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This work is devoted to investigate solutions to RC circuits using four different types of time fractional diferential operators of order0 < γ ≤
1. The fractional derivatives considered are, Caputo, Caputo-Fabrizio, Atangana-Baleanu and the conformable derivative. It is shown that
Atangana-Baleanu fractional derivative (non-local), and the conformable (local) derivative could describe a wider class of physical processes
then the Caputo and Caputo-Fabrizio. The solutions are exactly equal for all four erivatives only for the caseγ = 1.
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1. Introduction

Fractional calculus (FC), involving derivatives and integrals
of non-integer order, is the natural generalization of classical
calculus, which during recent decades has become a power-
ful and widely used method for better modelling and control
of processes in many areas of science and engineering [1-
5]. The fractional derivative are non-local operators because
they are defined using integrals. Therefore, the time frac-
tional derivative contains information about the function at
earlier points, thus it possesses a memory effect. Such deriva-
tives consider the history and non-local distributed effects,
which are essential for better and more accurate description
and understanding of complex and dynamic system behav-
ior [6-18]. Another peculiarity of FC is the inclusion of new
degrees of freedom to the system by increasing the informa-
tion that can be obtained from the nature of the phenomenon
in question. Due to the lack of a consistent geometric and
physical interpretation of the fractional derivative, several
definitions exist [19]. The most useful definitions are the
Riemann-Liouville and Caputo fractional derivatives, how-
ever, despite the accurate results obtained with the Riemann-
Liouville and Caputo fractional derivatives, they have the
disadvantage that their kernel has a singularity at the end
point of the interval. To avoid this problem, [20] proposed
the Caputo-Fabrizio derivative (CF). This is a new fractional-
order derivative that does not have any singularity. The main
advantage of the CF is that the singular power-law kernel is
now replaced by a non-singular exponential kernel, which is
easier to use in theoretical analysis, numerical calculations
and real-world applications. Based on this new derivative,
some interesting studies can be found in [21-26]. However,
some researchers have concluded that this operator is not a
derivative with fractional order, but instead a filter with frac-

tional parameters [27]. Solutions due to an exponential kernel
shows an exponential decay similar to the classical integer or-
der model, therefore, the CF with an exponential kernel has
limitations in describing phenomena with non-exponential
nature, for example, anomalous relaxation [28]. To correct
this deficiency, two fractional derivatives in the Caputo and
Riemann-Liouville sense were defined by Atangana-Baleanu
(AB) [29], based on the generalized stretched Mittag-Leffler
function. These new derivatives have been applied to differ-
ent systems in [30-33].

All definitions of fractional derivatives satisfy the prop-
erty of linearity, but properties, such as the product rule, quo-
tient rule, chain rule, mean value theorem and composition
rule and so on, are lacking in almost all fractional derivatives.
These inconsistencies and many more have raised many prob-
lems in real applications and have limited the possibilities to
explore these fractional calculations. To avoid these difficul-
ties, [34] proposed to extend the ordinary limit definitions of
the derivatives of a function called conformable derivative.
This conformable derivative has attracted the interest of re-
searchers, as it seems to satisfy all requirements of the stan-
dard derivative [35-43].

In this work we try to analyze the difference between
the most important definitions of fractional derivatives in a
simple system. In particular, we will applied the Caputo
(C), Caputo-Fabrizio (CF), Atangana-Baleanu (AB) frac-
tional derivatives and the conformable derivative (conf), in
the study of a RC circuit with DC and AC sources.

2. Some definitions of fractional derivatives

The Caputo fractional derivative of orderγ is defined by [44]
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C
a Dγ

t f(t) =
1

Γ(1− γ)

t∫

a

ḟ(τ)
(t− τ)γ

dτ, (1)

with 0 < γ ≤ 1 and a ∈ [−∞, t], f ∈ H1(a, b),
b > a. By changing the kernel(t − τ)−γ with the function
e−(γ/1−γ)(t−τ) and1/(Γ(1− γ)) with (M(γ))/(1− γ), the
Caputo-Fabrizio fractional derivative CF [20] is obtained

CF
aDγ

t f(t) =
M(γ)
(1− γ)

t∫

a

ḟ(τ) exp
[
−γ(t− τ)

1− γ

]
dτ, (2)

where(M(γ)/1 − γ) is a normalization function with the
propertyM(0) = M(1) = 1. If f(t) is a constant function,
then the Caputo (1) and Caputo-Fabrizio derivative (2) are
zero. However, in contrast to definition (1), the kernel in (2)
does not have singularity att = τ . This property is of partic-
ular interest, because it can describe the full memory effect
for a given system. The Laplace transform of the Caputo and
Caputo-Fabrizio fractional derivatives0 < γ ≤ 1 is given by

