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Peculiarities of some classical variational treatments
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We study some peculiarities of the classical variational treatment that applies Jaynes’ maximum entropy principle. The associated variational
treatment is usually called MaxEnt. We deal with it in connection with thermodynamics’ reciprocity relations. Two points of view are
adopted: (A) One of them is purely abstract, concerned solely with ascertaining compliance of the variational solutions with the reciprocity
relations in which one does not need here to have explicit values for the Lagrange multipliers. The other, (B) is a straightforward variation
process in which one explicitly obtains the specific values of these multipliers. We focus on the so called g-entropy because it illustrates
a situation in which the above two approaches yield different results. We detect an information loss in extracting the explicit form of the
normalization-associated Lagrange multipliers.
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1. Introduction e )\ is the normalization multiplier.

The most popular approach to develop the main Statistitn statistical mechanics, these multipliers are always en-
cal Mechanics formalisms proceeds today via application oflowed with meaningful physical information [4].

Jaynes’ maximum entropy principle, usually abbreviated as
MaxEnt [1]. We apply it here in connection with generalized
entropies of the Tsallis type, that have become a very impor-

We use they-functions [2]

. o o eq() = [14 (1 = g)a]"/ (=9
tant sub-field of statistical mechanics, with several thousand
papers and applications on many scientific disciplines [2, 3]. eq(z) = exp (x) for ¢ = 1; Q)
Since the number of references is at least ten times the or- (1-q) _ 1
der just mentioned, we will mainly direct the reader to [2, 3] Ing(z) = xi;
and references therein. In this effort we focus attention on l—gq
reciprocity relations and re-consider some issues concerning Ing(z) =1n(z) for ¢ = 1. 2)

generalized entropies that, we believe, lack yet adequate un-
derstanding, even if they have been on the discussion tab2. Reciprocity relations and thermodynamics
for many years in variegated publications. In particular, we

want to shed light on some issues regarding the canonical eft-is well known that the Legendre transform (LT) constitutes
semble. More specifically: an operation that converts a real functipwith real variable

x into anotherfr, of another variablg, keeping constant the
1. The way to explicitly obtain the normalization La- information content off. The derivative off becomes the
grange multiplier\ - in the Tsallis’ variational prob- argument offr.
lem with linear constraints ) )
fr(y) =2y — f(z); y=f(z)= reciprocity. (3)

2. A two-way approach to reciprocity relations. . .
Yy app P Y The LT becomes its own inverse. Famously, one appeals to

3. Differences between them that entail information loss.it to pass from Lagrangians to Hamiltonians in classical me-

chanics.
o LT’ reciprocity relations constitute thermodynamics’ es-
2. Preliminary matters sential formal ingredienf5]. For two functions! (for in-
, stance, information measure) ahdne has
2.1. Notation

_ M

e \y is the energyU multiplier, which is related to the I(Ay, . An) = T4 MNeAg, (4)
system’s temperaturg, k=1
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with the A; extensive variables and the independentn-
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so that one can easily extract, via normalization, a partition

tensive ones. Obviously, the Legendre transform main godunction Z

is that of changing the identity of our relevant independent

variables. Fod we have

M

I, dm) =T =7 A (Ax) (5)
k=1

One further has [5]

oI oI

57)%——@41@)7 DAy Ak

oI <L 9(A)

= 2N, ©®)

the reciprocity relations, the last one being the so-called Euler
theorem. In this paper we pay special attention to the specific

reciprocity relation

ol
O(Ak)

Why? Because in Jaynes’ philosophy [lL]s the informa-
tion amount, to be maximized subjectknown constraints

= Ak (7)

/ AV exp = (A + 1)) exp [<Ao )] = 1

/dV exp [-ApU)] = Z =exp[(An + 1)]

Errp = P [—AuU)]
ME T TaV exp [-ApU)]
InZ = Ay +1, (14)

and one obtains explicitly the relation betwegnand Ay .

It goes without saying that the reciprocity relations are satis-
fied [1], in particular the determining relation of the precedent
subsection. Moreover, it is found [1] that

v = 1/kT, (15)
with & Boltzmann'’s constant.

3. Normalization of the Lagrange multiplier
in Tsallis” MaxEnt with linear constraints

(Ag). The associated Lagrange multipliers are to be obtained 1. \/ariational problem
by solving the partial differential equations (7), that here after

will be called the determining relations (DR).

2.3. Boltzmann-Gibbs (BG) MaxEnt variational prob-
lem

It is useful to recapitulate it. We work oRY. The volume
element is calledV. One has

Sve=- [ Vi) =~ [avomp. @
with the variational problem leading to
f'(p) = An = AU =0, )
and
fl=—Inp—1, (10)

We define nowg(¢) as the inverse off’(¢) such that
glf'(€)] = ¢ and here

g(v) = exp[=(v +1)],, (11)
and thus
Eve =9(An + Aul), (12)
with
Eve =exp[—(An + 1+ AgU)]
=exp[=(Ax + D]exp[-AgU)],  (13)

This subject was fully treated for i) trace-form entropies and
il) M observables as constraints, in [6]. We regard it instruc-
tive the explicit Tsallis-application of such discussion, which,
as far as we know, has not been given before in the detailed
fashion available here.

