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We study some peculiarities of the classical variational treatment that applies Jaynes’ maximum entropy principle. The associated variational
treatment is usually called MaxEnt. We deal with it in connection with thermodynamics’ reciprocity relations. Two points of view are
adopted: (A) One of them is purely abstract, concerned solely with ascertaining compliance of the variational solutions with the reciprocity
relations in which one does not need here to have explicit values for the Lagrange multipliers. The other, (B) is a straightforward variation
process in which one explicitly obtains the specific values of these multipliers. We focus on the so called q-entropy because it illustrates
a situation in which the above two approaches yield different results. We detect an information loss in extracting the explicit form of the
normalization-associated Lagrange multipliers.
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1. Introduction

The most popular approach to develop the main Statisti-
cal Mechanics formalisms proceeds today via application of
Jaynes’ maximum entropy principle, usually abbreviated as
MaxEnt [1]. We apply it here in connection with generalized
entropies of the Tsallis type, that have become a very impor-
tant sub-field of statistical mechanics, with several thousand
papers and applications on many scientific disciplines [2, 3].
Since the number of references is at least ten times the or-
der just mentioned, we will mainly direct the reader to [2, 3]
and references therein. In this effort we focus attention on
reciprocity relations and re-consider some issues concerning
generalized entropies that, we believe, lack yet adequate un-
derstanding, even if they have been on the discussion table
for many years in variegated publications. In particular, we
want to shed light on some issues regarding the canonical en-
semble. More specifically:

1. The way to explicitly obtain the normalization La-
grange multiplierλN in the Tsallis’ variational prob-
lem with linear constraints.

2. A two-way approach to reciprocity relations.

3. Differences between them that entail information loss.

2. Preliminary matters

2.1. Notation

• λU is the energyU multiplier, which is related to the
system’s temperatureT ,

• λN is the normalization multiplier.

In statistical mechanics, these multipliers are always en-
dowed with meaningful physical information [4].

We use theq-functions [2]

eq(x) = [1 + (1− q)x]1/(1−q);

eq(x) = exp (x) for q = 1; (1)

lnq(x) =
x(1−q) − 1

1− q
;

lnq(x) = ln (x) for q = 1. (2)

2.2. Reciprocity relations and thermodynamics

It is well known that the Legendre transform (LT) constitutes
an operation that converts a real functionf with real variable
x into anotherfT , of another variabley, keeping constant the
information content off . The derivative off becomes the
argument offT .

fT (y) = xy − f(x); y = f ′(x) ⇒ reciprocity. (3)

The LT becomes its own inverse. Famously, one appeals to
it to pass from Lagrangians to Hamiltonians in classical me-
chanics.

LT’ reciprocity relations constitute thermodynamics’ es-
sential formal ingredient[5]. For two functionsI (for in-
stance, information measure) andĨ, one has

I(A1, . . . , AM ) = Ĩ +
M∑

k=1

λkAk, (4)
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with the Ai extensive variables and theλi independentin-
tensive ones. Obviously, the Legendre transform main goal
is that of changing the identity of our relevant independent
variables. For̃I we have

Ĩ(λ1, . . . , λM ) = I −
M∑

k=1

λk 〈Ak〉 . (5)

One further has [5]

∂Ĩ

∂λk
= −〈Ak〉 ;

∂I

∂〈Ak〉 = λk ;

∂I

∂λi
=

M∑

k

λk
∂〈Ak〉
∂λi

, (6)

the reciprocity relations, the last one being the so-called Euler
theorem. In this paper we pay special attention to the specific
reciprocity relation

∂I

∂〈Ak〉 = λk. (7)

Why? Because in Jaynes’ philosophy [1]I is the informa-
tion amount, to be maximized subject toknown constraints
〈Ak〉. The associated Lagrange multipliers are to be obtained
by solving the partial differential equations (7), that here after
will be called the determining relations (DR).