L[C aDγ
t f(t)] = sγF (s)− sγ−1f(0), 0 < γ ≤ 1. (3)

L[CF
aDγ

t f(t)] =
sF (s)− f(0)
s + γ(1− s)

, 0 < γ ≤ 1. (4)

We have taken the normalization function propertiesM(0) =
M(1) = 1 in (4). In [29], two new fractional derivatives ap-
peared. We will apply one of them, defined as:f ∈ H1(a, b),
a < b, γ ∈ [0, 1], then the Atangana-Baleanu fractional
derivative in the Caputo sense (AB) is

AB
aDγ

t [f(t)] =
B(γ)
1− γ

t∫

a

f ′(x)Eγ

[
− γ

(t− x)γ

1− γ

]
dx, (5)

whereEγ(·) is the one parameter Mittag-Leffler function de-
fined in [5]

Eγ(z) =
∞∑

n=0

zn

Γ(γn + 1)
. (6)

As can be seen, the Atangana-Baleanu fractional deriva-
tive (5) is the natural generalization of the Caputo-Fabrizio
derivative (2). The AB derivative has a non-singular and non-
local kernel, its Laplace transform is given by [29],

L[AB
aDγ

t ] =
B(γ)
1− γ

× sγF (s)− sγ−1f(0)
sγ + γ

1−γ

, 0 < γ ≤ 1, (7)

whereB(γ) has the same properties as in the CF case. Al-
though (1), (2) and (5) are linear operators and possess some
fine properties, they do not inherit all the operational be-
haviours from the typical first derivative, such as product rule,
quotient rule, chain rule and semigroup properties. These in-
consistencies lead to the development of the local fractional

derivative whose most properties coincide with classical in-
teger derivative [34,45-47].

In [34], the conformable derivative definition is given. It
is defined as: Letf : [0,∞) → < being a function. Then,
the conformable derivative of the orderγ is defined by

Tγf(t) =
dγf(t)

dtγ
= fγ(t)

= lim
ε→0

f(t + εt1−γ)− f(t)
ε

, 0 < γ ≤ 1, (8)

for all t > 0. This expression is a possible generalization of
the standard definition of derivative. Whenγ = 1 from (8),
we obtain

f ′ = lim
ε→0

f(t + ε)− f(t)
ε

.

If f is γ−differentiable in some(0, a), a > 0, and
limt→0+ fγ(t) exist, then we define

fγ(0) = lim
t→0+

fγ(t). (9)

The most important properties of this conformable derivative
of orderγ are given in [34], we only take the needed expres-
sion

Tγf(t) = tn+1−γ dn+1

dtn+1
f(t), γ ∈ [n, n + 1], (10)

if f(t) is (n + 1) differentiable att > 0.

3. The ordinary RC circuit

The equation governing the behavior of the RC circuit is

dV (t)
dt

+
1
τ

V (t) =
ε(t)
τ

, (11)

whereτ = RC is the time constant of the system measured
in seconds,R is the resistance measured in Ohm’s,C is the
capacitance measured in Farads,V (t) is the voltage on the
capacitor ande(t) is the source. Taking the initial condition
asV (0) = 0, and assuming a constant sourceε0, the solution
of the equation (11) is

V (t) = ε0

(
1− e−t/τ

)
. (12)

This is the equation that describes the behavior (charging in
our case) of a RC circuit with constant source, where its com-
ponents are ideal. The solution (12) exhibits an exponential
decay, whent →∞ the voltageV (t →∞) → ε0, a constant.
In the case of an alternating source with angular frequencyω
and initial conditionV (0) = 0, we get

dV (t)
dt

+
1
τ

V (t) =
ε0
τ

cos ωt, (13)

the solution is given by

V (t) =
ε0

ω2τ2 + 1

[
cosωt + ωτ sin ωt− e−

t
τ

]
. (14)
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4. Fractional RC circuit

Our purpose in this section is to obtain a consisting fractional
differential equation corresponding to (11). In [48] a sys-
tematic way to construct fractional differential equations has
been proposed. We transform the ordinary derivative in a
fractional derivative in the following way

d

dt
→ 1

τ1−γ

dγ

dtγ
, 0 < γ ≤ 1, (15)

whereτ = RC is the time constant measured in seconds.
The term on the left in (15) has dimensions ofs−1, and the
one on the right is also. Substituting (15) in (11) we obtain
the corresponding fractional differential equation for the RC
circuit

dγV

dtγ
+

1
τγ

V (t) =
ε(t)
τγ

, 0 < γ ≤ 1. (16)

This fractional differential equation has been studied
in [49-50]. Our main aim is to analyze this differential equa-
tion using different definitions of fractional derivatives in-
cluding local and non-local, make a comparison of these
derivatives and give some conclusions about the way behav-
ior of the solutions.

