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This work is devoted to investigate solutions to RC circuits using four different types of time fractional diferential operators@korget

1. The fractional derivatives considered are, Caputo, Caputo-Fabrizio, Atangana-Baleanu and the conformable derivative. It is shown that
Atangana-Baleanu fractional derivative (non-local), and the conformable (local) derivative could describe a wider class of physical processes
then the Caputo and Caputo-Fabrizio. The solutions are exactly equal for all four erivatives only for the=case
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1. Introduction tional parameters [27]. Solutions due to an exponential kernel
shows an exponential decay similar to the classical integer or-
der model, therefore, the CF with an exponential kernel has

. . A -_limitations in describing phenomena with non-exponential
of non-integer order, is the natural generalization of classic

lcul hich duri t decades has b ature, for example, anomalous relaxation [28]. To correct
caiculus, which during recent décades has become a powege deficiency, two fractional derivatives in the Caputo and

ful and widely used method for better modelling and CoerIEemann-Liouville sense were defined by Atangana-Baleanu

Fractional calculus (FC), involving derivatives and integrals

of Processes In many areas of science and engineering [ AB) [29], based on the generalized stretched Mittag-Leffler
5]. The fractional derivative are non-local operators becaus

: L _ nction. These new derivatives have been applied to differ-
they are defined using integrals. Therefore, the time frac- :
. o > . ) ent systems in [30-33].
tional derivative contains information about the function at o ) o i
earlier points, thus it possesses a memory effect. Such deriva- Al définitions of fractional derivatives satisfy the prop-

tives consider the history and non-local distributed effects€MY Of linearity, but properties, such as the product rule, quo-

which are essential for better and more accurate descriptiofent rule, chain rule, mean value theorem and composition

and understanding of complex and dynamic system behayule and so on, are lacking in almost all fractional derivatives.
ior [6-18]. Another peculiarity of FC is the inclusion of new | N€se inconsistencies and many more have raised many prob-
degrees of freedom to the system by increasing the informd€ms in real applications and have limited the possibilities to

tion that can be obtained from the nature of the phenomenoﬁXplore these fractional calculations. To avoid these difficul-
in question. Due to the lack of a consistent geometric andi€S: [34] proposed to extend the ordinary limit definitions of
physical interpretation of the fractional derivative, severalthe derivatives of a function called conformable derivative.

definitions exist [19]. The most useful definitions are the This conforma_ble derivative has attracteq the interest of re-
Riemann-Liouville and Caputo fractional derivatives, how- SE&rchers, as it seems to satisfy all requirements of the stan-
ever, despite the accurate results obtained with the Riemanfiard derivative [35-43].

Liouville and Caputo fractional derivatives, they have the In this work we try to analyze the difference between
disadvantage that their kernel has a singularity at the enthe most important definitions of fractional derivatives in a
point of the interval. To avoid this problem, [20] proposed simple system. In particular, we will applied the Caputo
the Caputo-Fabrizio derivative (CF). This is a new fractional-(C), Caputo-Fabrizio (CF), Atangana-Baleanu (AB) frac-
order derivative that does not have any singularity. The mairiional derivatives and the conformable derivative (conf), in
advantage of the CF is that the singular power-law kernel ighe study of a RC circuit with DC and AC sources.

now replaced by a non-singular exponential kernel, which is

easier to use in theoretical analysis, numerical calculations

and real-world applications. Based on this new derivative, o . o

some interesting studies can be found in [21-26]. However2- Some definitions of fractional derivatives

some researchers have concluded that this operator is not a

derivative with fractional order, but instead a filter with frac- The Caputo fractional derivative of ordeiis defined by [44]
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derivative whose most properties coincide with classical in-