2.3. Boltzmann-Gibbs (BG) MaxEnt variational prob-
lem

It is useful to recapitulate it. We work onRN . The volume
element is calleddV . One has

SBG = −
∫

dV f(p) = −
∫

dV p ln p, (8)

with the variational problem leading to

f ′(p)− λN − λUU = 0, (9)

and

f ′ = − ln p− 1, (10)

We define nowg(ξ) as the inverse off ′(ξ) such that
g[f ′(ξ)] = ξ and here

g(ν) = exp [−(ν + 1)], , (11)

and thus

ξME = g(λN + λUU), (12)

with

ξME = exp [−(λN + 1 + λUU)]

= exp [−(λN + 1)] exp [−λUU)], (13)

so that one can easily extract, via normalization, a partition
functionZ

∫
dV exp [−(λN + 1)] exp [−λUU)] = 1

∫
dV exp [−λUU)] = Z = exp [(λN + 1)]

ξME =
exp [−λUU)]∫
dV exp [−λUU)]

ln Z = λN + 1, (14)

and one obtains explicitly the relation betweenZ andλN .
It goes without saying that the reciprocity relations are satis-
fied [1], in particular the determining relation of the precedent
subsection. Moreover, it is found [1] that

λU = 1/kT, (15)

with k Boltzmann’s constant.

3. Normalization of the Lagrange multiplier
in Tsallis’ MaxEnt with linear constraints

3.1. Variational problem

This subject was fully treated for i) trace-form entropies and
ii) M observables as constraints, in [6]. We regard it instruc-
tive the explicit Tsallis-application of such discussion, which,
as far as we know, has not been given before in the detailed
fashion available here.

Our probability density functions (PDFs) are designed
with Greek letters likeξ. ξME stands for the MaxEnt PDF.

We have two identical ways of defining the q- entropy

S1 =
∫

dV f(ξ), (16)

with

f(ξ) =
ξ − ξq

q − 1
, (17)

and

S2 =
1

q − 1

[
1−

∫
dV ξq

]
, (18)

that however, leads to different variational problems, as we
shall immediately see. Our a priori knowledge is the mean
energy〈U〉 (canonical ensemble). The MaxEnt variational
problem forS2 becomes

f ′(ξ)− λN − λUU = −qξq−1/(q − 1)

− λN − λUU = 0, (19)

with

f ′(ξ) = −qξq−1/(q − 1). (20)
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Instead, forS1 one has

1− qξq−1

q − 1
− λUU − λN = 0, (21)

f ′(ξ) =
1− qξq−1

q − 1
. (22)

We define nowg(ξ) as the inverse off ′(ξ) such that
g[f ′(ξ)] = ξ. One has for theS1 instance

g(ν) = q1−q[1− (q − 1)ν]1/(q−1) = q1−qe(2−q)(ν). (23)

From (21) it is obvious that

ξME = g(λN + λUU), (24)

or

ξME = g(λN + λUU) = q1−qe(2−q)(λN + λUU), (25)

so that you cannot extractλN from that expression. One does
not obtain explicitly the relation betweenZ andλN as in (14)
for BG.

A similar result is obtained if we considerS2 instead of
S1, i.e.,

ξME = g(λN + λUU)

= [1− (q − 1)(λN + λUU)]1/(q−1). (26)

Note that theg for S1 and theg for S2 are slightly different.
This extraction problem affects onlySq ’s MaxEnt treat-

ment with linear constraint and can be avoided by recourse
to nonlinear constraints, as in Refs. [7,8].

Our interest resides precisely in discussing the peculiar-
ities of the MaxEnt variational treatment that are emerging
with regards to the present problem (and the reason for deal-
ing with linear constraints here). The information contained
in our variational problem can be managed in two different
manners. The following Subsection deals with the fist of
these ways, that we may call the abstract one. Sections 4
and 5 consider an alternative route, that we may call the ex-
plicit one. The two ways yield different results, as we shall
see, originating what we regard as an information manage-
ment problem.

3.2. Reciprocity relations

These pitfalls notwithstanding, the reciprocity relations hold.
This is so because they depend only on the formal existence
of the functiong(ν). We specify now for this case the general
treatment of [6]. We do not need, in the subsequent manipu-
lations, to distinguish betweenS1 andS2.

