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Local available quantum correlations (LAQCSs), as defined by Mundarain et al., are analytically determined for Bell Diagonal states. Using the

Kraus operators formalism, we analyze the dissipative dynamics of 2-qubit LAQCs under Markovian decoherence. This is done for Werner
states under the depolarizing and phase damping channels. Since Werner states are among those that exhibit #r@aoglatieeint sudden

death the results are compared with the ones obtained for Quantum Discord, as analyzed by Werlang et al., as well as for entanglement,
i.e. Concurrence. The LAQCs quantifier only vanishes asymptotically, as was shown to be the case for Quantum Discord, in spite of being

lower.
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1. Introduction which is a postmeasurement state in the absence of readout,
where the measurement is performed locally over the A sub-

The study of quantum correlations is at the core of Quansystem ofy, 5. Analogously, one can defifBz (p.4 ) com-

tum Information Theory (QIT). Entanglement [1] had been paring with a quantum-classical (or B-classical) state

considered to solely encompass what 8dimmger himself es-

teemed to bethe characteristic trait of quantum mechanics, qac i N i (B)
the one that enforces its entire departlj]re from classical lines Pas = 21: pi P ® [i)i] = XZ: pipa 11, “)

of thought” [2]. The development of Quantum Discord (QD)

by Olliver and Zurek, and independently by Henderson anduantifiers of quantum correlations using either A-classical
Vedral [3], in 2001 showed that there are quantum correlaor B-classical states are called Discords and are, in general,
tions that are not included within the separability criteria of not symmetrical.

e_ntanglement. Using Werner states as an example,_ both ar- other quantifiers [5] are based on the difference of a
ticles show that there are states that are not entang&d, qantity €.g mutual information, relative entropy, etc.) with
null concurrence [4], and yet exhibit nonzero QD. This hasiegpect to systems in which both subsystems have been lo-

given a new impulse to a highly dynamical subfield of QIT, cajly measured. These type of states are labeled as strictly
the study of new quantifiers for quantum correlations. classical

Local measurements are the key ingredient to properly
define correlations. They are important because correlations c
. .. K = D | ® . . 5
must quantify the ability of one local observer to infer the re- P = D puldialéil @ 0)5 (] ®)

sults of a second local observer from his own local results, s .
The aforementioned Quantum Discord [3]: where (i ;) = i, (Vilt;) = b5, ¥ 1,5. Itis said that
there exists a local basis for whiglj ; is diagonal. A spe-

Da(pap) = min {I(pAB) — [[(HA ® 1)pAB]} cial case of strictly classical states (5) worthy of mention are
{ry prodt_;c_t state_sqﬁB = pa ® pp. For these type of states, the
= min [I(pag) — I(p%)] 1) coeff|IC|entpij in Eq. (5) needs to be factorizabjg, = p;p;.
Qo That is
is based on comparing the quantum Mutual Information, de- -
fined for the original statp 5 as PAB = PA®pB = [ZPi|¢i>A<¢i|} ® [ijliﬁj)Ble]
I(pa) = S(pa) +S(pB) — S(paB) ) =" pipjldi)aloil ® [¥) 5] (6)

with a corresponding classical-quantum (or A-classical) state - _ _
Quantifiers of this sort include Measurement-Induced

Py = Z pi |i){(i| ® ply = Z p I @ pt (3)  Disturbance (MID), introduced by Luo [6], as well as its ame-
i i liorated form (AMID), introduced by Wet al. [7].
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General quantum correlations defined in terms of local bi-2.  Local available quantum correlations for 2-
partite measurements were considered recently byeth\al qubits
in [8], where they introduce and study non-symmetric quan-
tum correlations using the Holevo quantity [9] and, in a brief ) L
final appendix, they define symmetric quantum correlationd® density operatop of a bipartite systemi 5 can always be
in terms of mutual information. The LAQCs developed in WWritten in terms of different basis
[10] focused on a slightly different version of those symmet-
ric correlations, preserving the requirement that any available , _ mn _ jq ;o
ones must aIwaSs be defined in t?arms of mutual information P Z PR [k {Inl ZRZ’) BN BP0l ©)
of local bipartite measurements.

