ≤ η̃∗, the force is always negative, hence there is an
shrinking universe. For̃η ≥ 4, there is mixed case as it is
shown in Fig. 6, there are the pointsA,A′ and the universal
point B. BetweenA(A′) andB, the force becomes positive.
It is also clear thatB is an unstable point and the pointsA,
A′ are repelling points.

This study suggests that the further natural step is to con-
sider a general relativity study where the spatial dynamics are
affected by the quantum fluctuations of the Casimir energy
and confirm if the BC’s determine the existence of shrinking
or expanding low dimensional universes.
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