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In this paper, we will present a Dvali-Gabadadze-Porrati stable model in order to perform an observational test usingH(z) data and radial
BAO scale in the galaxy distribution. In this vein, we study the tension between constraints on the cosmological constantΛ and the crossover
scalerc, which is associated with the Dvali-Gabadadze-Porrati model. Our results show that observations do not favor the DGP stable model
as a possible candidate to fit the observations of the late cosmic acceleration.
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1. Introduction

One of the central challenges of modern cosmology is still
to shed light on the physical mechanism behind the cosmic
acceleration. Current measurements have already sharply
improved constraints on this phenomena. Several observa-
tions like Supernovas SNeIa [1], Cosmic Microwave Back-
ground Radiation (CMBR) [3], Baryonic Acoustic Oscilla-
tions (BAO) [2], among others [4–7], has been useful to
constraint the cosmological parameters that define a specific
model. Future observations are expected to do much better,
especially for models that allow a time-evolving Equation of
State (EoS).

One of the main candidates to explain this cosmic ac-
celeration is Dark Energy (DE). This component also fea-
tures baryonic matter, dark matter and radiation. The advan-
tage of DE is that it relaxes some tensions in the cosmolog-
ical parameters measurements, which can explain in partic-
ular the fact that the geometry of the universe is consistent
with the flatness predicted by inflation. Despite the large ob-
servational progress in measuring DE properties, no funda-
mental insights into the physics behind this dark sector has
been solved. Even thought, while the statistical error have
shrunk dramatically, current constraints are still roughly con-
sistent with 68.3% [8] current energy budget with an EoS ra-
tio ω ≈ −1. This had led to the idea in where a Cosmological
Constant (CC)Λ can explain the cosmic acceleration. Also,

in agreement with the described observations, theΛCDM or
concordance model has the advantage to provide an acceler-
ated behavior driven byΛ and filled with Cold Dark Matter
(CDM).

Despite its simplicity, there are fundamental problems
if we assume that CC is related with the quantum vacuum
fluctuations. Some theoretical efforts point out to a value
of density energy∼ 120 orders of magnitude of differ-
ence with the observational value or at least it is expected
a strictly vanishing value under protective symmetry [9]. For
this reason, some research has turned to find new alternatives
as: quintessence [10], phantom fields [11], Chaplygin mod-
els [12], brane models [13], just to mention a few.

Between the plethora of models, one of the most inter-
esting alternatives comes from a brane model based in the
idea of Dvali-Gabadadze-Porrati (DGP), where it is assumed
a 5D Minkowski space time, within a4D Minkowski brane
embedded [14]. The region of transition between the fourth
and fifth dimensional manifold is encoded in the crossover
scale parameterrc, which is a function of the fifth and fourth
Planck masses. It is interesting to notice that this scenario
allows to mimic the universe acceleration as a transition be-
tween the dimensions of spacetime mimicking the CC with
the crossover region parameter. A natural extension of DGP
models can be performed when the brane is generalized
by using a Friedmann-Lemaitre-Robertson-Walker (FLRW)
metric. Therefore, this model offers an attractive explana-
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tion for the accelerated expansion of the universe without to
invoke a DE component. From the DGP background evolu-
tion emerge two solution branches depending the choice of
the sign: the self-accelerated branch (which corresponds to a
negative sign) and the normal or stable branch (which corre-
spond to a positive sign). In the first branch, there is a late
cosmic acceleration without the presence of DE. However,
this branch is ruled out by supernovae data [15]. The nor-
mal/stable branch has the property of introducing aΛ over
the evolution and fixed a bidimensional model with two cos-
mological parameters:Ωrc andΩΛ. This latter characteristic
allows us to perform a directly astrophysical test usingH(z)
data set and Planck analysis [8] which can set constraints on
the cosmological parameters of the stable DGP model. How-
ever, the impact of these cosmological parameters will be-
came looser (stronger) depending of the weakness (strength)
of the fifth force. Interesting results related to these cases are
reported in [16, 17], studying a IR cutoff or the growth rate
of structure or in [18] it was studied tests of gravity using
large-scale redshift-space distortions.

