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This study characterizes the properties of Newtonian heat and mass species conditions in three-dimensional Jeffrey nanoliquid flow generated
by the movement of thermally radiative surface. The liquid flow is electrically conducting through the consideration of magnetic field. The
aspects of heat absorption, generation, and thermal radiation are considered in the equation of energy conservation. The boundary layer
phenomenon is employed to obtain the mathematical expressions of considered physical model. These equations are solved via homotopic
scheme. The convergence of homotopic solutions is validated by the numerical data. The importance of physical constraints on temperature,
and nanoparticle concentration of liquid is visualized by the graphical results.
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1. Introduction

Complex liquids have common nature of viscoelasticity.
Some examples of complex viscoelastic liquids include sus-
pensions of colloidal, polymer solutions, and polymer melts.
Such fluids are generally involved in blow, and injection
molding, extrusions, lab on a chip, inkjet printers, and many
others. Viscoelastic behavior of liquids may affect the dif-
ferent aspects of flows like transport, and energy dissipation,
hydraulic resistance, flow stability and mixing performance
[1]. Intra and inter molecules reactions of polymer chains
may generate the viscoelasticity. Analysis and modeling of
viscoelastic fluid flows have technical and scientific interests.
Researchers of modern world have paid full attention to elab-
orate the mechanism of viscoelastic materials for better qual-
ity in industrial manufacturing of products. Many complex
rheological expressions of viscoelastic materials had been de-
veloped in the past. A very fabulous model of viscoelastic
liquids is known as Jeffrey fluid. This model has the fea-
tures of stress retardation, and relaxation. Various investiga-
tors have adopted this model to discuss the different problems
of fluid flows under multiple situations. For example, Turky-
ilmazoglu and Pop [2] modeled the flow of Jeffrey fluid due
to shrinking or stretching of surface and express the exact be-
havior of govern mathematical expressions. Daset al. [3]
disclosed the nature of thermal magnetic field in stretched
Jeffrey liquid flow with transport of melting heat. Gravita-
tional aspects on Jeffrey liquid flow with solutal and thermal
stratification have been reported by Abbasiet al. [4]. Hayat
et al. [5] addressed the convective heating effects in hydro-
magnetic stagnant flow of Jeffrey fluid. Qayyumet al. [6]
discussed the reactive Jeffrey fluid flow over variable thick-
ness surface.

Nanofluids have achieved special attention due to their
broad applications in modern science, and technology like
glass fiber, electronic chips, micro-computers, wire draw-

ing, renewable energy sources, engine oils, vehicles, sys-
tems of thermal energy storage, and many others. Some
common base liquids such as oil, grease, water, and ethy-
lene glycol are poor conductors and have lesser thermal ef-
ficiency. Researchers have developed modern technique to
augment the thermal performance of such liquids with inser-
tion of nanoparticles. The involvement of solid particles may
alter the density, viscosity, thermal conductivity, and heat
capacity of such liquids. In nanofluids mechanisms, there
are various slip factors include thermophoretic, and Brow-
nian movement aspects which are responsible to motion of
nanoparticles in base liquids. Concentration of nanoparti-
cles may not be constant due to presence of velocity slip
factor of nanoliquids. Investigators of the modern era have
proven that nanoparticles have an ability of transport energy,
and also alter the thermophysical features. Buongiorno [7]
was the first who explored the forces which have impacts on
nanoparticles velocity. He reported that Brownian movement
and thermophoretic are the forces which generate drift-flux
in nanoparticles. After that, different attempts have been
made by using the Buongiorno model to explore the mech-
anism of such factors under various circumstances and con-
ditions [8-20].

Here our attention is to discuss the nature of Newtonian
heat and mass transportation in three-dimensional magneto-
hydrodynamic flow of Jeffrey nanoliquid induced by the bidi-
rectional movement of surface. In the past, the investigators
discuss the various fluid flows problems by only consider-
ing the Newtonian heating aspects. They ignored the Newto-
nian mass transport effects. In practical situations, heat and
mass transport occur simultaneously and if Newtonian heat
phenomenon takes place, then the importance of Newtonian
mass cannot be ignored. Here we considered both Newto-
nian heat and mass conditions because the problems of mod-
ern industrial processes. This phenomenon is more realistic,
and practical. We also considered the solar radiation term in
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FIGURE 1. Geometry of problem.

energy expression. All the governing equations are tackled
by homotopic procedure [21-26]. The results are plotted for
different values of physical constraints.