4.1. RC with Caputo fractional derivative

We consider the fractional differential equation (16) taking
into account the Caputo fractional derivative (1), assuming
the initial condition beV (0) = 0 andε(t) = ε0 is a constant.
Then, applying the Laplace transform (3), we obtain

sγV (s) +
1
τγ

V (s) =
ε0

τγs
, (17)

and solving forV (s) = V (s)C , we have

V (s)C = ε0

1
τγ

s(sγ + 1
τγ )

. (18)

Using the Laplace inverse transform [5], we obtain

V (t̄; γ)C = ε0

[
1− Eγ(−t̄γ)

]
, 0 < γ ≤ 1, (19)

where t̄ = t/τ is a dimensionless parameter. The asymp-
totic approximations to the Mittag-Leffler function for small
t → 0 and largert → ∞ times, in first approximation,
are [51]

Eγ(−tγ) ∼ e−
tγ

Γ(1−γ) , t → 0, (20)

Eγ(−tγ) ∼ t−γ

Γ(1− γ)
, t →∞. (21)

As a consequence, the Mittag-Leffler function interpolates
for intermediate timet between the stretched exponential
function (20) and the negative power law (21). The stretched
exponential function models a very fast decay for small times

FIGURE 1. Plot of the equation (19) for some values ofγ corres-
ponding to voltage across the capacitor in the RC circuit of DC.

t, the asymptotic power law is due to very slow decay for
large timet, as it can be seen in Fig. (1), showing the behav-
ior of (19), for different values ofγ.

In Fig. (1), it is observed that in the case of the fractional
derivative of Caputo, when the time is between zero and very
close to 1 s, the voltage rapidly decays as a stretched expo-
nential depending on the value ofγ. After this time, the volt-
age decays as a negative power depending on the values ofγ.

In the case of an oscillatory source, from (16), we have

dγV

dtγ
+ aV = b cos ωt, (22)

wherea = 1/τγ , b = ε0/τγ andω is the frequency of the
source. Applying the Laplace transform withV (0) = 0 we
getV (s) = V (s)C

V (s)C = b
s

(s2 + ω2)(sγ + a)
. (23)

We take the highest power ofs as a common factor from the
denominator, and then we expand the denominator in an al-
ternating geometric series [52], as a result we obtain

V (s)C = b

∞∑
m,n=0

(−1)m+n ω2man

s(n+1)γ+2m+1
. (24)

Then, the inverse Laplace transform gives

V (t; γ)C = ε0

∞∑
m,n=0

(−1)m+n(ωτ)2m

Γ[(n + 1)γ + 2m + 1]

×
( t

τ

)(n+1)γ+2m

, 0 < γ ≤ 1. (25)
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FIGURE 2. Plot of the solution (25) for some values ofγ corres-
ponding to voltage across the capacitor in the RC circuit of AC.

4.2. RC with Caputo-Fabrizio fractional derivative

Applying the Caputo-Fabrizio derivative (2) and the Laplace
transform (4) to the fractional differential equation (16) with
the same conditionsV (0) = 0, ε(t) = ε0, we get

V (s)CF =
b(γ + As)
s(Bs + aγ)

, (26)

wherea = 1/τγ , b = ε0/τγ , A = 1−γ andB = 1+a−aγ.
Then, the inverse Laplace transform gives

V (t; γ)CF =ε0

[
1− τγ

1− γ + τγ
e−

γ
1−γ+τγ t

]
,

0 < γ ≤ 1. (27)

Then, the CF solution (27) exhibits an exponential decay
when t → ∞, like as the ordinary integer model. The
CF derivative with an exponential kernel (2) has limita-
tions in describing the behaviour of phenomenon with non-
exponential nature [53].

In Fig. (3), similar behavior is shown as in the Caputo
case, except that not all the curves start at zero and also
change a little after half a second.