klmn 1Jpq

This work is focused on analytically calculating the wherek,1,m,n € {0, 1}, {|km)} is the well-known compu-
LAQCs quantifier for the family of BD states, given by tational basis, that is, the basis of eigenvector gfwhich is
local, and{|B(3, 7))} is another local basis, which is equiva-
lent under local unitary transformations to the former one:

pBD:i(:l@l"'ZciUi@Ui) (7)
|B(i, j)) = U} @ U ij) (10)

where the coefficients; € [—1,1] are such thap®? is a

well behaved density matrix.€. has non-negative eigenval- Any such basis for the Hilbert space of qubits can be
ues) andr; are the well known Pauli matrices, and giving @ thought of as a new computational basis, the basis of
first glimpse into its dissipative dynamics. This is done by aSwigenvector ofr, = & - i, whereg is the vector whose com-
suming Markovian decoherence and using the Kraus Operat?fonents are the Pauli matrices ants a generic unitary vec-
formalism for two particular quantum channels: depolarizay,, The choosing of such direction can depend on various

tion [11] and phase damping [12]. We will also make use 0f¢qgitions and / or requirements of the system at hand.

the Bloch representation for 2-qubits, given by ) ] ) ) ]
Since strictly classical states are states which are diagonal

in some local basis, one can defig as the strictly classi-

1 o o o : ; T
P (47 G0+ Lo 4T ¢0F) cal s_tate (5) induced by a measurement which minimizes the
4 relative entropy
1 3
=14+ Tpon @1 .
4 ( ! Zl ? S(pl|X,) = min S(pl[xp) (11)
- P
3 3
+D b @0+ Y Tamon @ Um) (8) wherey? given by
n=1 m,n=1

Xy =Y [(B(.j)lp|BG, )] |B(i,5))(BG.j)|  (12)

where {Z, 7, T} are the Bloch parameters given by = —
ij

Tr[p(on ®L2)], yn = Tr[p(I2 ® 0,,)] @NAT,, = Tr[p(0n ®

Um)]-
andS(p||x) = —Tr(plogyx) — S(p). The minimization of

The present article is structured as follows: in Sec. Z,ch rejative entropy is equivalent to finding the optimal ba-
we review the main results obtained in [10] by defining Oursis{|B(z’7j)°Pt>} which will then serve as the new compu-

procedure for calculating the local available quantum Coreyainna| hasis. Local available quantum correlations are then
Iatlor}s quant!fler. Se'c'tlon 3is dec!lcated to the explicit cal-yafined in terms of this optimal computational basis.

culation of this quantifier for Bell diagonal (BD) states. We . )

start by performing the calculation for a highly symmetri-  Whitout loss of generality, the search foiB (i, j)°**) }

cal subset of BD states, namely Werner states. These resuft§n be thought of as the search for the optimal local unitary
are then generalized for the whole BD states family. Sectiofransformationd/s? @ U,” such that

4 is devoted to the subject of Markovian decoherence. We

start by presenting the Kraus operators formalism and pro- I Uor o U p ot o ort

ceed to analyze two dissipative quantum channels, namely P e b Pl b

depolarizing [11] and phase.dfamping [.121, a(;ting on thg set — Z (R"”)Zg ij)pql, i.j,p,q € {0,1} (13)

of Werner states and determining the dissipative dynamics of
the LAQCs quantifier by means of our previous result for BD
states. Finally, Sec. 5 is devoted to the summary.