2. Governing problems

We assumed the three-dimensional steady-state flow of Jef-
frey liquid induced by the movement of thermally radiative
surface (Fig. 1). The impacts of heat absorption, generation,
and thermal radiation are accounted in the expressions of en-
ergy. The Newtonian heat and mass species conditions are
imposed at boundary of surface. The equations of considered
flow phenomenon through boundary layer theory are
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where the respective velocity components in thex−, y− and
z− directions are denoted byu, v andw, δ1 the ratio of re-
laxation to retardation times,δ2 the retardation time,T the
fluid temperature,υ = (µ/ρ) the kinematic viscosity,µ the
dynamic viscosity of fluid,ρf the density of fluid,σ the elec-
trical conductivity,α the thermal diffusivity,Q > 0 the heat
generation parameter, andQ < 0 represents the heat absorp-
tion parameter,τ = ((ρc)p/(ρc)f ) the ratio of nanoparti-
cle heat capacity, and the base fluid heat capacity,σ∗ the
Stefan-Boltzmann constant,k∗ the mean absorption coeffi-
cient, DB the Brownian diffusion coefficient, andDT the
thermophoretic diffusion coefficient.

The boundary conditions can be written in the following
forms:

u = Uw(x) = ax, v = Vw(y) = by, w = 0,

∂T

∂z
= −htT,

∂C

∂z
= −hcC, at z = 0 (6)

u → 0, v → 0, T → T∞, C → C∞,

as z →∞, (7)

wherea andb are the constants of dimension time inverse,
ht conjugate coefficient of heat transport, andhc conjugate
coefficient of mass transport.

By employing the following variables
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Eq. (1) is satisfied automatically, and Eqs. (2)-(7) can be
converted in the following forms:

f ′′′ + (1 + δ1)((f + g)f ′′ − f ′2) + De1(f ′′2

− (f + g)f ′′′′ − g′f ′′′)− (1 + λ1)Mf ′ = 0, (9)

g′′′ + (1 + δ1)((f + g)g′′ − g′2) + De1(g′′2

− (f + g)g′′′′ − f ′g′′′)− (1 + λ1)Mg′ = 0, (10)
(

1 +
4
3
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)
θ′′ + Pr(f + g)θ′ + NBθ′ϕ′

+ NT θ′2 + PrSθ = 0, (11)
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ϕ′′ + PrLe(f + g)ϕ′ + (NT /NB)θ′′ = 0, (12)

f = 0, g = 0, f ′ = 1, g′ = δ, θ′ = −NH(1− θ(0)),

φ′ = −NC(1− φ(0)) at η = 0, (13)

f ′ → 0, g′ → 0, θ → 0, φ → 0asη →∞, (14)

whereDe = δ2d is the Deborah number,Mg = (σB2
0/dρf )

the magnetic parameter,α = b/a is a ratio parameter, Pr=
υ/α is the Prandtl number,TR = 4σT 3

∞/kk∗ is the thermal
radiation parameter,S = Q/dρcp is the internal heat gen-
eration parameter,NB = (τDB/υ) is the Brownian motion
parameter,NT = (τDT /υT∞) is the thermophoresis param-
eter,NH = ht

√
υ/d andNC = hC

√
υ/d are the Biot num-

bers,Le = α/DB is the Lewis number, and prime shows the
differentiation with respect toξ. The local Nusselt number
NuRe−1/2

x and Sherwood numberShRe−1/2
x in dimension-

less forms can be described as follows:
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in which Rex = uw(x)x/υ is the local Reynolds number.

3. Series solutions

The initial guesses and auxiliary linear operators for present
case can be selected in the forms:

f0(ξ) = 1− exp(−ξ), g0(ξ) = δ(1− exp(−ξ)), (16)

θ0(ξ) =
NH exp(−ξ)

1 + NH
, ϕ(ξ) =

NC exp(−ξ)
1 + NC

, (17)

Lf = f ′′′ − f ′, Lg = g′′′ − g′,

Lθ = θ′′′ − θ, Lϕ = ϕ′′′ − ϕ. (18)

We observe that the auxiliary linear operators may satisfy
the following expressions
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−ξ) = 0,

L(θ)(E7e
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ξ + E10e

−ξ) = 0,

whereEi(i = 1− 10) are the arbitrary constants.

4. Analysis of convergence and results

An analytical technique namely homotopy analysis scheme
has been implemented to obtain the solutions of governing
mathematical expressions. It is a well-established fact that
convergence of homotopic solutions greatly depends on the

FIGURE 2. The~− curves forf(ξ), g(ξ), θ(ξ) andϕ(ξ) at 15th-
order of deformations whenDe = 0.4, δ1 = 0.3, Mg = 0.7,
Pr = 1.5 = Le, NB = 0.1 = NT , NH = 0.2 = NC , δ = 0.5,
S = 0.1, andTR = 0.3.