Our probability density functions (PDFs) are designed
with Greek letters lik&. &,/ stands for the MaxEnt PDF.

We have two identical ways of defining the g- entropy

&:/ww& (16)
with
§— &1
1O =" )
and
1 q
ngql[l—/dvg], (18)

that however, leads to different variational problems, as we
shall immediately see. Our a priori knowledge is the mean
energy(U) (canonical ensemble). The MaxEnt variational
problem forS; becomes

F1(€) = Av — AU = =€ /(g - 1)
— Ay = AgU =0, (19)
with

F1©) = —a€" /(g - D). (20)
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Instead, forS; one has

605

a relation that we presently will employ. Also, we have, for
U)/(0Av)

L0 U =0 (21)
-  — AU — AN = U,
—1
¢ NU) _ /dVUg’()\N +Aul) {‘%N + U] . (28)
G @ e
g—1 Next we considedS/dAy and write

We define nowg(¢) as the inverse off’(£) such that

oS 0
glf'(€)] = €. One has for the; instance vy /de[g(AN +AvU)] (29)
_ 11— _ _ 1/(¢g—1) _ ,1—
gWw)=q L= (g = D] M0 =g e g (v). (23) _ /de’[g()\N D)
From (21) it is obvious that
o\
Eme = g(An + AuU), (24) x g’ (Av +AuU) [aAZ + U} : (30)

or

e = 9N +Aul) = ¢ Tea_g) (AN + AuU), (25)

Remembering that’g(v) = v and (27) we simplify this to

A
, 95 )\U/dVUg’()\N +A\pU) PN + U] . (31)
so that you cannot extradty from that expression. One does ~ 9Au Oy
1l?otEc;J)gtam explicitly the relation betweehand\y as in (14) leading to
or BG.
A similar result is obtained if we considéh, instead of os A\ o(U) (32)
Sy, ie, o Vo
e = 9g(AN + \pU) the Euler relation. Now we have
=1 (g - DO + AU (26) 05 _ 05 0w _\ OO _, (3

oUY  oxy oU) Yoy o(U)
Note that thegy for S; and theg for S, are slightly different. . . . .

This extraction problem affects only,’s MaxEnt treat- thelflrtst (rjemprocrcy ;E|at\I]0n. , &r(the L q
ment withlinear constraint and can be avoided by recoursetrangfg?mug%)now € Jaynes’ parametgr(the Legendre
to nonlinear constraints, as in Refs. [7, 8].

N Our interest resides_ precisely in discussing the pecul_iar- S(v) = SUUY) — AU (Ap). (34)

ities of the MaxEnt variational treatment that are emerging

with regards to the present problem (and the reason for dealt is clear that

ing with linear constraints here). The information contained 5

in our variational problem can be managed in two different 05 _ 95 o) AU o) (U)y=—(U), (35)
O y  OU) oy O\

manners. The following Subsection deals with the fist of

these ways, that we may call the abstract one. Sections #he second reciprocity relation. Note that we do not need to
and 5 consider an alternative route, that we may call the e)@xpnciﬂy ascertain Specific values Pq; and )\ in order to
plicit one. The two ways yield different results, as we shallestablish the reciprocity relations. In particular, we do not
see, originating what we regard as an information manageneed to solve the determining equation of Subsec. 2.2.
ment problem.

3.3. Solving for the Lagrange multipliers
3.2. Reciprocity relations

Usually, this is a very difficult numerical problem. A prac-
These pltfalls nOtWithStanding, the reCiprOCity relations hOldUCa] alternative is to numerica"y So|ve, once we hﬁyﬁE:

This is so because they depend only on the formal existenag@e 1/ + 1 set of equations that read, using the notation of
of the functiong(v). We specify now for this case the general sypsec. 2.2,

treatment of [6]. We do not need, in the subsequent manipu-
lations, to distinguish betwee$y andSs.
Because oft-normalization it is clear that, in general,
both for.S, and forS;, one has with k = 0,1,..., M, (Ay = 1). This gives theM + 1 La-
9 grange multipliers in terms of the assumedly knolin+ 1

/deME()\O,/\l,...,)\M)Ak = (Ay), (36)

E dve=0 quantities(Ay) [in particular, if there is an energy multiplier
(called Ay above) it is set equal to/kT]. See Ref. [9] for
= /dVg’()\N + A U) {‘”‘N + U] =0, (27) details. Can one bypass this difficult process? This is what
O\u we will try to do next.
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4. Explicit Lagrange multipliers in Tsalliss 5. Explicit Lagrange multipliers for S,

original variational problem for S o . -
9 P ! Return now to (20). Let us insist on solving the variational