Because ofξ-normalization it is clear that, in general,
both forS1 and forS2, one has

∂

∂λU

∫
dV ξ = 0

=
∫

dV g′(λN + λUU)
[
∂λN

∂λU
+ U

]
= 0, (27)

a relation that we presently will employ. Also, we have, for
∂〈U〉/(∂λU )

∂〈U〉
∂λU

=
∫

dV Ug′(λN + λUU)
[
∂λN

∂λU
+ U

]
. (28)

Next we consider∂S/∂λU and write

∂S

∂λU
=

∂

∂λU

∫
dV f [g(λN + λUU)] (29)

=
∫

dV f ′[g(λN + λUU)]

× g′(λN + λUU)
[
∂λN

∂λU
+ U

]
. (30)

Remembering thatf ′g(ν) = ν and (27) we simplify this to

∂S

∂λU
= λU

∫
dV Ug′(λN + λUU)

[
∂λN

∂λU
+ U

]
, (31)

leading to

∂S

∂λU
= λU

∂〈U〉
∂λU

, (32)

the Euler relation. Now we have

∂S

∂〈U〉 =
∂S

∂λU

∂λU

∂〈U〉 = λU
∂〈U〉
∂λU

∂λU

∂〈U〉 = λU , (33)

the first reciprocity relation.
Introduce now the Jaynes’ parameterS̃ (the Legendre

transform ofS)

S̃(λU ) = S(〈U〉)− λU 〈U〉(λU ). (34)

It is clear that

∂S̃

∂λU
=

∂S

∂〈U〉
∂〈U〉
∂λU

− λU
∂〈U〉
∂λU

− 〈U〉 = −〈U〉, (35)

the second reciprocity relation. Note that we do not need to
explicitly ascertain specific values toλU andλN in order to
establish the reciprocity relations. In particular, we do not
need to solve the determining equation of Subsec. 2.2.

3.3. Solving for the Lagrange multipliers

Usually, this is a very difficult numerical problem. A prac-
tical alternative is to numerically solve, once we haveξME ,
the M + 1 set of equations that read, using the notation of
Subsec. 2.2,

∫
dV ξME(λ0, λ1, . . . , λM )Ak = 〈Ak〉, (36)

with k = 0, 1, . . . ,M , (A0 = 1). This gives theM + 1 La-
grange multipliers in terms of the assumedly knownM + 1
quantities〈Ak〉 [in particular, if there is an energy multiplier
(calledλU above) it is set equal to1/kT ]. See Ref. [9] for
details. Can one bypass this difficult process? This is what
we will try to do next.
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4. Explicit Lagrange multipliers in Tsallis’
original variational problem for S1

Return now to (21). We saw that we can not immediately
derive from it a value forλN [2]. A heuristic solution, is to
set

λN = − q

q − 1
Zq−1

T +
1

q − 1
=

1
q − 1

[
1− qZq−1

T

]
(37)

with ZT unknown at this stage , and renameλU as follows

λU = qZ1−q
T β. (38)

whereβ = (1/kBT ), T the temperature. The variational
problem is now

1− qξq−1

(q − 1)
= − q

q − 1
Z1−q

T

+
1

q − 1
+ Z1−q

T qβU = 0 (39)

ξq−1 = Z1−q
T [1− (q − 1)βU ], (40)

so that

ξME = Z−1
T [1− (q − 1)βU ]1/(q−1), (41)

where β is NOT the variational multiplierλU , as stated
above. Further,

ZT =
∫

dV [1− (q − 1)βU ]1/(q−1). (42)

We have now

ξqξ1−q = ξ; ξqlnq(ξ) =
ξ − ξq

1− q
, (43)

and then

Sq=−
∫

dV ξqlnq(ξ)=
∫

dV ξ[1− ξq−1]/(q − 1) (44)

=
∫

dV ξ
[
1−(1/ZT )q−1[1−(q − 1)βU ]

]
/(q−1) (45)

=
∫

dV ξ
[
[1−(1/ZT )q−1]/(q−1)]+(1/ZT )q−1βU

]
(46)

=
∫

dV ξ
[
lnq(ZT ) + Z1−q

T βU
]
. (47)

Sq = lnq(ZT ) + Z1−q
T β〈U〉, (48)

so that

∂Sq

∂〈U〉 = βZ1−q
T = λU/q, (49)

the quasi-reciprocity relation with a denominatorq. Giving
λN an explicit form has resulted in a wrong reciprocity re-
lation. This fact could be interpreted as an information loss,
as a result of not solving the determining equation of Sub-
sec. 2.2.

