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Nonlinear damping in energy harvesters driven by colored noise
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e-mail: mromerob@ipn.mx

Received 26 April 2018; accepted 3 August 2018

We study the performance of an electromechanical oscillator as an energy harvester driven by finite-bandwidth random vibrations under
the influence of both a stiffness-type nonlinearity and a nonlinear damping that has recently been found to be relevant in the dynamics of
submicrometer mechanical resonators. The device was numerically simulated and its performance assessed by means of the net electrical
power and the efficiency of the conversion of the supplied power by the noise into electrical power for exponentially correlated noise. We
tune the parameters to achieve a good performance of the device for non-negligible amplitudes of the nonlinearity of the oscillator and the
damping.
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1. Introduction

Energy harvesting is the conversion of ambient energy
present in the environment into electrical energy. It is iden-
tical in principle to large-scale renewable energy genera-
tion, for example, solar or wind power, but very different
in scale. While large-scale power generation is concerned
with megawatts of power, energy harvesting typically refers
to micro- and/or milli-watts,i.e. much smaller power gen-
eration systems. The development of energy harvesting has
been driven by the proliferation of technologies such as au-
tonomous wireless electronic systems, a classic example be-
ing wireless sensor nodes which combine together to form
wireless sensor networks; for this type of systems local power
supply is an attractive option. By converting ambient energy
in the environment the energy harvester can provide the re-
quired electric power for the lifetime of the wireless system
which is also free to be embedded or placed wherever it is
best suited to perform its function. Energy harvesting typ-
ically exploit kinetic, thermal, solar, or electromagnetic ra-
diation sources. Thermal gradients can be exploited by us-
ing thermoelectric generators whereas solar energy is har-
vested using photovoltaics. However, the most prominent
type of devices are mechanical vibration energy harvesters
that convert kinetic energy via electromagnetic, electrostatic,
or piezoelectric transduction into electrical energy [1–5].

Mechanical energy harvesters, also known as vibration
power generators, are typically, although not exclusively, in-
ertial spring-mass systems where electrical power is extracted
by employing one or a combination of different transduction
mechanisms. Early studies considered linear springs and har-
monic oscillators and treated the external vibrations as sinu-
soidal vibrations. As most vibration power generators are
resonant systems, they generate maximum power when the
resonant frequency of the generator matches the ambient vi-
bration frequency, known as resonant energy harvesting [1].

Adaptive generators try to minimize the difference between
these two frequencies in order to maximize the amount of
generated power [2, 4, 6]. Nearly all current vibration trans-
ducers operate in this regime [7]. This approach presents
numerous drawbacks, being one of the most important ones
that the linear harvester resonant peak is necessarily very nar-
row [8]. Thus, if the environmental vibration frequency devi-
ates from the harvester resonance very little power is gener-
ated. To overcome this limitation various groups have begun
to study mass-spring systems with nonlinear springs and non-
linear oscillators [9–12]. Many important results have been
obtained if the broadband ambient vibrations are modeled by
Gaussian white noise. For example, it has been determined,
using the Fokker-Planck equation to describe Duffing-type
energy harvesters, that the mean power output of the de-
vice is not affected by the nonlinearity of the spring [13,14].
Also the upper bounds on the power output of both linear
and nonlinear energy harvesters driven by Gaussian white
noise have been obtained [15]. The latter ones can be ad-
vantageous since the size of the device can be reduced with-
out affecting the power output [14]. Now, while some envi-
ronmental excitations exhibit the characteristics of broadband
white noise, many others have most of their energy trapped
within certain frequency bandwidths,i.e. external colored
noise. After some early experimental and simulation stud-
ies [12, 16] the power output of both a monostable [13] and
a bistable Duffing oscillator with a symmetric potential [17]
driven by Ornstein-Uhlenbeck noise was determined by ap-
proximate methods, and the exact analytical expressions for
the net electrical power and efficiency of the conversion of the
power supplied by exponentially correlated noise into electri-
cal power was derived for a linear electromechanical oscilla-
tor employed as an energy harvester [18].