€y 1 t f(T) teger derivative [34,45-47].
o D/ f(t) = T(1—7) / t—71) dr, ) In [34], the conformable derivative definition is given. It
a is defined as: Lef : [0,00) — R being a function. Then,
With 0 < v < landa € [-oo,t], f € H'(a,b), theconformable derivative of the ordeis defined by
b > a. By changing the kerngl — 7)~" with the function 4 f(t)
e~ /1= and1/(T(1 — 7)) with (M (7)) /(1 — 7), the T f(t) = —== = 17(1)
Caputo-Fabrizio fractional derivative CF [20] is obtained .
-7) —
) :hn%f(t“t )= <1 @
T ] 1t =) - 6
CF Y — —
«Dif(t) = (1—7) f(r)exp 1—v dr, (2 for all t > 0. This expression is a possible generalization of

the standard definition of derivative. When= 1 from (8),

where (M(y)/1 — ~) is a normalization function with the We obtain Flt+ ) — f(t)

propertyM(0) = M(1) = 1. If f(¢) is a constant function, f = lim ———2,

then the Caputo (1) and Caputo-Fabrizio derivative (2) are _ . 0 €

zero. However, in contrast to definition (1), the kernel in (2)!f / is y—differentiable in some(0,a), « > 0, and
does not have singularity at= 7. This property is of partic- im—o+ /7 (¢) exist, then we define

ular interest, because it can describe the full memory effect .

for a given system. The Laplace transform of the Caputo and 11(0) = tli%1+ F1(). ©)

- izi [ ivati <lisgi . . . R
Caputo-Fabrizio fractional derivativés< v < 1 is given by The most important properties of this conformable derivative

L€ D] f(t)] = s7F(s) — s771f(0), 0<~<1. (3) gifoonrdew are given in [34], we only take the needed expres-
F _

M’ 0< ~y § 1. (4) =y dn+1
s+(1—s) () =t

if f(t)is(n+ 1) differentiable at > 0.

LI°" WD} f(t)] =

@), ~venn+1],  (10)

We have taken the normalization function properfiéf)) =
M(1) = 1in (4). In [29], two new fractional derivatives ap-
peared. We will apply one of them, defined sz H'(a,b),
a < b, v € [0,1], then the Atangana-Baleanu fractional 3. The ordinary RC circuit

derivative in the Caputo sense (AB) is . ) , o
The equation governing the behavior of the RC circuit is

dV (t 1 t
W | Ly = 4D, (11)
dt T T
. . . wherer = RC'is the time constant of the system measured
whereE, (-) is the one parameter Mittag-Leffler function de- i, secondsR is the resistance measured in Ohn@sis the

(t —x)
I—x

5,010 = T2 [ r@e[ -2 s, @

fined in [5] o . capacitance measured in Farati§#) is the voltage on the
E,(2) = Z __c (6) capacitor an(t) is the source. Taking the initial condition
=0 L(yn +1) asV(0) = 0, and assuming a constant sou¢gethe solution

As can be seen, the Atangana-Baleanu fractional deriva2f the equation (11) is

tive (5) is the natural generalization of the Caputo-Fabrizio Vi) — | o=t/ 12
derivative (2). The AB derivative has a non-singular and non- (t) = 60( — ¢ ) (12)

local kernel, its Laplace transform is given by [29], This is the equation that describes the behavior (charging in

B(%) our case) of a RC circuit with constant source, where its com-

AB
L[*" D] = 1— ponents are ideal. The solution (12) exhibits an exponential
. decay, when — oo the voltagd/ (t — o) — €, a constant.
% sTF(s) — 51 f(0)7 0<v<1, (7 In thg case of an alternating source with angular frequency
ST+ 1 and initial conditionV(0) = 0, we get
where B(y) has the same properties as in the CF case. Al- avit) 1 €
though (1), (2) and (5) are linear operators and possess some dt + ;V(t) R wi, (13)

fine properties, they do not inherit all the operational be—the solution is given by

haviours from the typical first derivative, such as product rule,
quotlgnt ru!e, chain rule and semigroup properties. The;e -y = . 620 [COS whtwrsinwt —e 5|, (14)
consistencies lead to the development of the local fractional w2241
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4. Fractional RC circuit 1