ijpq
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Therefore, analyzing the criteria for minimization of the ~ Once the optimal anglésand¢ are found and, therefore,
aforementioned relative entropy is related to the behavior othe optimal computational basis is defined, the state is rewrit-
the coefficients(ROP)gg. This is done by defining the most ten in terms of this new basis. Since local available quantum
general orthonormal base (10) for each subsystem in ternorrelations are defined in terms of complementary basis, we
of the original computational base: are interested in determining a new unitary vector, con-

tained in the plane orthogonal to our previausTo do so,

0.4 04\ we define a new unitary vectaiy, for each subsystem and
A |pg) = cos (2) |0) + sin <2> e'%4|1), define the following basis:
. 04 0a\ ; 1 i
) = —sin () 00+ cos () ooy 0} () = 7 (Ot + € Lhop).
_ 1 i,
B: |vo) = cos (%) |0) + sin (?) "7 |1), [u1)(®n) = V2 (10)opt — €™ [1)opt) (18)

where{|0)opt, |1)0pt } IS the optimal computational basis and
lv1) = —sin <93> 0) + cos (93) eB (1) (14) the anglesb,, define a direction in the plane perpendicular
2 2 to @ for each subsystem, as to define our complementary ba-
sis [8]. In doing so, we are now able to determine the lo-
It is important to keep in mind that this pro- cal available qua.ntum correletions, which are quantified in
cess is equivalent to finding the unitary vectors terms of the nlax[mal mutuel information for measurements
G4 = (sin@ycosga,sinfysinda,cosfy) and ap = performed ory - ug,. That is, we compute the following

(sinfp cos ¢p,sinfpsinpp,cosfp) as to define the new probability distributions
ou. @04, Whose eigenvectors define the new computational L
A B 9 P Py (ia, jo, Pa, Pp) = (wil @ (uj] p|ui) @ |uy) (19)

basis.
In this context, Mundaraiet al. define the classical cor- and by means of (17), we determine the mutual information
relations quantifier as I(® 4, Pp), which is then maximized.
C(p) =5 (XPHHX ) @s5) 3. LAQCs for Bell Diagonal states

wherell is the product state (6) nearestxg,. As shown 3-1. Wemer States

R . .
by Modietal. [13], the relative entropy of a generic statey As to better illustrate the calculation of the LAQCs quantifier,

.X]f ' andtllts nezare?ttﬁ roduct s'talte{ ltTXp 'Ilz theftotal mutual . we start by determining it for a highly symmetrical subset of
information (2) of the generic state. erefore, the prewéBD states (7), namely Werner statgs;

ous definition for the classical correlations quantifier may b

rewritten as: 1—2
puw = 2| @F) (OF] +

I, z<[0,1]  (20)

4
Clp) =1(X,) (16) wherez € [0,1] and |®T) = % (10)]0) + [1)[1)) is a
) . . ~ Bell state. Notice that (20) is obtained from (7) by setting
wherel(X,) is the mutual information of the local bipartite ., — ¢, = ¢; = 2. It is well known that for these states,
measurement associated witf. Since the mutual informa- , < 1/3impliesp,, is separable. Nevertheless, as was shown
tion may be written as by Olliver & Zurek and Hendersof Vedral in [3], these
states have non-vanishing quantum correlatioms, their
o Pyy(ia,jn) guantum discord is only null for = 0.
I(p) =Y Poglia, i) log, Pro(in)Poo(jn) 17 The density matrix for the Werner states, using the stan-
b3 ’ ’ dard computational matrix, is written as:
wherePy (ia, j) = (1| @ (v;] p|ps) @ [v;) are the prob-
ability distributions corresponding tosp and Py 4(i4) = 142 0 0 9,
(il palpi), Po.g(iB) = (vj| pp |v;) the ones correspond- 1l 0o 1-2 o 0
ing to its marginalg 4 andpg, the required minimization of Pw =7 0 0 1 (21)
! -z 0
the relative entropy (11) yields a minima for the classical cor- 9 0 0 142
relations quantifier defined in (16). Itis straightforward to see
from Eq. (13) thatPy (i, jg) is directly related to{ROP)fZ By means of (14), the elements;; (9) for the Werner
when{|u;) ® |v;)} is the optimal computational basis. states are obtained:
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1 0 0 . [0
Roo = (po| @ (volpwlpo) ® [vo) = 1t {COS <;> cos ( B> sin ( -