TABLE I. Convergence of series solutions for different order of ap-
proximations whenDe = 0.4, δ1 = 0.3, Mg = 0.7, Pr = 1.5 =
Le, NB = 0.1 = NT , NH = 0.2 = NC , S = 0.1, TR = 0.3,
δ = 0.5, and~f = ~g = ~θ = ~ϕ = −65/100.

Order of HAM

approximations −f ′′(0) −g′′(0) −θ′(0) −ϕ′(0)

01 1.26661 0.64143 0.26625 0.26777

07 1.26718 0.68497 0.28911 0.27261

12 1.26722 0.68482 0.29060 0.27274

18 1.26727 0.68480 0.29080 0.27279

23 1.26726 0.68489 0.29082 0.27278

28 1.26732 0.68504 0.29081 0.27277

35 1.26732 0.68504 0.29081 0.27277

40 1.26732 0.68504 0.29081 0.27277

FIGURE 3. Curves ofθ(ξ), andϕ(ξ) for different values ofDe
whenδ1 = 0.3, Mg = 0.7, Pr = 1.5 = Le, NB = 0.1 = NT ,
NH = 0.2 = NC , δ = 0.5, S = 0.1, andTR = 0.3.

proper choice of auxiliary parameters. We plotted curves at
15th order of deformations to select the reasonable values
of auxiliary parameters~f , ~g, ~θ and~ϕ. For the present
problem, the solutions should be convergent in the range of
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FIGURE 4. Curves ofθ(ξ), andϕ(ξ) for different values ofδ1

whenDe = 0.4, Mg = 0.7, Pr = 1.5 = Le, NB = 0.1 = NT ,
NH = 0.2 = NC , δ = 0.5, S = 0.1, andTR = 0.3.

FIGURE 5. Curves ofθ(ξ), andϕ(ξ) for different values ofMg

whenDe = 0.4, δ1 = 0.3, Pr = 1.5 = Le, NB = 0.1 = NT ,
NH = 0.2 = NC , δ = 0.5, S = 0.1, andTR = 0.3.

FIGURE 6. Curves ofθ(ξ), andϕ(ξ) for different values of Pr when
De = 0.4, δ1 = 0.3, Mg = 0.7 Le = 1.5, NB = 0.1 = NT ,
NH = 0.2 = NC , δ = 0.5, S = 0.1, andTR = 0.3.

−0.85 ≤ ~f ≤ −0.15, −0.90 ≤ ~g ≤ −0.20, −1.20 ≤
~θ ≤ −0.15 and−1.00 ≤ ~ϕ ≤ −0.25 (see Fig. 2). Ta-
ble I executes that the present solutions converge from order
of deformations. This Table is computed by choosing~f =
~g = ~θ = ~ϕ = −65/100, De = 0.4, δ1 = 0.3, Mg = 0.7,
Pr = 1.5 = Le, NB = 0.1 = NT , NH = 0.2 = NC ,

FIGURE 7. Curves ofθ(ξ), andϕ(ξ) for different values ofLe
whenDe = 0.4, δ1 = 0.3, Mg = 0.7 Pr = 1.5 NB = 0.1 = NT ,
NH = 0.2 = NC , δ = 0.5, S = 0.1, andTR = 0.3.

FIGURE 8. Curves ofθ(ξ), andϕ(ξ) for different values ofNT

whenDe = 0.4, δ1 = 0.3, Mg = 0.7 Pr = 1.5 = Le NB = 0.1,
NH = 0.2 = NC , δ = 0.5, S = 0.1, andTR = 0.3.

FIGURE 9. Curves ofθ(ξ), andϕ(ξ) for different values ofNB

whenDe = 0.4, δ1 = 0.3, Mg = 0.7 Pr = 1.5 = Le, NT = 0.1,
NH = 0.2 = NC , δ = 0.5, S = 0.1, andTR = 0.3.

S = 0.1, TR = 0.3, andδ = 0.5. Here we analyzed that the
magnitude values off ′′(0) are larger in comparison tog′′(0),
θ′(0) andϕ(0).

Figures 3-10 are produced to elaborate the nature of
emerging physical constraints on temperatureθ(ξ) and nano-

Rev. Mex. Fis.64 (2018) 628–633



632 SABIR ALI SHEHZAD

FIGURE 10. Curves ofθ(ξ), and ϕ(ξ) for different values of
TR whenDe = 0.4, δ1 = 0.3, Mg = 0.7, Pr = 1.5 = Le,
NB = 0.1 = NT , NH = 0.2 = NC , δ = 0.5, S = 0.1.