In the case of an oscillating source with angular frequency
ω, from (16) and after applying the Laplace transform (4), we
have

sV (s)
s + γ(1− s)

+
1
τγ

V (s) =
ε0s

τγ(s2 + ω2)
. (28)

Solving with respect toV (s) = V (s)CF we get

V (s)CF =
b(1− γ)s(s + B)

(As + aγ)(s2 + ω2)
, (29)

wherea = 1/τγ , b = ε0/τγ , A = 1 + a(1 − γ) and
B=(γ/1−γ). As before, taking the highest power ofs as

FIGURE 3. Plot of the Eq. (27) for some values ofγ corresponding
to voltage across the capacitor in the RC circuit of DC.

as a common factor from the denominator, then expanding
the denominator in an alternating geometric series, we obtain

V (s; γ)CF =
(1− γ)ε0
τγ + 1− γ

∞∑
m,n=0

(−1)m+nγmω2n

τms2n+m+1

+
γε0

τγ + 1− γ

∞∑
m,n=0

(−1)m+nγmω2n

τms2n+m+2
. (30)

Then, the inverse Laplace transform gives the solution

V (t; γ)CF =
(1− γ)ε0
τγ + 1− γ

∞∑
m,n=0

(−1)m+nγmω2n

τmΓ[2n + m + 1]
t2n+m

+
γε0

τγ + 1− γ

∞∑
m,n=0

(−1)m+nγmω2n

τmΓ[2(n + 1) + m]
t2n+m+1,

0 < γ ≤ 1 (31)

FIGURE 4. Numerical simulation of the equation (31) for some
values ofγ corresponding to voltage across the capacitor in the RC
circuit of AC.
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FIGURE 5. Numerical simulation of the Eq. (34) for some values
of γ corresponding to voltage across the capacitor in the RC circuit
of DC.

5. RC with Atangana-Baleanu fractional
derivative

Now, the fractional Eq. (16) is solved using the Atangana-
Baleanu fractional derivative (5) and its corresponding
Laplace transform (7). For the CC source we have

1
1− γ

· sγV (s)
sγ + γ

1−γ

+ aV (s) =
b

s
, (32)

From here, we getV (s) = V (s)AB ,

V (s)AB = A · sγ

s(sγ + C)
+ AB · 1

s(sγ + C)
, (33)

whereA = (ε0(1− γ)/τγ + 1− γ), B = (γ/1− γ) and
C = (γ/τγ + 1− γ). The inverse Laplace transform gives
the solution

V (t; γ)AB = ε0

[
1− τγ

τγ + 1− γ

× Eγ

(
− γ

τγ + 1− γ
tγ

)]
, 0 < γ ≤ 1, (34)

whereEγ(·) is the one-parametric Mittag-Leffler function
(6), with the property (20) fort → 0 and (21) for large time
t → ∞. In Fig. (5) we have plotted the equation (34) for
some values ofγ. In the case of Atangana-Baleanu deriva-
tive, we observe in Fig. (5) a similar behavior as in the previ-
ous cases. However, this behavior is closer to that described
by the CF derivative with the only difference that after a cer-
tain time the voltage decays much slower than in the two pre-
vious cases. This could describe a wider class of physical
processes.

In the case of an oscillatory source, we have

1
1− γ

· sγV (s)
sγ + γ

1−γ

+ aV (s) =
bs

s2 + ω2
. (35)

FIGURE 6. Numerical simulation of the Eq. (36) for some values
of γ corresponding to voltage across the capacitor in the RC circuit
of AC.

Solving forV (s) = V (s)AB and taking the inverse Laplace
transform, we get

V (t; γ)AB = ε0(1− γ)

×
∞∑

m,n=0

(−1)m+nω2mγn t2m+nγ+1

(1− γ + τγ)n+1Γ[nγ + 2(m + 1)]

+γε0

∞∑
m,n=0

(−1)m+nω2mγn t2m+(n+1)γ+1

(1−γ+τγ)n+1Γ[2m+(n + 1)γ+2]
. (36)

6. RC with conformable fractional derivative

Finally, replacing the expression (10) in the fractional differ-
ential equation (16), for the case0 < γ ≤ 1,

dγ

dtγ
f(t) = t1−γ d

dt
f(t), (37)

we have the conformable differential equation for the RC cir-
cuit

dV

dt
+ atγ−1V (t) = atγ−1ε(t), 0 < γ ≤ 1, (38)

where a = (1/τγ). This equation is a linear non-
homogeneous ordinary differential equation with variable co-
efficient of non-integer power0 < γ ≤ 1, its solution can be
found by standard methods. Its solution for the case when the
source is a constantε(t) = ε0, has the form

V (γ; t)conf = ε0

[
1− exp

(
− t̄γ

γ

)]
, 0 < γ ≤ 1, (39)

wheret̄ = (t/τ) is a dimensionless parameter. In this case,
we have as solution a stretched exponential function (39). In
Fig. (7), we show the plot for different values ofγ.