Our purpose in this section is to obtain a consisting fractional
differential equation corresponding to (11). In [48] a sys-
tematic way to construct fractional differential equations has

been proposed. We transform the ordinary derivative in a 06
fractional derivative in the following way =

V

d 1 d
- =
dt = dty’

0<y<1, (15) 04

wherer = RC is the time constant measured in seconds. 0.2
The term on the left in (15) has dimensionssof, and the /
one on the right is also. Substituting (15) in (11) we obtain

the cprresponding fractional differential equation for the RC 0 1 5 3 4 5
circuit Time (s)

v 1 €t

o T (t) = %, 0<~y <L (16)  FiIGURE 1. Plot of the equation (19) for some values-ptorres-

ponding to voltage across the capacitor in the RC circuit of DC.
This fractional differential equation has been studied
in [49-50]. Our main aim is to analyze this differential equa-
tion using different definitions of fractional derivatives in-
cluding local and non-local, make a comparison of thes
derivatives and give some conclusions about the way behal?

t, the asymptotic power law is due to very slow decay for
éarge timet, as it can be seen in Fig. (1), showing the behav-
r of (19), for different values of.

ior of the solutions. In Fig. (1), it is observed that in the case of the fractional
derivative of Caputo, when the time is between zero and very
4.1. RC with Caputo fractional derivative close to 1 s, the voltage rapidly decays as a stretched expo-

nential depending on the valueof After this time, the volt-
We consider the fractional differential equation (16) takingage decays as a negative power depending on the valgyes of
into account the Caputo fractional derivative (1), assuming
the initial condition bé/(0) = 0 ande(¢) = ¢ is a constant.
Then, applying the Laplace transform (3), we obtain

In the case of an oscillatory source, from (16), we have

. iv(s) @ - Ci;ti/ +aV = bcoswt, (22)
T 775’ '
and sohing 05 = V 0, we e i e oo e 1 1
1 getV(s) = V(s)c
V(s)c = 603(5777;%)' (18) 8
Using the Laplace inverse transform [5], we obtain Vigle = (s +w?)(s7 +a) (23)
V(7)o = |1 — Ey(—1)], 0<~y<1, (19) We take the highest power sfas a common factor from the

denominator, and then we expand the denominator in an al-

where? = t/7 is a dimensionless parameter. The asymp-{ernating geometric series [52], as a result we obtain
totic approximations to the Mittag-Leffler function for small

t — 0 and largert — oo times, in first approximation, ad wrman
are [51] V(s)e =0 Z (—nm* Dy (24)
m,n=0
+Y
E,(—t7) ~e T, t— 0, (20)
. Then, the inverse Laplace transform gives
E(—t") ~ —/———, t — 0. (21)
’Y( ) F(]. — ’}/) 0 (_1)m+n(WT)2m

As a consequence, the Mittag-Leffler function interpolates Vitiv)o =€ <, Tl + 1)y +2m +1]

for intermediate timet between the stretched exponential
function (20) and the negative power law (21). The stretched " (t ) (n+1)y+2m

exponential function models a very fast decay for small times T

., 0<~y<1. (25
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FIGURE 2. Plot of the solution (25) for some values gfcorres-  Figure 3. Plot of the Eq. (27) for some valuesgiorresponding

ponding to voltage across the capacitor in the RC circuit of AC. tg yoltage across the capacitor in the RC circuit of DC.

as a common factor from the denominator, then expanding

) o ) o the denominator in an alternating geometric series, we obtain
4.2. RC with Caputo-Fabrizio fractional derivative

m4n.m, 2n
Applying the Caputo-Fabrizio derivative (2) and the Laplace V(s;v)er = 7_(3;17)_607 Z (_:,lsijmﬁ
transform (4) to the fractional differential equation (16) with m,n=0
the same conditiong (0) = 0, €(t) = ¢, we get . ~eo i (—1)mtnymy2n (30)
b(y + As) TV L=y A= TP
V(s)cr = m7 (26) '

Then, the inverse Laplace transform gives the solution
wherea = 1/77,b=¢y/77,A=1—~vandB = 1+a—ay.