In almost all theoretical models mentioned above, the
coupling between the mechanical oscillator and the ambient
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noise were supposed to be linear. This is because the en-
ergy dissipation (damping) in previous studied systems were
supposed to be linear in general. However, damping has an
important impact on the dynamic behavior of submicrometre
mechanical resonators, and recent researches have revealed
that nanostructures with high aspect ratio such as nanotubes
and graphene nanoribbons can be easily driven into nonlin-
ear dissipation regime [19]. This nonlinear damping has
been so far studied mainly within the field of thermal trans-
port in a spin-boson nanojunction [20], in nonlinear two-level
molecular junctions [21], in a monomodal harmonic molecu-
lar junction (a single harmonic oscillator) [22], and in a one-
dimensional lattice of coupled nearest-neighbor harmonic os-
cillators [23].

In this work we propose to study the resonator driven by
colored noise studied in Ref. [18] with a nonlinear damping
between the mechanical oscillator and the source of ambient
noise to explore its influence on the performance of the device
as an energy harvester. The proposed nonlinear damping has
been previously considered within the context of a microme-
chanical oscillator model in Ref. [19] to properly account for
various experimental observations made in mechanical res-
onators based on carbon nanotubes and graphene sheets, as
mentioned above.

The rest of the paper is organized as follows: in Sec. 2
we present the model as well as our methodology. Results for
both a linear and nonlinear oscillator are reported in Sec. 3.
Finally, in Sec. 4 we discuss the results so far obtained and
propose ways to further improve them.

2. Model and methodology

The herein considered energy harvester is a device that con-
verts the power supplied by external noise into electrical en-
ergy. This process begins with the damped oscillator being
driven by the external noise. Its kinetic energy is then con-
verted via a piezoelectric transducer mechanism into electri-
cal energy that is then stored in a capacitor. The mechanical
part of the device is described by the equation for the momen-
tum of the stochastically driven damped oscillator of massm,
which reads as

ṗ + γp + βq2p + Ftran(q, V ) + ω2
0q + αq3 = η(t), (1)

with the dot standing for temporal derivative. In this equa-
tion ω0 is the natural frequency of the oscillator,αq3 is the
so-called Duffing force,γ is the linear damping coefficient,
βq2p is the nonlinear damping term,η(t) is the random driv-
ing force, andFtran(q, V ) is the transducer force due to the
motion-to electricity conversion mechanism, which depends
on the geometry of the transducer and on how the circuit
that implements the energy conversion cycle operates. It op-
poses to the motion, just as the friction force, and has its
origin in the energy loss that occurs when kinetic energy
is converted into electric energy. The simplest expression
for this function isFtran(q, V ) = kvV , wherekv > 0 is

a piezoelectric parameter andV (t) is the voltage. The dy-
namical equation for the voltage has to take into account the
load resistanceR

L
and the capacitanceC of the piezoelec-

tric component, as well as the connecting functionF (p, V )
with the oscillator; all these variables are related by the equa-
tion V̇ = F (p, V ) − V/τp, whereτp = R

L
C is the time

associated to the charging process of the piezoelectric ele-
ment, which is larger than any other characteristic time of
the system. We will employ a connecting function of the
form F (p, V ) = kcp, wherekc is the coupling constant of
the piezoelectric sample; nonlinear processing of the voltage
delivered by the piezoelectric material in order to enhance
the electromechanical conversion has been previously con-
sidered [24], but is out of the scope of the objectives of the
present work. Since our goal is to understand the effect of
the nonlinear damping on the performance of the device we
have chosen simplest,i.e. linear, expression for the connect-
ing function in the analysis below.