In this paper, we will work with the stable DGP model for
three different pipelines in where we can control the strength
of therc parameter and set the constraints over this parameter
using directH(z) measurements: the Cosmic Chronometers
(Cosmic-C) and the radial BAO scale in the galaxy distribu-
tion. In [19] was study a DGP universe using these obser-
vations, however the variation of the curvature in this anal-
ysis shows a DGP model with best fits that correspond to a
closed/open universe using a WMAP prior.

This paper is organised as follows. In Sec. 2 we will
present an overview of the equations related to the DGP back-
ground cosmology. In Sec. 3 we describe the astrophysical
samples forH(z). In Sec. 4 we present the constraints over
the DGP cosmological parameters of our interest. In Sec. 5
with set a discussion of the results obtained.

2. DGP cosmological background

The DGP model [20] suggests an universe on a brane which is
embedded in a 5D Minkowski space-time with a infinite ex-
tra dimension. This model gives us two important reasons to
consider it. First, it describes a 4D Newtonian gravity on the
brane at short distances whereas on the bulk the gravity shows
as 5D. Second, the short distances are fixed by a crossover
scalerc denoted byrc ≡ M2

P /2M3, whereMP andM are
the five and four Planck masses, respectively. Only gravity is
present in both the brane and the bulk but not the other force
of the standard model.

Let us begin with the action that we have taken in 4D
Einstein-Hilbert action for the bulk added:

S = M3

∫
d5X

√−g(5)(R(5) − Lm)

+ M2
P

∫
d4x

√−gR, (1)

whereg(5) and g are the determinants of the metric of the

five-dimensional bulkg(5)
AB and four-dimensional branegµν

respectively, t, andR(5) andR are their corresponding Ricci
scalars. Similarly,Lm is the Lagrangian associated with the
fields confined on the brane, included if we consider the CC
as a fluid. Therefore, the induced metric is defined as usual
from the bulk metric asgµν = ∂µXA∂νXBg

(5)
AB . Notice that

the capital letters run asA,B = 0, 1, 2, 3, 4 and greeks letters
runs asµ, ν = 0, 1, 2, 3.

Thus, the background expansion rate in the DGP model
using a flat FRW metric can be written as (see [21] for de-
tails):

H(z)2 = H2
0

[√
Ωm(1 + z)3 + Ωr(1 + z)4 + ΩΛ + Ωrc

±
√

Ωrc

]2

, (2)

whereH0 = 100h km/sMpc−1 is the expansion rate today,
Ωm represents the fractional matter density today,ΩΛ the CC
term andΩrc = (4H2

0r2
c )−1. Here, in addition to the matter

and the crossover scale contributions, we have included the
radiation term.

We can compare (2) with the standard flat Friedmann evo-
lution equation with a dark energy componentΩDE :

H2(z) = H2
0

[
Ωm(1 + z)3 + Ωr(1 + z)4

+ΩDE(1 + z)3(1+ωDE)
]
, (3)

whereωDE is the EoS for the DE component. Comparing the
latter with (2) we observe that(Ωrc + ΩΛ) behaves similarly
to an effective CC.

If we set thez = 0 value in (2) leads to the constraint
condition:

√
Ωm + Ωr + ΩΛ + Ωrc ±

√
Ωrc = 1, (4)

which differs from the conventionalΩm + Ωr + ΩDE = 1.
Therefore, from (4) we get

Ωrc =
1
4

(Ωm + Ωr + ΩΛ − 1)2 . (5)

The latter shows that for a flat universe with radiation com-
ponent,Ωrc is alwayssmaller thatΩDE . Even more, at large
scales (ΩΛ ≈ 0.7, Ωm ≈ 0.3, Ωr = 2.469 × 10−5h−2(1 +
0.2271 × Neff , h = H0/100kms−1Mpc−1, andNeff =
3.04) the Ωrc vanishes and we obtain the standard cosmol-
ogy with a CC.

