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Casimir energy in a bounded Gross-Neveu model
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We study the Casimir energy and forces associated with the vacuum of the massless Gross-Neveu (GN) model in a finite spatial dimensior
for different boundary conditions. The standard solution given by the Hartree-Fock method is considered using the generalized method of
the zeta function, with the aim of studying the dynamic generation of mass and the associated beta function. It is found that the beta function
does not depend on the boundary conditions. Then, considering several boundary conditions, the corresponding Casimir energies and force
were obtained. We obtain that the nature of the forces depends as much on the type of contour condition as on the magnitude of the space.
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1. Introduction attractive or repulsive regimes, depending on the parameters

. and BC's we use
The Gross-Neveu (GN) model describes a system of mass- There is previous work in the direction we propose.
less fermions with self-interacting fermions which generate?)articular in [6]

a dynamical mass. The G_N model was born_ asa_toy model q\f/IIT Bag Model boundary condition, obtaining the behav-
,Qua”t!im Chrqmodynamlcs (QCD) [1]. Atfirst, 't_ was SFUd' ior of the Casimir energy as a function of the distance be-
ied using semiclassical functional methods, which is rigor een the points and the mass of the fermionic field. On the

ously justified in the large N limit. In the traditional context, other side, the renormalization issue of the GN model was

the GN model has shown a rich phase structure, in particus yyressed in [7], using the worldline Montecarlo approach.
lar, there we have chiral symmetry breaking. Which, at first In our study, we shall concentrate on the homogeneous

sight, it could not be allowed in 1+1 dimensions due to in- . i X
'ght, I cou wec! ! ! . ! solutions of the GN model for a finite space of fixed size

frared fluctuations, unless it is invoked the large N limit [2]. Wi - ted in the behavi f ohvsical ters f

Despite its simplicity, it keeps many exciting features, such _fereare ;nbt(a)resde mo ?:i't'e aVI(éL(J:I’,O pTr{s“E)?) pa:jrame grz_or

as discrete chiral symmetry, dynamical mass generation,an% rent boundary con |_|on_s( .S)' _'he boundary condl-
tions considered are periodic, antiperiodic and two types of

asymptotic freedom. L "
Curiously, this model has also application in condenseé:onfmmg conditions.

matter physics, where it describes the conductivity in some ~1he HF approximation implies the use of a large momen-
polymers. In particular, it can be mentioned the case of trandtm cutoff. Since we shall deal with systems of finite spatial
polyacetylene, which, in a simplified continuous model, isSiZ&; the momentum integrals must be replaced by summation
described by the symmetric GN model [3]. Besides, the mas?" dlscre_te modes, meaning that the ngtural regularization to
sive GN model has a condensed matter analog in the modi€ used is the zeta regularization technique [8].
elization of polymers with non-degenerate ground states [4].  In this work, we first ask about the ultraviolet dependence
The standard approach to the GN model leads to a®f the physical parameters on the BC's, considering the GN
homogeneous condensate solutiog, independent of the Mmodel at zero bare massif = 0) where temperature and
space coordinates. After several years, it was realized th@#hemical potential are not considered. We assume that the
there are crystal solutions of the model, giving a rich inter-spatial lengthl_ is a fixed parameter, so, if the physical mass
pretation in the realm of condensed matter physics [5]. Thés independent of the cutoff, it implies that the beta function
spatial dimension could be constrained to a finite size to condoes not depend on the BC’s. There appears an arbitrary mass
sider Casimir type forces. Without having in mind any par-scale and the functional dependency of the dynamical mass
ticular model, we asked ourselves to consider many bounddepends on the BC'’s.
ary conditions (BC's) to simulate a broad variety of possible  The second step in our work is to study the Casimir en-
physical scenarios. Those are periodic, antiperiodic and corergy and force due to the quantum fluctuation of the effec-
fining BC’s. tive free system that arises from the HF approximation. We
Having a limited spatial extension leads us to consider theonsider the non-dimensional parameier mL, since the
Casimir energy associated with such spaces. We found thatlue ofm is fixed by ultraviolet considerations, the variation
the Casimir energies and forces are sensitive to the BC'’s anaf 1; is equivalent to the variation df. We find that the value
parameters involved. Using the generic name of “universe’tf energy and Force are sensitive to the BC's. In particular,
for the spatial dimension we identified the stable, metastablghe signature of the energy clearly differs in the small size

In
it was computed the Casimir energy with
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limit, but it is universally positive for infinite size limit. On 3. Hartree-Fock for different boundary condi-
the other hand, the force is also sensitive to the BC's, imply- tions
ing situations where the forces are such that they compress or

expand our space depending on the BC's used. There is al$gy|iowing the standard procedure [9], it is possible to com-

a universal metastable point where the force becomes zero ipyte the negative energy in an infinite space taking the value
dependently of the BC's used. For the ladfgémit, the force 1, as a parameter to be determined

becomes negative for any BC’s considered.