04 0B 04 0B 1
2 2 _ 2 2 -
+ |:COS (2 )cos (2 ) cos ( 9 ) + cos 5 )} + 1

)
1
) }
ao = (] & {solpulin) ) = ~ [oos (5 ) cos () sin () sin (%2 ) cosoa + )| »
1
2
}

o () () 3o (2) s (D
=
=

sin (0;) cos (pa + ¢B)} z

R
Ry

ol ® (V1]pwlpo) @ |v1) = Rio

®
w1l ® (1| pwlpr) ® |r1) = Roo (22)

Since we are using (17) to minimize (11), all that is
needed are the optimal angl¢8.,05, 4, ¢p}. First, we distributions Py(ia,js, P4, ®p) are then determined
use the symmetry under exchange of subsystems Bto  from (19), where we also make use of the symmetry un-
simplify our previous expressions usidg = 6, = 6 and  der exchange of subsystems-AB so thatd 4, = &5 = P,
$1 = ¢2 = ¢. Using this, equation (22) may be written in a gbtaining:
more compact form as:

Py(04,05,P)==[142cos(2®)|=Pp(1a, 15, P)

P@(IA,OB,(I)): [1—2005(2@)]=P@(0A,1B,‘I’) (25)

[ R g

0
X cos? <2) [1 — cos(29)] z (23)
where once again we have that0 4(5y) = P(la)) = 1/2
for the marginalsp4 and pp. From these expressions it is

wherei, j € {0,1}. In this expression we have that the first 544in straightforward that the maximum is obtained either for
term is (1 + 2)/4 separated from the sector with the angu-g _ .~ \ithn = 0.1.2. or for ® — n(r/2), withn = 1, 3.

!ar dependence. Ther_efore, our optimization ir_nplies obtair.1By means of (17), the LAQCs quantifier is then
ing angles that minimize or even cancel out this term for ei-
ther Ry = Ri11 or Ryjg = Rp1. Analyzing the minimum 14+ 2 1—2
of (23), it is found that this occurs fa# = ¢ = nr as I(pl,) = —; logy (14 2) + 5 logy(1—2)  (26)
well as for@ = ¢ = n(n/2). Due to the high symmetry
of Werner states, either of these choices is consistent for ob- Therefore, we have that for Werner states, there is the
taining the closest strictly classical stateitpand, moreover, same amount of classical correlations as there are locally
the density matrix for these states (20) is invariant under (13jvailable quantum correlations.
with either choice ot and¢. Therefore, it is consistent to
measure our classical correlations in the standard computa- ) ) -
tional basis, that is, fof; = 6, = ¢ = ¢ = 0, and 3.1.1. Comparing with other quantifiers
Py s(ia,jg) = (1/4) (1 — (=1)"*72) and marginal proba-
bilfg((es p;(b)(m) (:/13)97(45035 :)(1/2))_ Using thgese epxpres- We briefly compare our resylt (26) for.t_he LAQCs quantifier
sions, the classical correlations quantifier (16) may be writtefVith other quantum correlations quantifiers, such as quantum
as discord [3] and concurrence, a quantifier for entanglement.

It is well known that concurrenég as introduced by
Wootters [4], has a simple expression for Werner states, given

1+2 1-=2
Clpw) = 5 log, (14 2) + 5 logy(1—2) (24)  by:
3z—1
w — 5 27
To determine the LAQCSs quantifier for the Werner states, ¢ Hax {O 2 } 27)

we need to define the complementary basis. Since we can

consistently measure the classical correlations onZth- The expression for quantum discord for Werner states is
rection, the complementary basis used will be eigenstates aferived from the analytical one obtained by Luo in [14] for
& -4, wherew now lies in theXY plane. The probability the more general case of BD states, given by
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Cortelations quattifiers for Werner states

1—c —
Dpp = a 462 € logy(1 —c1 — o — c3)
0,3
1—c1+co+ece
# logy(1 —¢1 + ¢ + ¢3)
14+c —ca+c3 o 067
f10g2(1+61—62+03) %
&
14+c14+c—c g
#logz(l-l-q +ca —c3) &0,4_
1—c 1—c 1+¢ 1+4+c¢ ]
— 1 — ) - 1 28
2 Og2< 2 ) 2 OgQ( 2 ) (8) 02 - J
2 -'/.)
Using the fact that; = —c; = ¢3 = 2, one can readily _,_.,“—f’/
obtain the desired expression: D P P TV
0 0.2 04 06 0z 1
=
1— 1 — A0 ——D e
D, = 4Zlog2(1—z)— +Zlog2(1—|—z) | |
1432 FIGURE 1. Quantum correlations quantifiers for the Werner states:
+ log,(1 + 32) (29) LAQC (red line), Concurrence (yellow line) and Quantum Discord
4 (green line).