In this work we are considering a Ornstein-Uhlenbeck
(OU) random force, with mean〈η〉 = 0 and variance
〈η(t)η(t′)〉 = σ exp(−|t− t′|/τc), whereσ is the amplitude
andτc is the correlation time. The limitτc → 0 andσ →∞,
with D = στc constant, corresponds to the white noise limit.
In order to obtain a closed system of equations, it is a stan-
dard procedure to employ the equationη̇ = −η/τc + ξ̄(t)/τc,
whereξ̄(t) is a Gaussian white noise with zero mean and cor-
relation〈ξ̄(t)ξ̄(t′)〉 = 2στcδ(t− t′). Therefore the complete
set of equations reads as

q̇ =
p

m

ṗ = −ω2
0q − αq3 − (γ + βq2)p− kvV + η

V̇ = kcp− 1
τp

V

η̇ =
η

τc
+

√
2σ

τc
ξ, (2)

with a Gaussian white noise correlation of〈ξ(t)ξ(t′)〉 =
δ(t− t′).

The simulations are performed by solving numerically
the Langevin equations (2) by using the so-called Heun algo-
rithm; trajectories are computed over an interval of4 × 104

time units after a transient of103 starting from a set of initial
conditions given by{q(0) = p(0) = 0, V (0) ≡ V0 = 1}. An
ensemble average over104 independent realizations has been
performed for each set of parameters.

BeingV 2(t)/R
L

the instantaneous power delivered to the
load resistance, the measure of performance will be the effi-
ciency (as defined in [18])

ηe = ηmeηnm =
〈V 2〉/R

L

〈pη〉/m
, (3)

where〈· · · 〉 implies both a time-average during the observa-
tion interval and an ensemble average over noise realizations,
ηme is the transducer’s efficiency of converting mechanical
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FIGURE 1. (Color online) (a) Comparison of the correlations〈pη〉
(squares),〈p2〉 (circles), and〈V 2〉 (diamonds) computed for the
original model (void symbols) and with the nonlinear damping
terms (filled symbols). (b) Efficiencyηe vsλ for the original model
(void symbols) and for the one with nonlinear damping terms (filled
circles).σ = γ = ω0 = m = kc = kv = V0 = 1; C = τp = 2;
α = 0, β = 50. Asterisks in both graphs correspond to the
α = −10 value for each curve.

to electrical power, andηnm is the efficiency of power con-
verted from the external noise to the power transferred from
the oscillator to the transducer. The explicit expressions are
reported in Ref. [18].

3. Results

In Fig. 1(a) we present the comparison of the correlations
〈pη〉, 〈p2〉, and〈V 2〉 as a function of the inverse of the corre-
lation timeλ ≡ τ−1

c for the original case reported in [18],i.e.
α = β = 0 and forα = 0, β = 50; the curves corresponding
to α = β = 50 (not shown) are indistinguishable to those
reported in the above figure. Just as in the original linear
damping case, the electrical powerP passes through a max-
imum, P ∗, asλ increases, whereas the efficiency decreases
monotonically asλ increases. These results are reported with
largeα andβ values because only in this range any apprecia-
ble difference can be observed in comparison with the linear
friction case. Furthermore, these differences are only signifi-
cant in the region of the maximum of each curve, being neg-
ligible asλ increases. The net effect is to reduce the height
of each curve, thus reducing the maximum power compared
to the original instance, and to shift the location of the max-
imum to a largerλ value. The net result, as can be appreci-
ated in Fig. 1(b), is a reduced efficiency for all studied values
of the inverse of the correlation time, as could be expected
of the dissipative nature of the newly considered terms. We

also performed further simulations with theα = −10 value
and we can readily appreciate in Fig. 1(a) that the correlation
〈p2〉 is largely insensitive to the change in sign in the inten-
sity of the Duffing force. However the remaining correlations
present a rather amusing behavior: they are almost the same
as those corresponding to the linear friction case. This phe-
nomenology results in an efficiency that is also very similar
to that of the linear damping case, as can be seen in Fig. 1(b).
A possible explanation could be inferred from the fact that
the shape of the potential corresponding to the conservative
forces of the system withα = −10 in the region close to
the origin, i.e. for moderate displacements, is very similar
to the one corresponding toα = 10, a value wherewith the
efficiency of the system with a nonlinear damping is indis-
tinguishable from the one obtained with a system without it.
This result suggest that, if the nonlinear damping becomes
relevant in any particular instance, its negative effects in the
efficiency of the device could potentially be diminished with
the inclusion of a Duffing force of negative amplitude.