£_ dk
2. The Gross-Neveu Model N o VIS

m2

& o

k[<A

The Gross-Neveu Lagrangian is given by
whereG = Ng? andA is a momentum cut off.

. 1 o o
YN X7} i -2 i,01\2 % i\2

Lon = vin 0" + 29 {W VT = AW s } Since we have a finite spatial size, the wave nunibisr
— modt, 1) discretized

wherei runs from 1 toN. For the sake of simplicity, from kn = (2mn + ¢)/TL,
now, we suppress the indéx The Euler Lagrange equation

from (1) is given by implying
O + g% {h — MWpyse)ys} o —mep = 0. (2) /dk/(27r) - % Y,

In the framework of Hartree-Fock relativistic approxima-
tion, it is assumed the expectation val(iys¢)) = 0 and  Wherer is a number which depends on boundary conditions.

() = Np. So, we have
It was introduced a finite mass in order to consider a gen- ,
eral expression and using the convention & _ (m2 + ki)l/z n ;nG. (11)

o [0 -1 L (i 0 NoorL
’7_7107 ’7_0727

Dealing with the summation implies a treatment of Ep-

7 = ( 0 é) , (3)  stein zeta function
—1
we end up with the expression > s
P P Cr(s;a,b) = Z (a®>+ (n+b)%) ", (12)
(i7" 0 — m)Y(z) = 0, 4) n=—oco

wherem = mgy — g?Np andp = () /N.
From (4) we obtain a free Dirac equation

B Gl [ S ] (R K

In order to obtain a stationary solution, we use the usual Ce

using properties of gamma function and by means of Jacobi
inverse summation formulae [8], we have

(s;a, b):ﬁ l/tsg/Qemzdt—i-Q Z cos (2mbn)

decomposition 0 =
Cinnt ¢(w)> [ oy —tat—ntu?
— n . 6 s—3/2 —ta*—m*n°/t
Y(z)=e (X(x) (6) X / t573/2¢ dt|. (13)
Making the redefinition of the fields 0
f=x+9¢, g=x—09, @) From the above integral, we can recognize a gamma func-

tion and a second kind Bessel function [10], leading us to the

we obtain a general solution .
9 general expression

f(f.E) = ﬁ COS(QI’) — \/)\fgﬁ Sin(QI’), (8)
g(x) = S sin(Qax) + _h cos(Qx), (9) Cr(s;a,b) = VT a” 25T (s - 1) +4 i cos(2mwbn)
VA, —m Ap — M (s) 2 o
whereQ) = /A2 —m? and the constants and 3 are not T (5= 1)
independent since they are determined by the boundary con- X (7) K, 1 (2ran)|. (14)
ditions.
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We are interested in the value= —1/2, but there is a asX), = 0, the coupling paramet&¥ is given by

singularity in such point, so we can isolate that term by mean-
ing of a series expasion in termof= —1/2+¢, whene — 0,
giving us the expression for the Epstein zeta function

2 2

) _a a2y (2
Cel6ab)=5--5 aln<2)

K1 (2man).

3 Q?a i cos(2mbn) (15)
1

e n

where we use tha fact that, (z) = K_,,(z). Note that there
is a diverging term, which can be seen as an ultraviolet cut-
off. Since the poweil /2 in the summation is replaced by
aterml/2 — ¢, it appears a mass scajeby means of the
regularization procedure [8].

We have the following momentum decomposition for the
BC's to be considered:

Periodic  k,=2mn/L ne&(—o00,0),

Antiperiodic  k,=(2n + 1)7/L n€(—o00,00), (16)

Zero current i) k,=(2n)7/2L ne(—o0, ),

GZW{I—Q—Fan(
€

n=1

")
I

+ % Z cos(qﬁn)Ko(w“n)} .