Comparison of the LAQCs quantifier with concurrence Nevertheless, this does not imply that both quantifiers
and quantum discord is shown graphically in Fig. 1. As 0b_wiII necessarily show in general a similar qualitative behav-

served in an example presented in [10], the quantifier for thPr- As was alfo po_inted outin [10], for the family of mixed
LAQCs has values lower than the ones for Quantum DisSt&te® = p|¥™) (¥~ + (1 —p)|00)(00], numerical calcula-
cord. In the aforementioned case, the 2-qubit pure stathonS Of both QD and LAQCs quatifiers show, as expected,

I¥)) = cos8|01) + sin ]10), written in the optimal computa- that the one for LAQCs is less than the one for QD, but

tional basis, exhibits lower values of the LAQCs quantifier for&1SO that they behave qualitatively quite differently. More-
all values of the parametér except ford = 0,7 /2, 7, where OVl in the aforementioned work, Mundarain et al. proof

both quantifiers are null, and fér= /4, 37 /4, where both that quantum-classical states have null LAQCS, which is not

are equal to 1. This same behavior is observed for the Werndecessarily the case for QD as defined in (1).

states, where both quantifiers exhibit an analogous qualitativg

behavior, yet the LAQCs quntifier is almost allways lower, 2. General case

except forz = 1, where both are null, and far= 1, where  \ye now proceed to the general case of BD states (7). Fol-
they are maximai,e. equal to 1. lowing the same procedure as before, we determine the coef-
| ficientsR;;:

1 0 02\ . (01 . (0
Roo = (o] @ (volpwlio) @ [vo) = 5 cos <21> cos (;) sin (;) sin (;)

x [cos(p1 — d2)(c1 + c2) + cos(¢1 + ¢2)(c1 — ¢2)]
+ {c052 (621> cos? (922) - % [cos2 <621) —l—cos2 <922>} + i} c3 + i = Ry

1 0 6\ . (01 . [0
Rip = {p1] @ (Wolpwli1) @ [vo) = —5 cos (;) cos (22) sin (21) sin (22)

X [COS(¢1 — ¢2)(c1 + c2) + cos(¢1 + d2)(c1 — 02)]

0 0 1 0 0 1 1
_ 2 (24 2(22)_ 2 2 (2 2 (72 z g
{cos <2>c05 <2> 2[cos <2>+c05 <2>}+4}03+4 Ro1 (30)
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Since all BD states have maximally mixed marginals, wewhere once again we have that0 45)) = P(14(p)) = 1/2
can again make use of the symmetry under exchange of suber the corresponding marginats, andpg. Taking all this
systems A— B, thatis,f, = 6, = 8 aswell asp; = ¢ = ¢, into account, the LAQCs quantifier is then
and rewrite (30) in a more compact form as:

1+cy
w L I(p,y) = logy (1 + car)
R;j = i 1+ (-1)"Hes] + (—1)“”%0052 (g) sin? (g) 2 ’
1— CM
1 1-— 36
% [(e1 4 ) + cos(20)(c1 — ) — 2¢3] (31) o82(1 = cnr) (36)
From (31) it is straightforward to realize théR;;, R;;} €
0,1/2]. 4. Decoherence

