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In this work, the traveling wave solutions of a mathematical modeling of DNA vibration dynamics proposed by Peyrard-Bishop, that takes
into consideration the inclusion of nonlinear interaction between adjacent displacements along the Hydrogen bonds, is investigated by both
(G'/G)-expansion and’-expansion methods. Using these methods, some new explicit forms of traveling wave solutions of present nonlinear
equation are given. The methods come in to be easier and faster by means of a symbolic computation and yield powerful mathematical tools
for solving nonlinear evolution equations in many branches of sciences, especially Physics, Biology, etc.
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1. Introduction placements along the Hydrogen bonds [8]. To study the main
important properties of DNA structure, we have investigated
In recent decades, a new attitude with regard to the expldle oscillator-chain of Peyrard—Bishop model (PB) [8] which
ration of nonlinear evolution equations (NLEES) has beer@s succe_ss_fully predicated the appearance of solitonic struc-
actively progressing in various branches of Sciences. NorfUres. As it is well known, the balance between weak non-
linear evolution equations have been the important subject dfn€arity and dispersion in DNA dynamic model yields the
investigation in various branches of mathematical and physityPical derivation of model equations mathematically. This
cal sciences such as physics, fluid mechanics, chemistry, pilispersion in many cases enters only in the Ilnear |?_"?'- Un-
ology and etc. Obtaining the analytical solutions of NLEEs isfortunately, this approach eliminates other possibilities re-
an important topic in various areas of Science, since many dfted to the presence of nonlinear dispersion [9,10]. Some
mathematical and physical models are explained by NLEEgnathematical structure of DNA has been described in vari-
Among the possible solutions to NLEES, specific form of so-0US interesting lines of research, to see more structure and
lutions may contingent only on a single combination of vari- Physical properties of DNA, the authors can Ref. to [2-6] and
ables such as solitons. In mathematics and physics, a soff?€ir references. The mathematical and physical modelling of
ton is a self-reinforcing solitary wave that sustains its formPNA dynamics has reduced to an important nonlinear struc-

through it travels with constant speed. Solitons are the spgires- The nonlinearity of the DNA dynamic model causes it
cial solutions of certain nonlinear partial differential equa-t© form localized waves. The localized waves have some in-

tions, with interesting properties. Because of a balance bd€resting properties, such as the ability of transporting energy
tween nonlinear and linear effects, the shape of soliton wavi¥ithout dissipation [2-7]. _ _ _
pulses does not change during propagation in a medium. The Taking into consideration the inharmonic potential,
soliton phenomenon firstly described by John Scott Russeffgueroet al. [6] and Najeraet al. [11] have studied the
(1808-1882). The main idea of this phenomenon occurred tfPlowing modified PB model:
him when he observed a solitary wave in the Union Canal in 9 —aus —au
Scotland. Russell reproduced same phenomenon in a wave'* (6 + 320 ) tze — 20De™ (™™ = 1) =0, (1)
tan.k and named it t_he “Wave of Translation” (also known aSyherel;, £», D anda are constants. Krumhanet al, [12],
solitary wave or soliton) [1]. suggested a theory of soliton excitations as an explanation
The mathematical modeling of DNA vibration dynamics of the open states of DNA modeling system. In [12], they
is proposed by Peyrard—Bishop, that takes into consideratiofirstly developed the possibility that nonlinear effects might
the inclusion of nonlinear interaction between adjacent diseoncentrate vibrational energy in DNA into localized soliton



MATHEMATICAL MODELING OF DNA VIBRATIONAL DYNAMICS AND ITS SOLITARY WAVE SOLUTIONS 591

like objects. Some other similar worksare studied about solimethod, then we use them to investigate the traveling wave
tons of DNA dynamics model, such as Yomosa in [13], pro-solutions of a mathematical modeling of PB model (1.1).
posed a soliton theory using a plane base-rotor model. This

model was further refined by Takeno and Homma [14], who

allowed discreteness effects to be taken into account, and k. Description of the (G’/G)—expansion
Zhang [15], who improved the model for base coupling. Za- method

yed and Arnous also applied Homogeneous Balance Method

in [35] and_generaliged Riccati quation mapping method iNy this section, we introduce briefly th&" /G')—expansion
[36,37] to find traveling wave solutions of PB model (1.1). " method for solving certain nonlinear partial differential equa-
In the recent decade, many powerful and direct methodggns (PDESs). For a deeper discussior(6f/G)—expansion

have been proposed to find special solutions of nonlinear evgnethod we refer the reader to [24-27]. Suppose we have a
lution equations (NLEESs), such as thadklund transforma-  ,oniinear PDE for(z, t), in the form

tion [?] and Hirota bilinear method?]. With the help of
the computer implementations, some other algebraic method
proposed, such as tanh/coth meth8 homogeneous bal-
ance method?], the Miura transformationv], sine/cosine

P(u7utaum7uztaurxautt7'") :07 (2)

where P is a polynomial in its arguments, which includes

methodBl_?]tand 'I{EX]E)E:unctI(t): ;nethod?l andt_som? (_)Ither, nonlinear terms and the highest order derivatives. Using the
se? ﬁ]' dut molf_ g fe met IO SI rrt1_ay sorgeﬂ:mesl af['_ or Cantransformrcltiom(;z:,t) =U(£),& =z —wt, Eq. (??) reduces
only lead fo a Kind ot spectal solution and e SoIUtion pro y,e ordinary differential equation (ODE)

cedures become very complex as the degree of nonlinearity
increases.