We observe, in Fig. (7), a different behavior as in the
three previous cases. The conformable derivative strongly
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FIGURE 7. This graph shows the equation (39) for some values of
γ corresponding to voltage across the capacitor in the RC circuit of
DC.

FIGURE 8. Numerical results of the Eq. (40), corresponding to
voltage across the capacitor in the RC circuit of AC.

decays the first three seconds, depending on the gamma or-
der, then decays smoothly. Much slower than the three previ-
ous cases. Stretched exponential functions are commonly ob-
served in disordered systems [53-59]. The possible origen of
the stretched exponential is given in [60]. It is straightforward
to note, that in the caseγ = 1 the stretched exponential func-
tion (39) reduces to the ordinary exponential function (12).

In the case of an oscillatory sourceε(t) = ε0 cos ωt, we
have

dV

dt
+ atγ−1V = btγ−1 cosωt, 0 < γ ≤ 1, (40)

where,a = (1/τγ) andb = (ε0/τγ). The numerical solution
of equation (40) is given in the Fig. (8).

7. Comparison

In Fig. (9), we have plotted the four solutions given in (19),
(27), (34) and (39), for different values ofγ. We can observe

FIGURE 9. Plot of the equations (19), (27), (34) and (39), for dif-
ferent values ofγ.

that the derivatives of (C), (CF) and (AB) have a very similar
behavior. They have an almost equal crossing timet ≈ 1 s.
Also, it is observed that of these three derivatives, the deriva-
tive of Atangana-Baleanu could describe a wider class of
physical processes, becuase it is described in terms of Mittag-
Leffler function. Finally, the conformable derivative gives
as a solution the stretched exponential behavior, the crossing
time istconf ≈ 3 s. This behavior has been observed in a large
number of complex physical processes [53-59]. Similar be-
haviors are observed in the case of alternating current AC,
Figs. (2), (4), (6) and (8).

8. Conclusion

In this work we have studied the behaviour of the RC electri-
cal circuit for DC and AC sources using four different frac-
tional derivatives. The fractional derivatives were; Caputo
(C), Caputo-Fabrizio (CF), Atangana-Baleanu (AB) non-
local fractional derivatives and the conformable derivative
(conf). The (C) fractional derivative has the disadvantage that
their kernel has a singularity at the end point of the interval,
then to avoid this problem, [20] proposed the (CF) derivative.
The main advantage of the CF is that the singular power-law
kernel is now replaced by a non-singular exponential kernel,
which is easier to use in theoretical analysis, numerical cal-
culations and real-world applications. Solutions due to an
exponential kernel shows an exponential decay, similar to
the classical integer order model, (14) and (27). Therefore,
the CF with an exponential kernel has limitations in describ-
ing phenomena with non-exponential nature, for example,
anomalous relaxation [28] and stretched exponential relax-
ation physical processes [53]. To correct this deficiency, two
fractional derivatives in the Caputo and Riemann-Liouville
sense were defined by Atangana-Baleanu (AB) [29], based
on the Mittag-Leffler function, solutions are of the form (34)
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with the properties (20) and (21). On the order hand, the con-
formable derivative was introduced in [34]. This derivative
is a natural extension of the ordinary derivative, as a limit,
and has the same properties as the ordinary one. This deriva-
tive can describe phenomena, such as relaxation processes in
complex systems and so on [53-58]. As far as we know, the
conformable derivative had not been applied to the RC cir-
cuit.

Theoretically, it was shown that the fractional derivative
of Atangana-Baleanu and the conformable derivative could
describe a wider class of physical processes then of the Ca-
puto and Caputo-Fabrizio, Fig. 9. The solutions are exactly
equal for all four derivatives only for the caseγ = 1. A next
step in the investigation would be to determine, on a practi-

cal level, if there are conditions (for DC and AC sources) for
which the exposed fractional models represent reality more
accurately than the classical models. This may be done in the
optimization of the internal parameters of supercapacitors, in
process.
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23. J.F. Ǵomez-Aguilar, T. Ćordova-Fraga, J.E. Escalante-
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