particle concentrationϕ(ξ). Figure 3 clearly describes that
an increment in Deborah numberDe leads to smaller profiles
of θ(ξ), andϕ(ξ) HereDe directly depends on stress retar-
dationδ2. The stress retardation is stronger with an enhance-
ment inDe. Such stronger stress retardation creates a reduc-
tion in the profilesθ(ξ), andϕ(ξ). The results in the case
of fluid liquid can be achieved whenDe = 0, andδ1 = 0.
The features of ratio stress relaxation and stress retardation
δ1 on θ(ξ) andϕ(ξ) are investigated in Fig. 4. The curves of
θ(ξ) andϕ(ξ) are boost up when we use the largerδ1. From
physical concept, the higherδ1 implies to larger stress relax-
ation in comparison to stress retardation. This fact leads to
stronger temperature and nanoparticles concentration against
the largerδ1. Figure 5 incorporates the impacts of magnetic
parameterMg on θ(ξ), andϕ(ξ). This figure clearly exe-
cutes that an increment inMg give rise to the profiles ofθ(ξ)
andϕ(ξ). Here the Lorentz force exists due to electrically
conducting liquid. This Lorentz force becomes stronger for
largerMg that resists the flow of liquid. Such resistance in
liquid flow leads to higher temperature, and nanoparticle con-
centration. Further, the hydrodynamic flow situation can be
created by settingMg = 0. In case of hydrodynamic flow,
the profiles ofθ(ξ), andϕ(ξ) are minimum position.

From Fig. 6, we evaluated the nature of Prandtl number
Pr onθ(ξ), andϕ(ξ). The increasing values of Pr correspond
to weaker profiles of temperature, and nanoparticle concen-
tration. The conductivity of liquid is lesser for higher Pr, and
stronger for smaller Pr due to fact the profiles ofθ(ξ), and
ϕ(ξ) decay. The proper choice of Pr in manufacturing pro-
cesses of industry is very essential because the suitable val-
ues of Pr are utilized to provide the best heat transport rate to
achieve the highest quality product. The execution of Lewis
numberLe on θ(ξ), andϕ(ξ) is presented in Fig. 7. This

figure clearly elucidates that the variations inθ(ξ) are very
lesser in comparison toϕ(ξ) as we use the largerLe. More-
over, the curves ofθ(ξ), andϕ(ξ) are decreased for the in-
creasing values ofLe. The coefficient of Brownian diffusion
becomes weaker for higherLe because it is inversely related
to it. Such weaker Brownian coefficient factor leads to decre-
ment in the profiles ofθ(ξ), andϕ(ξ).

The impact of parameter of thermophoreticNt on θ(ξ),
andϕ(ξ) is discussed through Fig. 8. Figure 8 clearly de-
picts that profiles of bothθ(ξ), and ϕ(ξ) are risen due to
rising values ofNT . The strongerNT corresponds to an en-
hancement in thermal conductivity of liquid due to considera-
tion of nanoparticles. This higher thermal conductivity factor
leads to higherθ(ξ), andϕ(ξ). The change inθ(ξ) for var-
ious values ofNT are significant as compared toϕ(ξ). The
increasing values of parameter of Brownian movementNB

give risen to the profiles ofθ(ξ), andϕ(ξ) (see Fig. 9). The
liquid temperatureθ(ξ) is boost up by an increment inNB

while the curves ofϕ(ξ) are retarded. In fact,NB is appeared
in form of (1/NB) that corresponds to weaker nanoparticle
concentration. The nature of parameter of thermal radiation
TR on liquid temperature, and nanoparticle concentration is
described in Fig. 10. Here we investigated that the presence
of TR give risen toθ(ξ), andϕ(ξ). The case of absence of
radiative effect can be discussed whenTR = 0. The radiation
factor gives more heat to liquid due to which temperature and
concentration are enhanced.

5. Conclusions

This research work executes the features of Newtonian con-
ditions in three-dimensional Jeffrey liquid flow under the im-
pact of magnetic field, thermal radiation, and suspension of
nanoparticles. We employed the boundary layer concept to
govern the expressions of physical phenomenon. The con-
vergent solutions are developed and plotted. We observed
that the ratio of stress relaxation and stress retardationδ1, and
Deborah numberDe have totally reverse influences on liquid
temperatureθ(ξ), and nanoparticle concentrationφ(ξ). An
increment in magnetic parameterMg give risen to the pro-
files of θ(ξ), andϕ(ξ). This phenomenon occurs due to in-
volvement of Lorentz force. The change in profiles ofθ(ξ)
for various Pr is significant as compared to profile of tem-
perature in case of variousLe. The liquid temperature, and
nanoparticle concentration enhanced by increasing the values
of thermophoretic factorNT . An increase in factor of Brow-
nian movement lead to higher temperature curves but lower
curves of nanoparticle concentration. The involvement of ra-
diation factor gradually enhanced the temperature of liquid.
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