We observe from the evolution equation (2) that there
are two branches: considering the positive sign emerges the
branch in where it is necessary to introduce a CC (i.eΩΛ 6= 0)
to drive a late cosmic acceleration. Considering the negative
sign it is not necessary to add a CC (i.eΩΛ = 0) component
to describe acceleration at late-time. This latter is however
ruled out by supernovae data [15].

Therefore we consider three values of the cross-over
scale: rcH0 = 0.2, rcH0 = 0.6 and rcH0 = 1.9, which
we renamed as: DGP strong, DGP medium and DGP weak
stable models, respectively. The advantage of these slightly
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FIGURE 1. H(z)2 ratio between DGP stable model andΛCDM
model. The curves represent the cases in where the strength (weak-
ness) DGP stable model can be fixed.Left: Evolution of the
H(z)2DGP/H(z)2ΛCDM with a ΩΛ = 0. Right: Evolution of the
H(z)2DGP/H(z)2ΛCDM with aΩΛ 6= 0.

changes over the values in comparison to [17] is that we can
observe in Fig. 1 a distinguishable difference between each
DGP stable model andΛCDM at early times.

3. DGP stable cosmological analysis

Since for both proposals of the DGP models we have cos-
mic acceleration, in order to perform the analysis of the DGP
stable model (with positive sign in (2)) we require observa-
tional Hubble rate data. The basic assumption of this data
is due that the differential age approach estimates the Hubble
rate directly from the data without assuming a specific spatial
geometry or any other cosmological model. These measure-
ments have become an effective probe in cosmology com-
parison with SNeIa, BAO and CMB data. Following a sim-
ilar methodology from [22], we use the cosmic chronometer
(Cosmic-C) data and we complete the dataset with six mea-
surements ofH(z) obtained from BAO. We summarize these
data sets as:

3.1. H(z) observations

Usually, it is has more precision to study the observational
H(z) data directly due that all these tests use the distance
scale measurement to determinate the values of the cosmo-
logical parameters, which needs the integral ofH(z) and
therefore

TABLE I. BAOsample data from [25,26].

z H(z) [km s−1M pc−1] σH
2

0.24 79.69 2.32

0.34 83.80 2.96

0.43 86.45 3.27

0.44 82.6 7.8

0.6 87.9 6.1

0.73 97.3 7.0

loses some important information of this quantity. As an in-
dependent approach of this measure we provide two samples:

(1) Cosmic Chronometers (Cosmic-C) data. This kind
of sample gives a measurement of the expansion rate
without relying on the nature of the metric between
the chronometer and us. We are going to employ sev-
eral data sets presented in [23]. A full compilation of
the latter, which includes 28 measurements ofH(z) in
the range0.07 < z < 2.3, are reported in [24]. The
normalized parameterh(z) can be easily determined
by considering the valueH0 = 67.31 ± 0.96 km s−1

M pc−1 [8].

(2) Data from BAO. Unlike the angular diameterdA mea-
sures given by the transverse BAO scale, theH(z) data
can be extracted from the measurements of the line-of-
sight of this BAO scale. Because the BAO distance
scale is embodied in the CMB, its measurements on
DE parameters are strongest at low redshift. The sam-
ples that we are going to consider consist of three data
points from [25] and three more from [26] measured at
six redshifts in the range0.24 < z < 0.73. This data
set is shown in Table I.

To perform the statistical analysis we employ (2), where
(ΩΛ, rc) are the free parameters of the model. We compute
the best fits of these cosmological parameters by minimizing
the quantity

χ2
H(z) =

N∑

i=1

[Htheo(zi,Ωm; ΩΛ, rc)−Hobs(zi)]
2

σ2
H,i

, (6)

where theσ2
H,i are the measurements variances andN is the

number of the total sample, which for our purpose will be
consider as three combinations between datasets.