In this case, the minimization will depend on whether \;,4eling the behavior of any real quantum system must take
|ca > [es] Or |ea| < |eg|, thatis, onc,, = min{[ea], |eal}. into account that it will not be completely isolated. There
Forey, = [ez|, 0 = n(r/2), withn = 1,2, and¢ = (7/2), |l pe a much larger system surrounding the quantum one,
while § = nm, withn = 0,1,2, and¢ = nr, withn = 0, 1, called environment, which in general will have infinite de-

for ¢,, = [cs|. Therefore, we can write our coeﬁmerﬁ%’p” grees of freedom. This interaction between quantum system
as and environment, albeit efforts to minimize it, will induce
Roo = Ryy = }(1 Fem), a process of .d.ecoherence and relax_atio_n. This in turn may
4 hinder the ability of the system to maintain quantum correla-
1 tions, therefore affecting its ability to perform certain tasks in
Rio = Ro1 = 1(1 —¢m) (32) guantum computing, among others. The study of this process

As happened for Werner states, due to the symmetry ofan be done, under t_h_e MarkO\_/ian approxim_ation, either by
BD states, the density matrix associated with (7) is invarianH'SINg @ master equatiore. the Lindblad equation [15], also
under the aforementioned unitary transformations (13) for th&€ferred to as the Lindblad-Kossakowski equation [16], or a
previously chosen optimal computational basis. Identifyingdt@ntum dynamical semigroup approack, Kraus opera-

Ry, from (32) as our probabilities distributior, (i 4, j ) tor [17]'formalism. I.n what follows we will make use qf the
and the fact thaP(04)) = P(14(5)) = (1/2), the classi- later, with common interactions to both subsysteineswith

cal correlations quantifier (16) is then given by the interaction parameterequal for both subsystems so that:

Clpw) =~ gy (1 -+ ) po i =Y BB p(EOE)  (37)

0,J

—Cm . . . . . .
logy (1 — ¢ (33) Within this framework, we will study two dissipative

2
. uantum channels: Depolarizing [11] and Phase Dampin
As previously done for the Werner states, the LAQCSthanneI [12] P g [11] ping

guantifier is then calculated in the basis (18), viith, o5 =
® due to the symmetry under subsystem exchange B8,
and the distribution probabilitieBs (i 4, j5, ®) (19) are then

given by: This quantum operation represents the process of substituting
1 c14c 1 —co an initial single qubit state with a maximally mixed one,
Py(04,08,®)=7 [H 5+ 1/2, with probability 1 — ~ that the qubit is left unaltered. In
terms of the Bloch sphere, the effect of this quantum chan-

+

4.1. Depolarizing Channel

cos(Q@)}

Py(14,05, @):l [1_ cite & cos(2<I>)} (34)  nelis to uniformly contract the radius of the sphere from 1 to
4 2 2 1 — v [11]. Its Kraus operators are given by
where we also have th&, (04,05, ®) = Py(14,15,®) and
P4(14,05,P) = Py(04, 15, ®). The maximization of (34) Eo=1/1— 37 I,, E = il O,
will now depend on whethdg;| > |ca| Of |e1] < |eol, that 4 2
is, it will depend orcy; = max{|c|, |c2|}. Therefore,
(el ex) b=V 0, my= Vo @
Cp = |Cl| =®=nr=> P@(iijB)
1 1 Applying these operators on a Werner state (20) via (37),
=—(1+fca)=—-1=%cnm) it is straightforward to verify that the resulting density oper-

4 4

ator has the following Bloch parameters:

™ o
e = lea| = @ = ny = Pg(ia, jB)
Tn=yn=0,Yn; Tiy =—Th =Ty =2(1—7)

1 1
= (1 £c) = 7(1+en) (35) Ty = 0,Ym # n (39)
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Clou ™) = 1(pyy ")

— %1_7)2 log,[1 + 2(1 — 7)?]
_ _ 2
P 120 g0 o)

Let us now compare this with other quantum correlations
quantifiers. It is well known that Werner states exhibit entan-
glement sudden death (ESD) [18], as can easily be seen by
usingz’ = z(1 — )2 in (27):

3z(1 —;)2 — 1}

Cy = max {O7 (41)

For quantum discord [3], by means of (29) and using
z — z(1 — )2, the following expression is obtained:

DSUDepo) _ i [1_2,(1_7)2] log, [1—2(1_'7)2]

7% [1+2(1=7)"] logy [142(1-)?]