Since in both considered instances the maximum effi-
ciency does not occur when the net electrical power is max-
imal and vice versa, we studied how the maximum net elec-
trical powerP ∗, the efficiency at the maximum powerη∗e ,
and the characteristic frequency of the noise at the maximum
power λ∗ depend on the parametersτp, kc, kv, andω0 of
the energy harvester. Of these parameters the first three are
related to the electrical circuit of the transducer and the last
one characterizes the mechanical behavior of the mass-spring
system. In each case the considered parameter is varied and
the rest are taken equal to 1. Considering the dependence
with respect toτp presented in Fig. 2(a)λ∗ decreases mono-

FIGURE 2. (Color online) Maximum net electrical powerP ∗, ef-
ficiency at the maximum powerη∗e , and characteristic frequency
of the noise at the maximum powerλ∗ as a function of (a)τp and
(b) ω0. In each panel we vary the corresponding parameter, set all
other ones equal to 1, and takeC = 1. Sameα andβ values as in
Fig. 1. Asterisks in both graphs correspond to theα = −10 value
for each curve.

Rev. Mex. Fis.64 (2018) 642–646



NONLINEAR DAMPING IN ENERGY HARVESTERS DRIVEN BY COLORED NOISE 645

FIGURE 3. (Color online)P ∗, η∗e , andλ∗ as a function of (a)kc

and (b)kv. In each panel we vary the corresponding parameter
and set all other ones equal to 1, withC = 1. Again, sameα and
β values as in Fig. 1. Asterisks in both graphs correspond to the
α = −10 value for each curve.

tonically asτp increases in both instances, with a larger decay
for the system with nonlinear friction, whereasP ∗ remains
almost constant in both instances for the considered varia-
tion. In contrast,η∗e increases for smallτp values, reaches
a maximum and then decreases monotonically asτp further
increases; the maximum is smaller for the system with non-
linear damping. Therefore it is convenient to take smallτp

values to optimize the efficiency for both types of damping.
With the valueα = −10 the decay ofλ∗ is even faster than
that corresponding to the system with linear damping, but
otherwise the behavior of the other two variables is very sim-
ilar to that of the system without nonlinear damping. The
behavior ofP ∗ andη∗e as the frequencyω0 changes is dif-
ferent in both instances, as can be inferred from the results
reported in Fig. 2(b). For the linear damping case both vari-
ables monotonically decrease asω0 increases, whereas in the
case with nonlinear damping the behavior of both variables
is different of the aforementioned one at small frequencies,
i.e. both are weakly dependent on the frequency forω0 < 1
and then slowly decreases forω0 > 1. Thus in this case it is
convenient to take smallω0 values to optimize the maximum
net electrical power and the efficiency at maximum power.
For α = −10 we could only compute values in theω0 > 1
range, and these are the same as those for the system without
the nonlinear damping term. Therefore, in this case taking
the lower boundω0 = 1 would be the only available choice
to optimize bothP ∗ andη∗e .