3.2. DGP stable model cosmological tests

First we are going to study the case for a DGP stable model
with a prior H0 = 67.31 ± 0.96 km s−1 M pc−1 and
Ωm = 0.315 ± 0.017, where the set of cosmological param-
eters to constrains are(Ωrc, ΩΛ). We perform the minimiza-
tion of (6) to get the best fit values. The confidence regions
in theΩm − Ωrc plane are show in Fig. 2, and the statistical
values are given in Table II.
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FIGURE 2. DGP stable model confidence contours(ΩΛ, Ωrc) until 3-σ. Left: Using Cosmic-C dataset.Middle: Using BAO dataset.Right:
Using Cosmic-C + BAO dataset.

FIGURE 3. DGP strong model confidence contours(ΩΛ, Ωm) until 3-σ. Left: Using Cosmic-C dataset.Middle: Using BAO dataset.Right:
Using Cosmic-C + BAO dataset.

TABLE II. Cosmological parameter constraints for a DGP stable
model with a priorH0 = 67.31 ± 0.96 km s−1 M pc−1 and
Ωm = 0.31.

Dataset χ2 ΩΛ Ωrc

Cosmo-C 18.827 0.427± 0.161 0.01± 0.177

BAO 4.652 0.501± 0.235 0.01± 0.534

Cosmo-C + BAO 24.404 0.472± 0.021 0.01± 0.178

We notice that for these priors, the cosmic acceleration at
late-times is performed by theΩΛ term. Also, theΩrc shows
a constant value for the three posible combinations of data
sets.

For our second analysis, we consider the DGP strong sta-
ble model (rcH0 = 0.2 ) with the sameH0 prior, where the
set of cosmological parameters to constrains are(Ωm,ΩΛ).
The confidence regions in theΩm − ΩΛ plane are shown in
Fig. 3, and the statistical values are given in Table III.

We notice in this case thatΛCDM model (Ωm = 0.3 and
ΩΛ = 0.7) is discarded beyond3-σ. Also the best fits sug-
gest that the cosmic acceleration in the DGP strong model is
performed by only theΩrc component.

TABLE III. Cosmological parameter constraints for a DGP strong
stable model with a priorH0 = 67.31± 0.96 km s−1 M pc−1 and
rcH0 = 0.2.

Dataset χ2 ΩΛ Ωm

Cosmo-C 16.984 0.240± 0.131 0.089± 0.221

BAO 3.718 0.401± 1.635 0.131± 1.554

Cosmo-C + BAO 21.329 0.131± 0.021 0.231± 0.113

4. Discussion

We notice that DGP stable model with or non addition ofΩΛ

can be distinguishable fromΛCDM at early times. Also, as
we see from the Fig. 1, at large redshift it seems that each
DGP models starts to loiters toΛCDM case.

Therefore, we observed some important results about
the contribution of the crossover scale tested byH(z) data,
which is shown in Fig. 2, where the values for the free param-
eters (Ωrc, ΩΛ) are almost constant in the redshift range given
by theH(z) measurements. For the three confidence regions
these results indicate that for our Planck priors there is no
tension between these two datasets. In addition, the obtained
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value for the density parameterΩrc
is approximately equal

to the value ofΩΛ, this result gives us a prediction about
the dominant term in the evolution equations (2). Hence, the
density of CC is the main responsible of the accelerated ex-
pansion of the universe at late times.

Indeed, theΛCDM model is recovered for small contri-
bution of the crossover scale density parameter. As well, in
Fig. 3 we illustrate the obtained values forΩΛ andΩm for
the DGP strong model with priorrcH0 = 0.2, it is nec-
essary to remark the difference between both values of the
model. There is a tension at around 2-σ between the two
confidence contours[ΩΛ − Ωm] using Cosmic-C and BAO.
Furthermore, the obtained values from Cosmic-C, BAO and
the joined dataset analysis forΩm are below the expected,
the results of both densities are not consistent with the well
known values for them.

Finally, we remark that for cosmological perturbations in
DGP models, the main characteristics are that the integrated

Sach-Wolfe (ISW) effect shows more suppression than in the
standard paradigm [27] and the evolution of metric perturba-
tions is no longer necessarily scale free [28]. It is important
to notice that these results could also be studied in this paper.
However, to assess the impact of the brane perturbations, a
full CMB analysis should be carried out, which is beyond of
the scope of this article.
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