% [14+32(1—)?] log, [14+32(1—7)?]  (42)

The behavior of the LAQCs quantifier, concurrence and
quantum discord for a Werner state under the action of a
Depolarizing Channel is shown graphically in Fig. 2. Itis
worthy noticing that, since the resulting state of this quan-
tum channel is still a Werner state, the qualitative behavior
of both QD and LAQCs quantifiers is indeed similar as pre-
viously shown, maintaining the relation of the quantifier for
QD being greater than the one for LAQCs.

4.2. Phase Damping Channel

One of the quantum channels analyzed by Werktrag. [19]

in order to show the robustness of Quantum Disord to deco-
herence is th&hase Damping Channelcting on a Werner
state. This noisy channel describes the loss of quantum infor-
mation without loss of energy [12]. The Kraus operators for
this quantum channel are given by:

ne(3 ) mo(28) @

Applying these operators on a Werner state (20) via (37),
the resulting density matrix has the following Bloch parame-

. - ters:
FIGURE 2. Quantum correlations quantifiers for the Werner states
under Depolarizing channel: Concurrence, Quantum Discord and ;. — y — 0, Vn; Ty, = —Thy = (1—7)z, Ts3 =z,
LAQC.
Ton =0,Ym #n (44)
which corresponds to a Werner state where the action of thigwhich corresponds to a BD state (7) with = —cy =

noisy quantum channel contracts the state paramegra (1 — )z andcs = z. Sincec,, = min(|ca|, c3|) = (1 —7)z
factor(1—+)?, thatis, it transforms — 2’ = 2(1—+v)2. We  andcy; = max(|e|,|ca|) = (1 — 7)z, we can now write our
can now write both classical correlations and LAQCs quanti-classical correlations and LAQCs quantifiers using (33) and
fiers using (24) and (26), obtaining (36), obtaining
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Even though the resulting quantum state is no longer a
Werner state, sincg # c3, we again have an equal distribu-
tion of classical and quantum correlations. It is also notice-
able that once more there is no 'sudden death’ effect observed
with the LAQCs quantifier.

Concurrence for (44) is given by:

c$@>:nmx{qz(3—2w-—;} (46)
and Quantum Discord is readily obtained from (28) and (44),
yielding:
Dg@):lii%:3ﬁ¢%2u+z@_zw]
w logy [1 — (1 — 27)]
~ 2 logy(1 4 2) (47)

The behavior of the LAQCs quantifier, quantum discord
and Concurrence for a Werner state under the action of a
Phase Damping Channel is shown graphically in Fig. 3. As
can be inferred from this graphics, the qualitative behavior of
both QD and LAQCSs is in this case also quite similar, main-
taining the expected relation of QD being larger than LAQCs.

5. Conclusions

We have successfully evaluated the LAQCs quantifier for the
family of BD states, obtaining analytical formulas for it. To
do so, we started with a much simpler case, the subfamily of
Werner states, as to better illustrate the procedure for deter
mining the LAQCs quantifier. For this subset of BD states, its
behavior has been graphically presented, comparing it with
both concurrence [4] and quantum discord [3,14]. In this case
QD and LAQCs exhibit similar qualitative behavior and, as
expected, the LAQCs quantifier is lower in value than QD.

The dissipative dynamics of the 2-qubit LAQCs quantifier
under Markovian decoherence was studied for Werner states
FIGURE 3. Quantum correlations quantifiers for the Werner states using the Kraus operators formalism in two cases: Depolar-
under Phase Damping channel: Concurrence, Quantum Discorgzing channel [11] and Phase Damping channel [12]. Analyt-
and LAQC. ical expressions were obtained for both cases and presented
graphically. As was previously reported for Quantum Dis-
cord [19], LAQCs also do not exhibit the sudden-death be-

C(pEP) = I(pFP) = I+ (12— )z log,[1 + (1 —7)z] havior shown by entanglemeng. concurrence.
1—(1-
P 20 01— (1= ) (@5)

2
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tinguish it from our classical correlations quantifier (16), we
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