_ & _1\m+n,m, ,2n
Then, the inverse Laplace transform gives V(ty)or = (A-7e Z (=)™ f2ntm
’ TV +1—7 o T"T2n+m+1]
T 5 m,n=
V(t;v)er =€o [1 — € 7 t}a % mtnm, 2n
1- Y + 77 + Y€o Z (71) + Y w2 t2n+m+1
0<~y<l1. 27) TVl =y A= TmT2(n 4 1) +m] ’

Then, the CF solution (27) exhibits an exponential decay 0<vy<1 (31)

whent — oo, like as the ordinary integer model. The

CF derivative with an exponential kernel (2) has limita-
tions in describing the behaviour of phenomenon with non-
exponential nature [53].

In Fig. (3), similar behavior is shown as in the Caputo
case, except that not all the curves start at zero and alsc
change a little after half a second.

Inthe case of an oscillating source with angular frequency
w, from (16) and after applying the Laplace transform (4), we
have

V(7)o

sV (s) 1 €0s

s+y(1—2s) +ﬁv(8) - V(8% +w?)’ (28)
Solving with respect t&/(s) = V(s)cr We get
b(1 — + B
V(s)or = 1 = 7)s(s + B) (29) Time (s)

(As +ay)(s* + w?)’
FIGURE 4. Numerical simulation of the equation (31) for some
wherea = 1/77, b = €¢/77, A = 1+ a(l —~) and  values ofy corresponding to voltage across the capacitor in the RC

B=(v/1—7). As before, taking the highest power ofas circuit of AC.
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FIGURE 5. Numerical simulation of the Eq. (34) for some values FIGURE 6. Numerical simulation of the Eq. (36) for some values

of v corresponding to voltage across the capacitor in the RC circuit®f 7 corresponding to voltage across the capacitor in the RC circuit
of DC. of AC.

Solving forV (s) = V(s) ap and taking the inverse Laplace

. . transform, we get
5. RC with Atangana-Baleanu fractional wes

derivative V(t;7)ap = eo(1 —7)
Now, the fractional Eq. (16) is solved using the Atangana- i (—1)mtng2man (2mtnytl
Baleanu fractional derivative (5) and its corresponding (1 =~ 4+ 7)1 [ny + 2(m + 1)]
m,n=0
Laplace transform (7). For the CC source we have
st _1)m+nw2m,yn t2m+(n+1)'y+l
1 STV (s) b +e ( . (36)

= o Oy G2 0 2, B T 799

From here, we ge¥'(s) =V , . . ..
9ot (s) (s)as 6. RC with conformable fractional derivative
s
V(s)ap =4 s(s7 +O) +AB- s(s7 +C)’ (33) Finally, replacing the expression (10) in the fractional differ-
ential equation (16), for the cage< v < 1,
where A = (e(1—7)/7"+1—-7), B = (y/1—7~) and
C = (v/77 +1—+). The inverse Laplace transform gives dar a4 4
the solution gl =72 f), (37)
V() as = €o [1 _ ™ we have the conformable differential equation for the RC cir-
’ T+ 1=y cuit
_ il 2 %

X E’Y( I ’}/t )], 0< Y S ]-7 (34) E +at7—1v(t) _ at—y—le(t)7 0< ~y S 1’ (38)

where E. (-) is the one-parametric Mittag-Leffler function where a — (1/r). This equation is a linear non-

(6), with the p_roperty (20) fot — 0 and (21) for I_arge time homogeneous ordinary differential equation with variable co-
t — oo. In Fig. (5) we have plotted the equation (34) for ffici f : . luti
some values ofy. In the case of Atangana-Baleanu deriva—e icient of non-integer powdr < y < .1’ its solution can be

' found by standard methods. Its solution for the case when the

tive, we observe in Fig. (5) a similar behavior as in the prev"sd)urce is a constantt) = «o, has the form

ous cases. However, this behavior is closer to that describe
by the CF derivative with the only difference that after a cer- !
tain time the voltage decays much slower than in the two pre- V(73 t)cont = €0 [1 — exXp ( - *)} )

vious cases. This could describe a wider class of physical
processes. wheret = (¢/7) is a dimensionless parameter. In this case,