Since 2008, théG’ /G)—expansion method, firstly intro-
duced by Wangt al [?], has become widely used to search
for various exact solutions of NLEEs [24-31]. The worth of
the (G’ /G)—expansion method is that it reduced the nonlin-
ear PDEs to ODEs by some essentially linear methbels,
the method is based on the explicit linearization of NLEES m T
for traveling waves which leads to a second—order differen- U(é) = Z . () +ag, am 0. 4
tial equation with constant coefficients. THé&expansion oy G
method is also an effective and direct algebraic method for
constructing the exact solutions of nonlinear evolution equawherea,,, n = 0,1, 2, ..., m, are constants to be determined
tions [?]. To do this, it reduces the nonlinear evolution equa-later andG(€) satisfies a second order linear ordinary differ-
tions to a simple algebraic equation. Many of NLEEs haveential equation (LODE):
been solved by'-expansion method, (for a deeper discus-
sion we refer the reader to [33,34] and the references given d*G(&) | dG(€)

+A
there). dg? dg§

In this paper, we first describe briefly the mathematical

concept of bot{G’ /G )—expansion method arfd-expansion ~ Where\ andy are arbitrary constants. Using the general so-
| lutions of Eq. £?), we have

PU,—wU U, —wU" U",w*U",..) =0, (3)

whereU = U(¢), and prime denotes derivative with respect
to £&. We assume that the solution of Eq??| can be ex-
pressed by a polynomial ifG’ /G) as follows:

+ uG(€) = 0. 5)

(4 sinh <\/m§) + C5 cosh <' N = 4M§>

Yovm 2 2
a— : 2 X2 —4u >0,
—4 2_
, C cosh <H§> + C5 sinh ( )‘2 4“5)
e _ 2 ©
G VA — A2 4p — N2
© —(Cy sin (%5) + C5 cos <H2§>
VAR : : A N —dp <o,
C1 cos <~4,u2—)\£> + Cysin <~4/t2—)\£>
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m el n+2 el n+1 ) el n
"= D —= 2 1 — 2 —
U nzlnan<(n+ )(G) +(2n+ )A(G> +n(A\* + “)(G)

+(2n — )Ap (g)nl +(n—1)u? <g>”2> 7

and so on, here the prime denotes the derivative with respegvhereR is an integration constant. Introducing the new vari-
tive to £&. To determineu explicitly, we take the following able
four steps:

Step 1 Determine the integer. by substituting Eq. %?)
along with Eq. ??) into Eqg. (??), and balancing the highest
order nonlinear term(s) and the highest order partial deriva-
tive.

Step 2 Substitute Eq. 7?) give the value ofmn deter-
mined inStep 1 along with Eq. ??) into Eq. (??) and col-
lect all terms with the same order 66’ /G) together, the
left-hand side of Eq. 4?) is converted into a polynomial
in (G'/G). Then set each coefficient of this polynomial to
zero to derive a set of algebraic equationsdon, ., o, for
n=0,1,2,..,m.

Step 3 Solve the system of algebraic equations obtained
in Step 2forw, A, i, ag, ..., oy, By USe of computer programs
such Matlab, Maple and Mathematica.

Step 4 Use the results obtained in above steps to derive
a series of fundamental solution&) of Eq. (??) depending
on (G'/G), since the solutions of Eq.?%) have been well
known for us, then we can obtain exact solutions of E§).(

2.1. Application

Let us consider the Peyrard—Bishop DNA dynamic model B(&) = eV E) (12)
equation ’

gy — (01 + 3lou? ) gy — 20De™ (e —1) =0, (8)

wherel, ¢>, « andD are constants.