(21)

For the four considered BC's, we obtained the following

e Periodic BC
eP 12 12
N Comel? | 272
4w o~ K (un)
wL? n

n=1

e Anti periodic BC

SAP B 12 12

N  2mel? ' 2nl>2

expressions for the energy density:

2 2%
Sy, (n)
wL o

2
5 g - (22)

2 29
Sy, <ﬂ)
wL W

Ap [ Ki(2pn) - Ki(pn)
Zero current ii) k,=(2n+ 1)7/2L ne(—o0,00). + TL2 {Z Y Z n
n=1 n=1
We note that the imposed boundary conditions dwver u? 23
have the general structure T 5qrz (23)
2 2 e Zero current BC
o = : szf) (17 i 2 2 2 ~
r &_ weooow (277>
Introducing the parameter of magsand rewriting the en- N 2mel?  2mL?  wl? Iz
ergy density we have o S Ky (2um) 2
T 2GL @)
L28 _ % 2s+1 (277) ° & n=1 n
A "t A Vo N N
oo <u2r2 6\2 —s 2 N 2nel?  2nL?2  wL? 1]
x Y +(n+— +o-. (18) .
472 ( 2 ) ) 2G 2 Ki(2 2
n=-—oo ™ 0 + 7’“‘2 (_1)7L 1( /’[/n) + /'[/ (25)
L n

5

_ — 2GL
As we see, the summation term can be expressed as an

Epstein zeta function, so we have where it was introduced the non-dimensional varialles

mL andn = nL.

2 2 2 ~
E__n peo w20 In the following step, we minimize the energy densities
N 2mel?  2mL?  wl? p with respect tqu. Then, we use (21) and obtain for each BC
dp oS M’K () + 12 19) an expression fofz , which can be resumed to the form
AR 2GI2 1 27 -
n=t G= 7T{ —2+42In (M) + finite terms} , (26)
€

Minimizing the energy density respectgone can obtain
a dimensionless expression

L? 1 2 2 27
—6—55/1’“:———&————111 il
Ny op me  mw 1

_ % Z CQS(QWL)KU(/.M"TL) + é7 (20)
n=1

wheree = s+1/2 goes to zero and must be considered as the
ultraviolet cut-off. On the other side, the finite terms depends
on the BC's.

For finitee, it gives the impression that the running of G
should depend on the BC's. But, if we fix the value®in
an arbitrary scale, the limi — 0 is universal, independent
of any BC.
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FIGURE 1. The running ofG, for different BC's fixing the param-
etersin order to hav&é = 1 fore = 1.

We observe from the general relation (21), that there is

dependency of the constant@nd7) for each BC through the
transcendental equation:

21n (%j) + % Z cos(¢pn) Ko(urn) = C, (27)
n=1

beingC an arbitrary constant.

Considering the traditional point of view where the phys-

ical © must be independent of the cutt-efive have a renor-
malization group equation

dup ou 0G Ou on ou
2 2 2 2
R e e A e TR G
For any BC, it is computed the beta function
=edS, (29)
de

meaning an universal behaviour 6f(¢) as it is shown in
Fig. 1.

4. Casimir Energy for global boundary condi-
tions
Imposing BC’s of the form
fle+L) f(x)
<g<x + L)) M (g<x>>

In Egs. (8) and (9) we have solutions of the form

(1) - (a2 26) ()

g1(z) (30)

where the values of, 5 depend on the imposed BC on the
problem. If we define the invertible matrix

(A 2y,

g1(z)  ga(z)

H(z) = (31)
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the constants are given by

()= ()
meaning that

() -0 (J5) = (5) - e

The BC can be expressed as

(32)

FL)N _ o (F(O)
<g<L>> =M (g<o>) ’ (4
Then, the eigenvalue condition is given by
det [M — H(L)H ' (0)] = 0. (35)

We can include the periodic and anti periodic case by the
parametrization

_ (exp(i9) 0
M = ( 0 exp (i¢) )
From (8) and (9), we have
cos(Qx) _ sin(Qx)
B VAn+m An+m
H(m) B (sin(flm) cos(Qx) ) ’
VAn,—m VA, —m
Eq. (35) leads to the condition
2, 2
cos QL = cosp — Q% = (7”;7_'_@, n € 7.
r2[2