In the case of an oscillatory source, we have we have as solution a stretched exponential function (39). In
1 SV (s) bs Fig. (7), we show the plot for different values of

— = +aV(s) = 5 (35) We observe, in Fig. (7), a different behavior as in the

1=y "+ 35 s°tw three previous cases. The conformable derivative strongly

0<~y<1, (39)
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FIGURE 7. This graph shows the equation (39) for some values of

~ corresponding to voltage across the capacitor in the RC circuit of FIGURE 9. Plot of the equations (19), (27), (34) and (39), for dif-
DC. ferent values ofy.

that the derivatives of (C), (CF) and (AB) have a very similar
a behavior. They have an almost equal crossing time 1s.

] Also, it is observed that of these three derivatives, the deriva-
tive of Atangana-Baleanu could describe a wider class of
physical processes, becuase it is described in terms of Mittag-
] Leffler function. Finally, the conformable derivative gives
as a solution the stretched exponential behavior, the crossing
time istcont & 3s. This behavior has been observed in a large
1 number of complex physical processes [53-59]. Similar be-
haviors are observed in the case of alternating current AC,
Figs. (2), (4), (6) and (8).

20 8. Conclusion

Time (s)

FIGURE 8. Numerical results of the Eq. (40), corresponding t0 |, this work we have studied the behaviour of the RC electri-

voltage across the capacitor in the RC circuit of AC. cal circuit for DC and AC sources using four different frac-

ignal derivatives. The fractional derivatives were; Caputo
C), Caputo-Fabrizio (CF), Atangana-Baleanu (AB) non-
cal fractional derivatives and the conformable derivative
onf). The (C) fractional derivative has the disadvantage that
dt eir kernel has a singularity at the end point of the interval,
then to avoid this problem, [20] proposed the (CF) derivative.
The main advantage of the CF is that the singular power-law
kernel is now replaced by a non-singular exponential kernel,
which is easier to use in theoretical analysis, numerical cal-

decays the first three seconds, depending on the gamma d
der, then decays smoothly. Much slower than the three prev
ous cases. Stretched exponential functions are commonly ol)-
served in disordered systems [53-59]. The possible origen
the stretched exponential is given in [60]. Itis straightforwar
to note, that in the casg= 1 the stretched exponential func-
tion (39) reduces to the ordinary exponential function (12).
In the case of an oscillatory soureg) = ¢g coswt, we

have . o .
qv culatlons_and real-world applications. _Solutlons du_e _to an
— 4 at"" 'V = b7 coswt, 0<~y<1, (40) exponential kernel shows an exponential decay, similar to
dt the classical integer order model, (14) and (27). Therefore,
where,a = (1/77) andb = (eo/77). The numerical solution  the CF with an exponential kernel has limitations in describ-
of equation (40) is given in the Fig. (8). ing phenomena with non-exponential nature, for example,
anomalous relaxation [28] and stretched exponential relax-
7. Comparison ation physical processes [53]. To correct this deficiency, two

fractional derivatives in the Caputo and Riemann-Liouville
In Fig. (9), we have plotted the four solutions given in (19), sense were defined by Atangana-Baleanu (AB) [29], based
(27), (34) and (39), for different values of We can observe on the Mittag-Leffler function, solutions are of the form (34)
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with the properties (20) and (21). On the order hand, the coneal level, if there are conditions (for DC and AC sources) for

formable derivative was introduced in [34]. This derivative which the exposed fractional models represent reality more
is a natural extension of the ordinary derivative, as a limit,accurately than the classical models. This may be done in the
and has the same properties as the ordinary one. This derivaptimization of the internal parameters of supercapacitors, in

tive can describe phenomena, such as relaxation processesirocess.
complex systems and so on [53-58]. As far as we know, the

conformable derivative had not been applied to the RC cir
cuit.

Theoretically, it was shown that the fractional derivative
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