Return now to (21). We saw that we can not immediatelyProblem, though, without solving the determining equation
derive from it a value for\y [2]. A heuristic solution, is to  Of Subsec. 2.2. An heuristic solution is to set [see [10]]
set

q g1, 1 1 1 Ay = ——L_zl-a (50)
Ay =——-274 7:—[1— A } 37 N _ T
N g—1°7 +q—1 -1 Q47 (37) q—1
with Z; unknown at this stage , and renae as follows Zr yet unknown (51)
and rename\;; as follows
A =qZy B, (38) v

- o=qZp Yy = )\71[] (52)

where = (1/kgT), T the temperature. The variational gz

problem is now o _
Now ~ can be set equal to/kT. The variational problem is

1—geat __q 71 here
) 1 _ .
= 0l + 52—z U =0 (69
+—— +2Z;79BU =0 (39)
¢—1 "7 e =21 = (g— )W), (B4)
¢t =271 — (¢ - 1)pU), (40) 5o that
so that émp = 2y er—g(~AvU) = Z3'[L = (q — DU/ @Y,
Sup = Zp' L= (= DBUIOD, @) g = 2 L (g - )] (55)
where 3 is NOT the variational multiplier\;;, as stated whereg is not the variationah;,. Further,
above. Further,
Zyp = /dV [1—(qg—1)yU] =D, (56)
Ze= [avii-(q-nav)/en. @)
Thus, we have
We have now — &4
e e =g O =L, @)
agl—a — ¢. ¢qj =2 > 43
§16171 = & €ling(€) = “3) " and then

and then

qu—/deqlnq(f):/dV§[1 _qul}/(q_ 1) (44) Sq:_/dqulnq(f):/dvﬂl_gq7 ]/(q—l) (58)

:/ ave [1-(1/2r)" 1=(¢ = 1)BU]] /(a=1) (45) :/ Ve [1-(1/2r) 1= (g=1U1} /(a=1) (59)

— _ q—1 _ q-1
Ve -0/ 000/ 2030 0 —[ave [11-(1/2r)" ) (a- 1))+ 22y 15U] (60)

= Ing(Zr)+ 2y 94U | . 61

- / ave [ing(Zr) + 238U . (47) / V¢ [iny(Zr)+ 25" (61)

Sy=Ing(Zr)+ 237 16(U) = Ing(Zr)+ o (U 62

qulnq(ZT)%—Z;_qﬂ(U), (48) q ”q( T)+ T B > nq( T)+ ul >/Qa (62)
so that one is led to a slightly modified reciprocity rela-

so that tion
05, 1— S
= BZL1 = Ny /q, 49 99 gl-a _
0] BZy u/q (49) 20 vZy = Au/q (63)

the quasi-reciprocity relation with a denominatorGiving  identical in form to that forS,, but wrong as well. Once
An an explicit form has resulted in a wrong reciprocity re- more, givingAy an explicit form has resulted in an incorrect
lation. This fact could be interpreted as an information lossyeciprocity relation. We detect then what could be read as an
as a result of not solving the determining equation of Subinformation loss, as a result of not solving the determining
sec. 2.2. equation of Subsec. 2.2.
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6. Conclusions

We have revisited Tsallis’ original treatment of the g-
entropy [2] with focus on the reciprocity relations. They are

valid,

of course, as has been known for many years already.

However, some peculiarities of the treatment have been de-
tected here.

There are two forms of casting the g-entropy, that we
called S; andS;. They are identical, but the associ-

ated MaxEnt variational treatments do differ for each
of them if one wants explicit values for the Lagrange
multipliers.

The Lagrange normalization multiplies;; can not be
obtained in explicit fashion, as it is well known [2]. We
have found here ways to overcome this obstacle and
obtained two different versions af;, associated t§;
andsS,, respectively.

The ways to overcome the obstacle encountered here
cannot be used in physical applications, though, since
they entail information loss. The main physical conse-
quence of this fact is that appeal to the methodology of
Sec. 3.3 is unavoidable.

There is a price to pay for oWy -extraction procedure.
The ensuing reciprocity relation for entropy/energy,
(0S4/0 < U >), equals nothy (as it should) but

607

Aulq, for both casesS; and Sy, as a result of not
solving the determining equation of Subsec. 2.2. It
is nonetheless gratifying that our two wrong equa-
tions coincide, since the entropy is just one and the
physicsij.e., the reciprocity relation, should not depend
on whether we us§; or S,.

Remark thatS; = S5 as functions but their associated
variational problems are not identical.

In abstract form one can show that the reciprocity re-
lations are indeed valid, as we showed in Sec. 3.2,
without need for appealing to explicit knowledge of the

Legendre multipliers. One only requires that a special
function that we calle@ does exist.

This g is different in theS; or the S, cases.

Obtaining the Lagrange normalization multiplig,

in explicit fashion, although accomplished via a seem-
ingly legitimate symbolic manipulation, entails how-
ever some information loss, as the reciprocity relation
entropy-energy is not exactly re-obtained, as a result
of not solving the determining equation of Subsec. 2.2.
Usually, this is a very difficult numerical problem. A
practical alternative, as we saw above, is to numerically
solve, once we havéy g, the M + 1 set of equations
(36).
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