We would like to use our method to obtain new and more
general, travelling wave solutions of Eq?? by assuming
the solution in the following frame:

u=U(E), E=z—ut, ©

wherew is arbitrary constants generally termed thave ve-
locity, and prime denotes derivative with respecttdJsing
the wave variablg in (??) we find
w?U" — (61 + 36(U")*) U”
—2aDe” Y (e7V — 1) =0, (10)
Multiplying Eq. (??) by U’ and integrating once with respect
to &, we obtain
1
LW - )W = S
2 4
+De V(e Y —2)+ R =0, (12)
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following general results

Ireduces Eqg.7?) into the following form: J3a2 [7
, ; p= Y3 \/%(iDvL\/DQ—DR),

ﬁ(w2_€1)¢2(¢/)2_@€2(¢/)4 - 662

+D¢°(¢p —2) + Re? = 0. (13)

[l s
According toStep 1 considering the homogeneous balance w= i\/$2\/§ D D2 =DR + b,
between(¢')* and¢® we getdm + 4 = 6m, hencem = 2.

(15)

We then suppose that E®7) has the following formal solu- ap = iD +VvD? - DR
tions: D ’
a1 = 07
¢ = as(G'/G)? + a1 (G'/G) + a, (14)
vy = :l:—z\/g é
whereas # 0, aq, andag, are constants which are unknown, ? 2 VD

to be determined later.

Substituting Eq. 7?) along with Eq. ??) into Eq. (??)
and collecting all terms with the same order(6f /G), to- 23 [ty (G 2 py VD2 — DR
gether, the left-hand sides of Eq?? are converted into (&) = i? D (G) + - 1
a polynomial in(G’/G). Equating each coefficient of this
polynomial to zero yields a set of simultaneous algebraicSubstituting the general solutior®? into Eq. (??), we ob-
equations for\, u, w, ap, a1 andas. Solving the system of tain following two types of traveling wave solutions of Eq.
algebraic equations with the aid of Maple 12, we obtain thg(??):

Therefore, substitute the obtained resui®) (n (?7?), we get

(16)
+

2.1.1. Hyperbolic type function solutions

Whenp < 0, using the relationship = (—1/«) In ¢, we obtain hyperbolic type function solutian,, of Peyrard-Bishop
DNA dynamic model ??) as follows:

N 2
e = (£ 233 (G) £ PBPR), an
where
(G’) e (01 sinh (Y5 €)+C; cosh (Y5 5))
G)y 2 Clcosh(‘/?ﬁ)wLCgsinh(‘/?f) ’
and

i 2 [y
g:xzp(\/:pw?y/z;\/m—DRMl)t, u::l:\/ga ,/%(ib+\/732—DR), Ci, Oy

602

are arbitrary constants aril is integration constant. It is easy to see that the hyperbolic type sol®®dn be rewritten at
C? > C3, as follows

-1 D+ vD?—-DR

uiHl(I7 t) = ? In ) (18a)
D cosh® (‘?\/—@;’2 \/2(D+ VDT —DR)¢ + nH>
while atC? < C3, one can obtain
-1 —D —+VD? -DR
Usp2(,t) = o In (18b)

D cosh? (—“65\/—\/?2%/%(2)%/@2 —DR)f—i-nH) ~1
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where

2
g_ccq:\/qi2\/§\/§;\/D2—DR+€1)t, ,u:i\/ga ,/%(iDH/D?—DR), nH:tanh_l(g),

642 Cy

are arbitrary constants arfid is integration constant. By setting appropriate parameters, the sol@®megn be reduce to
solution (31) in P].

2.1.2. Trigonometric type function solutions

Now wheny > 0, using the relationship—1/a) In ¢, the trigonometric type function solutiany, of Peyrard—Bishop DNA
dynamic model??) can be obtain as follows:

N\ 2
e = (4205 () o DVBEDRY @)
where
(G) _@(—clsim@mcacos(@@)
Gli 2\ Creos(Y52 ) + Cosin(¥5H¢) /)’
and

¢ 2 [e
gmq:(\/:pz\@\/g\/wmzwl)t, u:i\/ga ,/%(iDﬂ/DLDR), Ci, Cs

642

are arbitrary constants arfdlis integration constant. It is easy to see that the trigonometric type sol@®pugn be rewritten
atC? > C3, as follows

utr(z,t) = %1 In (ZM;_DR (tan2 (\/6 Ve \/%(D + VD2 — DR)E + UT) + 1)) : (20a)

6 15

and forC? < C%, one can obtain

-1 D++D2-D 2
utr2(x,t) = —1In D+VD*-DR cot? @ Via \/é(D—l—\/DQ—DR)f—FnT +1 . (20b)
« D 6 £o D
where
2
§:x¥(\/$2\/§\/%\/D2—DR+€1)t, u:i@“ ,/%(iDer/D?—DR), nT:tan_l(%),
2 2

are arbitrary constants arfdlis integration constant.

3. F-expansion method

In order to get more solutions d??), we use the F-expansion
method ] to deal with (??). Supposing that Eq?@) has the
following formal solutions:

¢ = az(p)? + a1(p) + o, (21)

whereas # 0,a1, andag, are constants to be determined
further. Andyp satisfy

¢ =C(p)* + B(p) + A (22)

Substituting £?) and (?) into (??) and collecting all terms
with the same order op together equating each coefficient
of this polynomial to zero, one can get
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Iy = (12 ACly —20* (D)

l2 = l2a

a1:07

A=A, C=C, D=D, B=0,

(%)

~2V/30?