Since) = v \2 — m?2, we have

(2mn + ¢)?
7a2L2

+@+;Y]

Wherep = mL andr a parameter which depends of
the boundary conditions, so the general expression for the
Casimir energy for spinor field is given by

ECas - _%Z)‘;QS = -

27,2

N =m? +
1272
472

472
22

(36)

2
lim il

1 —2s
s—>—1/2§ <7"L>

s\ |
<n+27r) ]

We can recognize that the summation term in (37) an Ep-
stein zeta function, so we use the representation in (15) in

order to obtain the Casimir energy. We redefine the Casimir
energy given by

3

n—=—oo

12 (37)

2 2 nl
gC’as—LECas_ﬂ_ﬂl L
8 47 W
> cos on
LS g () (38)
n=1
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The Casimir Force can be obtained by the usual way Sincea andg are constants, we must impose that at the

Feoas = —dEcq4s/dL, but considering the redefinition given borders one of the fields must be zero, we can consider the
before andj = 7L, we have following cases:

]:Cas = L + 71 i + Z COS qb’l’L Ko(/,l,’l“’n) I) X(O) = 07 X(L) =0 Or(b(O) = 0? (b(L) =

8Tt 4Am  p —
L& cos(én) i) ¢(0) =0, x(L) =00rx(0) =0, ¢(L) =
cos(on
+ ur ; n falern), (39) The conditions are

whereFc,s = F/m?. i) sin (VA2 —m?L) = 0 — A2 = m? + (2x)?
5. Specific boundary conditions ii) /2% — 1cos (./ — 1u — sin go A m
51 Periodic and Anti Periodic BC's 0, a transcendental equatlon that for— oo behaves

asA2 = m? + (7(2”;;)”) :
The Casimir energies for the periodic and antiperiodic BC'’s

are given by Following the notation of (36), we have
2 2 ~ e
Y 21 p 1 AP _ 2.2
§Cas = 81 Eln (,u) +;;EK1(7W)’ Cas A2 —m? 4 nLZ —r=2and ¢ =0,
2 2 ~ 2,2
ueoop 217 ii,2 2 (2n+1)°x
=2 _Z 1= Ai=m+-———5— > r=2and ¢ = . 44
8t Am n(,u) (2L)? ¢ 49
K i Kipn)  Ki(2un) (40) According to Ec. (38) withr = 2, the Casimir energy
™= n n ’ and the Casimir force for this eigenvalues are given by
and the Casimir forces are . 2 2 27 > K{(2
] %M:”-Jim(")+“§jl<mﬁ (45)
P 1 1 27 4w 2m i n
]:C'as =——+—-In{—
8T Am W ) ) o s (2
o - (O P e/ B Y (,an. (46)
+ =) Ko(un) + L > Ki(un).  (41) “am awm\w) mi "
n=1 & =1 "
- " 11 27\ 2 &
~ L = —In( =) +23 K2
fép——i—i—il 21 FCas 4 +27rn</¢)+7rz 0(2pem)
as 8T 4w 1 n=1
1 -— , 47
_ = (Ko(pn) - 2K0(2un)> 1 nzl n (“7)
n=1
0 1 1 27 2 —
Fi  =— —In( =)+ (—1)"Ky(2
_1§:<mmm_Kumm>. wy P (3 F 2 e
n n n=
1 — K1 (2un
5.2. Zero current BC +— Z(*U”M~ (48)
p n=1 n
The confining condition is imposing the zero current condi-
tion at the borders 5.3. Limiting values
i Pyuh = O|I:o,L ‘ (43)  As can be seen from Figs. 2 and 3, the behaviour for small

depends on the BC's. In fact, the parametetetermines the
sign of the force ag goes to zero. We are interested in the
sign of the force fo, ~ 0, where the force clearly goes to
+00. Keeping the leading terms far~ 0

In terms of components, we have
0= ($2)) = nd = et - ot xta).

If ¢(z) = |p(x)| e, x(x) = [x(x)| e, then cos an

Z

_ + constants. (49)
in* Yyt = 2i|¢(x)| [x(z)| sin(e — B) =
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FIGURE 2. The i dependency of for different BC

We observe that? and ¢° never reach the zero point energy.
We have an asymptotic behaviour coincidigfg with ¢4 and¢®

'sandj = 1.