The variation with respect tokc, shown in Fig. 3(a), indi-
cates thatη∗e significantly increases for lowkc in both in-
stances, with minimal differences between them. On the
other hand,P ∗ also increases for lowkc values in both cases,
being greater for the device including the nonlinear friction
term if kc < 10, but rapidly approaches an asymptotic value

for kc > 10, unlike the case with only a linear friction term,
which keeps increasing in this value range. Thus, and con-
sidering that the physically acceptable regime corresponds
to η∗e < 1, the valuekc ∼ 2.5 can be considered as an
acceptable compromise to optimize the performance of the
device when the nonlinear damping is relevant. In the case
in which the variation with respect tokv is considered, de-
picted in Fig. 3(b), the behavior ofη∗e is virtually identical
in both considered cases. However, the maximum net elec-
trical powerP ∗ has a higher value in the lowkv range for
the nonlinear damping case compared to the one with linear
damping. Therefore a value ofkv ∼ 1 is adequate to op-
timize the values of both the maximum net electrical power
and the efficiency at the maximum power when the nonlinear
damping is relevant. For theα = −10 value the results in
both panels (a) and (b) are virtually the same to those for the
corresponding cases with linear damping.

Summarizing the previous discussion, the characteristic
frequency of the noise at the maximum powerλ∗ decreases
monotonically asτp increases, see Fig. 2(a), whereas it in-
creases monotonically askv andkc increase, as depicted in
Figs. 3(a) and (b). Special mention deserves the dependence
of λ∗ with respect toω0 presented in Fig. 2(b), which is very
weak for lowω0 values, precisely in the value range wherein
both P ∗ and η∗e are almost independent of the natural fre-
quency of the oscillator. In this case our result suggest to
take aω0 value no larger than0.5 to optimize the perfor-
mance of the device, except whenα = −10 is used, in which
caseω0 = 1 has to be taken for the reasons exposed above.
In all considered instances theλ∗ values are higher for the
case with nonlinear damping compared to the one with linear
damping. Therefore, we can conclude that to improve perfor-
mance it would be desirable to takeτp, ω0 < 1 (ω0 = 1 with
α = −10) for both cases, with and without nonlinear damp-
ing. As for the remaining parameters the best value would be
at aroundkv, kc ∼ 2.5 since for this value the efficiency is
optimized and the maximum net electrical powerP ∗ reaches
a value that is still significant compared to the one obtained
with the tuning of the remaining parameters.

4. Discussion and conclusions

Our results on the performance of a nonlinear electrome-
chanical oscillator with a nonlinear coupling with an exter-
nal finite-bandwidth ambient noise seem to indicate that the
performance of the system as an energy harvester is only
weakly affected by the presence of the aforementioned non-
linear coupling, since the constants that define the latter have
to take exceedingly large values in order to affect in a mensu-
rable way the correlations that characterize the performance
of the considered energy harvester. In particular, the corre-
lations wherewith both the maximum power and efficiency
are defined present a very weak dependence on the nonlinear
parameters of the interaction with the source of the ambient
noise.
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A constant among the proposed energy-harvesting de-
vices is that the combined goals of both maximum power
and efficiency cannot be attained at the same time, being the
present one no exception. A compromise in the value of all
parameters has to be made, and thus we determined that the
best performance of the energy harvester is obtained by tak-
ing low values for the characteristic charging time of the ca-
pacitor τc and the piezoelectric parameterkv to obtain the
maximum values of bothP ∗ andη∗e in each instance. Forkc

an intermediate value allows to obtain a significant value for
the maximum net electrical power together with a high effi-
ciency at maximum power. The characteristic frequency of
the mechanical oscillator has to take values ofω0 ∼ 0.5 (and
ω0 = 1 for the caseα = −10) to take advantage of the fact
that in this value range the maximum power, the maximum
efficiency at maximum power as well as the characteristic fre-

quency at maximum power have an approximately constant
value. A positive amplitude of the Duffing force has no effect
on the performance of the device and, with a negative ampli-
tude, it was possible to minimize the adverse effects of the
nonlinear damping in the efficiency of the device. In view of
this finding it would be interesting to study the performance
of an energy harvester affected by the herein studied nonlin-
ear coupling with the external noise source but employing a
bistable symmetric potential, which has gained attention re-
cently, as already mentioned [9–12]. We intend to investigate
this particular possibility in a future work.
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