5. Explicit Lagrange multipliers for S2

Return now to (20). Let us insist on solving the variational
problem, though, without solving the determining equation
of Subsec. 2.2. An heuristic solution is to set [see [10]]

λN = − q

q − 1
Z1−q

T (50)

ZT yet unknown (51)

and renameλU as follows

λU = qZ1−q
T γ γ =

λU

qZ1−q
T

. (52)

Now γ can be set equal to1/kT . The variational problem is
here

−qξq−1/(q − 1) +
q

q − 1
Z1−q

T − qZ1−q
T γU = 0 (53)

ξq−1 = Z1−q
T [1− (q − 1)γU ], (54)

so that

ξME = Z−1
T e2−q(−λUU) = Z−1

T [1− (q − 1)γU ]1/(q−1);

ξq−1
ME = Z1−q

T [1− (q − 1)γU ]1/(q−1) (55)

whereβ is not the variationalλU . Further,

ZT =
∫

dV [1− (q − 1)γU ]1/(q−1). (56)

Thus, we have

ξqξ1−q = ξ; ξqlnq(ξ) =
ξ − ξq

1− q
, (57)

and then

Sq=−
∫

dV ξqlnq(ξ)=
∫

dV ξ[1−ξq−1]/(q−1) (58)

=
∫

dV ξ
[
1−(1/ZT )q−1[1−(q−1)γU ]

]
/(q−1) (59)

=
∫

dV ξ
[
[1−(1/ZT )q−1]/(q−1)]+(1/ZT )q−1γU

]
(60)

=
∫

dV ξ
[
lnq(ZT )+Z1−q

T γU
]
. (61)

Sq=lnq(ZT )+Z1−q
T β〈U〉 = lnq(ZT )+λU 〈U〉/q, (62)

so that one is led to a slightly modified reciprocity rela-
tion

∂Sq

∂〈U〉 = γZ1−q
T = λU/q, (63)

identical in form to that forS2, but wrong as well. Once
more, givingλN an explicit form has resulted in an incorrect
reciprocity relation. We detect then what could be read as an
information loss, as a result of not solving the determining
equation of Subsec. 2.2.
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6. Conclusions

We have revisited Tsallis’ original treatment of the q-
entropy [2] with focus on the reciprocity relations. They are
valid, of course, as has been known for many years already.
However, some peculiarities of the treatment have been de-
tected here.

• There are two forms of casting the q-entropy, that we
calledS1 andS2. They are identical, but the associ-
ated MaxEnt variational treatments do differ for each
of them if one wants explicit values for the Lagrange
multipliers.

• The Lagrange normalization multiplierλU can not be
obtained in explicit fashion, as it is well known [2]. We
have found here ways to overcome this obstacle and
obtained two different versions ofλU , associated toS1

andS2, respectively.

• The ways to overcome the obstacle encountered here
cannot be used in physical applications, though, since
they entail information loss. The main physical conse-
quence of this fact is that appeal to the methodology of
Sec. 3.3 is unavoidable.

• There is a price to pay for ourλU -extraction procedure.
The ensuing reciprocity relation for entropy/energy,
(∂Sq/∂ < U >), equals notλU (as it should) but

λU /q, for both casesS1 and S2, as a result of not
solving the determining equation of Subsec. 2.2. It
is nonetheless gratifying that our two wrong equa-
tions coincide, since the entropy is just one and the
physics,i.e., the reciprocity relation, should not depend
on whether we useS1 or S2.

• Remark thatS1 = S2 as functions but their associated
variational problems are not identical.

• In abstract form one can show that the reciprocity re-
lations are indeed valid, as we showed in Sec. 3.2,
without need for appealing to explicit knowledge of the
Legendre multipliers. One only requires that a special
function that we calledg does exist.

• Thisg is different in theS1 or theS2 cases.

• Obtaining the Lagrange normalization multiplierλU

in explicit fashion, although accomplished via a seem-
ingly legitimate symbolic manipulation, entails how-
ever some information loss, as the reciprocity relation
entropy-energy is not exactly re-obtained, as a result
of not solving the determining equation of Subsec. 2.2.
Usually, this is a very difficult numerical problem. A
practical alternative, as we saw above, is to numerically
solve, once we haveξME , theM + 1 set of equations
(36).
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