FIGURE 4. The u dependency ofF for different BC’'s andyL =
7 = 1. We can see thaf*" and F* are always negative. It is
also seen an asymptotic behaviour coincidifig with 74 and

with &7 F* with F*.
1’0 i { . i 0,6 L 1 L Il 1 1 L 1
0.8 L 0.4 - L
. /7/"’
06 —FP L
: ___pp 02 3
044 1\ ccl - //
——=C.Cll 00
02 4
& oo M. - 27024 / B
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'3 0,2 e T T T - 0,4 / L
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’ i 0,6 / -
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i y
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FIGURE 5. Behaviour of the numerator in (50). which indicates

FIGURE 3. Behavi for diff t BC’ = 4. We obtai
ehaviour of for differen s andj ‘e obtain the slope of the force whem~ 0.

that thatt” and¢? crosses the zero point energy for a certain region
of the parametet:.

Itis more clear to take the derivative to leading order g Conclusions and discussion

aF ~ b [Lia(e'®) + Lig(e~%)] (50) The first part of this article focused on the study of the ultravi-

dp n—0 pem olet behavior of the GN model for different BC's, using zeta
function regularization and assuming a homogeneous solu-
whereLi, (z) are Polylogarithm functions (see, for exam- tion. We found that the beta function is independent of the
ple [11]). Since the positive derivative means a negative forcgype of boundary condition used, and that there appears a
and vice versa. The regime changes for the non physicahass scale of arbitrary value. The generated dynamical mass
value of¢ = ¢* ~ 1.328, as itis shown in the Fig. 5, notice should depend on the BC’s, if we have no prescription on the
that¢* does not depend o arbitrary mass scale.

Another curious feature happen with4? and F*. Later, assuming a homogeneous solution, we studied the
Whenn goes beyond a given valug = 77*(¢), the force  Casimir energy and forces for different BC’s, if we concen-
becomes positive, having an equilibrium poirt§.A’) anda  trate on the behavior &/ from Figs. 2 and 3, we notice the
metastable poinB, as it is clear from Fig. 6. following features:

w
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FIGURE 6. The values ofF4¥ and F* for 7y = 4. There it hap-
pens thatF4¥ and F* acquire a positive value in regiad(A’)
and becomes zero in the poifit

a) Anti periodic:{/u < 0 for p < p* and&/p > 0 for
u > p*, for any positive value of.

b) Periodic:¢/p has a minimum value for a certain value
of 4 = uf, having limiting values oft/u — oo,
for u — 0. The sign of the maximum value @f/ .,
depends on the parametgr

¢) Confining i: The same qualitative behavior of the peri-
odic case.

d) Confining ii: £/u < 0 for p < @* and{/p > 0 for
u > pi*, for any positive value ofj, in a similar fash-
ion as the anti periodic case.

e) We found that there is a common singular value:of
for 7 > 4, where/ . becomes zero.

583

For the Casimir forces, from Figs. 4 and 6, we conclude
hat:

1) Anti periodic BC: F4¥ — —co for u — 0 and
u — oo, for any value offj. It also happen that for
i) > 4, FAP can be positive in a finite range pf

2) Periodic: F¥' — oo for y — 0 and 7 — —oc for
[ — 0.

3) Confining i: It has the same qualitative behaviour as
the periodic case.

4) Confining ii: It has the same qualitative behaviour as
the anti periodic case.

It is shown in Fig. 6 that for; > 4, there is a common
point i where the Casimir force becomes zero for any bound-
ary condition.

From the above considerations, we conclude that for BC's
periodic and confining i, there are two regimes of forces, be-
ing positive for “small”u, representing a universe that has an
expanding tendency. On the other hand, wheés “big”, our
universe is a shrinking one.

For the antiperiodic and confining ii, there is a more com-
plex situation, since its behavior depends on the valug of
Forn < 7*, the force is always negative, hence there is an
shrinking universe. Fofj > 4, there is mixed case as it is
shown in Fig. 6, there are the point A’ and the universal
point B. BetweenA(A’) and B, the force becomes positive.

It is also clear that3 is an unstable point and the points
A’ are repelling points.

This study suggests that the further natural step is to con-
sider a general relativity study where the spatial dynamics are
affected by the quantum fluctuations of the Casimir energy

and confirm if the BC’s determine the existence of shrinking
or expanding low dimensional universes.
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