[t
o? D

(23)

Family 1: When—4AC > 0 andAC # 0,

Case 2:

R = —4 AC <Ol2 (D) %\/§+ 3AClQ> O[_4,

a=q, w=w, aqy= —21/%140\/5072,

I = (12/1012 +20a?%(D) 4/ g\/g—i—agw) a?

=1y, A=A, C=C, D=D, B=0,

2 2y
a1 =0, %;7@0 V2, (24)

Thus, substitute the obtained resu?8)(and (??) in (?7?),
we get

2
P& = 12\%0 %’ ()° £2 \/gAcx/ﬁa% (25)
Substituting the general solution®? into Eq. (??), we ob-
tain the following two types of traveling wave solutions of
Eq. (??):

In view of (??) has a lot of fundamental solutions (twenty
seven solutions)?], one can find a number of exact travel-
ling wave solutions for 7?), which are listed some special
solutions as follows.

2 — 2
= —ém <@@ ((-210 [\/—4A0tanh ( i 3AC§>D> +2\/EACJ§@—2) ) (26)
2
u= —ém <2\f’202\/% ((—210 [\/—4ACcoth < i _3A05>D> +2 gAc\/Ea—2> . (27)
2
u:—éln 2\{32(}2 é(zlc \/4A0<tanh (\/4AC§)iz‘sech(\/4AC§)> ) +2 gAC\/§Oé2). (28)
L 2V3C? [tz L /=146 coth (V=TACE) +icsch(v=1AC 2 21/ 2 acv3a2 29
u=——1In 02 ol ~aeV- cot ( — f) zCSC( — §) + D o} . (29)
2
u:flln 2\/§;C2\/E<1\/W<tanh( _4AC£)+Coth (M£)>> +2\/EAC’\/§0¢2). (30)
« « D 4C 4 4 D
1 [2vEc? \/E 1 [/(B?  F?)(~44C) — EV—TAC cosh(v—1ACE) |\~ \/E _2
u_—aln( —~ D(2C Beinh(v—1ACE) 4 F ) +2 DAC\/§a . (31)
1 [2v3ce? \/E 1 [ /(F2-E%)(—4AC)+Ev—iAC sinh(v—14C6) ]\ . [is .
ualn( . D<2C - Beosh(V—LACE 1 F ) +2 5AC\/éa . (32
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whereFE andF are two non-zero real constants and satisfies- £2 > 0.

2A cosh(v/—4AC¢E)

Q|+

u=——1In

2v3C? 6 (|
a? D

| V—4AC sinh(v—4ACE) + iv/—4ACE

2Asinh(v/—4AC¢)

_ Ly (2ee fef]
v= an o? D

| V/—4AC cosh(v—4ACE) £ v/ -4ACE |

4A sinh(Y=A%¢) cosh (Y=42%¢)

u=——1In

1 [2v8¢® [6(]
@ a? D

Family 2 : When—4AC < 0 andAC # 0,

u=——1In

Q
Q
[\v]

_ L
2C

| 2v/—4AC cosh®(Y—32€¢) -

4AC tan
4AC cot,

\/m(tan (@g) =+ sec (\/M&) >

\/4AC(tan < 4;405) — cot ( 4;40§> )

—TAC |

('4;C§> ) +2 Z2Acfor2

)
() o).

1 [+ /(F2—E?

Esin(V4ACE) + F

[+/(F? -

— E?)(4AC) + EVAAC sin(VAACY) |

YAAC) — EvAAC cos(VAACE) )2

Ecos(V4ACE) + F

whereE andF are two non-zero real constants and satisfiés- E2 > 0.

—2A cos(VAACSE)

I (2{202\f<

VAAC sin(V4ACE) + ivV4AACE

2
) +2

2A sin(V4ACE)

| VAAC cos(VAACE) £+ VAACK |

[ 44 sin(YAACE) cos(VAAC )

| 2V4AC cos?(¥22C¢) —

VIAC |
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(35)

(36)

(37)

(38)
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(42)
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Remark 1. Using Case. 2, one can get other exact solu-
tions of Eq. £7?). The details are omitted here. lmain give these methods a wider applicability. With the aid
of Maple 12, we have assured the correctness of the obtained
solutions by putting them back into the original equation. We
hope that they will be useful for further studies in applied

This study shows that botf:’/G')—expansion method and Scieénces and engineering.

F—expansion method are quite efficient and practically well

suited for use in finding exact solutions for a mathematicalpcknowledgment

modeling of DNA vibration dynamics. The reliability of the

methods and the reduction in the size of computational doThe authors wish to thank the referee for his interesting sug-
gestions and comments.
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