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To induce temperature changes on the sample surface by the incidence of a monochromatic modulated light beam and detect the changes
produced in the thermal radiation emission, is the basic principle of the infrared photothermal radiometry technique. Until now, in order to
analyze the thermal response mathematical models based in an one-dimensional model were used considering a sample with a finite thickness
and an infinite incidence surface, as well as the linear approximation of the Stefan-Boltzmann Law in the calculus of the heat losses due to
thermal radiation. In this work, analytical and numerical models for the 2D heat diffusion in homogenous finite solid samples, are presented.
These models were obtained by solving the heat diffusion equation, under cylindrical symmetry, considering mixed boundary conditions to
include radiation and convection heat losses through the surfaces of the sample, and a monochromatic Gaussian excitation beam impinging
on the front of the sample. The analytical models were obtained by solving the governing equations, considering the well-known linear
approximation of the Stefan-Boltzmann law in the calculus of the heat losses due to thermal radiation. To analyse the effects of the non-
linearity of the heat losses by thermal radiation on the thermal transient response, in the numerical model it was taken into account the full
expression of the Stefan-Boltzmann law, and the transport equation was solved numerically by means of the Finite Element Method (FEM).
The analytical solution for the oscillatory thermal response reveals the close dependence of the thermal response on the ratio of thickness to
the radius of the sample, represented by the form factor sf. Both, the analytical and the numerical solutions were employed to simulate the
thermal response of homogenous materials, and compared with experimental results reported elsewhere by part of our same research group.
Finally, the difference between the thermal response predictions, from the analytical and numerical models, were analyzed.

Keywords: Heat transfer; infrared photothermal radiometry; thermal properties; Robin boundary conditions; finite element method.
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1. Introduction etry (PPTR) [5,6]. Within the reports on the quantitative de-
scription of the modulated PTR technique, it is found that,

, .. in the eighties Santos and Miranda [7] presented a quantita-
There are several techniques for the thermal characterizatiq,e qerivation of the modulated PTR production in both, fre-

classes: Steady state and dynamical methods [1]. Among the ie'heat flow. From the model developed, Santos and Mi-
latter one can mention the Photothermal (PT) techniques [1g44 syccessfully found the surface temperature fluctuation,

2], which are based in the generation and detection of thermalajeting the heat lost through the lateral walls of the sam-
waves. A particular type of PT technique is the one proposefhe and convection heat lost. A few years ago, Fuenta.

in 1979 by Nordal and Kanstad for the spectroscopic analysig 5y 7eq the ability of modulated PTR to retrieve simulta-
of solid and semi-solid materials [3], which they called Pho-pq 151y and accurately the optical absorption coefficient and
tothermal Radiometry (PTR), although a preliminary preseny,q thermay diffusivity in homogeneous slabs [8]. Their anal-
tation was published a year earl_ler k?y t_hese au_thors, fc_)r thﬁsis was based on considering the oscillating component of
analysis of powders [4]. The basic principle of this techniquéy, e emperature in the absence of heat losses obtained from
is to induce temperature changes on the sample surface o o5 1ution of one dimensional (1D) heat diffusion equation.
the incidence of a monochromatic modulated light beam ang, 4, aet al. [9] reported the solution of 1D heat diffusion
detect the changes produced in the thermal radiation emigsg ation with non-adiabatic boundary conditions and con-

sion. Since then, _seve_ral_ variants_of PTR technique havgy,qeq that the front and rear surface temperatures are af-
been reported, but its principle remains the same. Nowadayg,cteq by heat losses at low frequencies. Recently, izt
this technique is named Modulated Photothermal Radiomeg; 5 [10] obtained a theoretical model for the PT signal in

try (MPTR) and, if a pulse of light replaces the exciting light e ,ency domain in a 1D configuration considering convec-
beam the technique is named Pulsed Photothermal Radiom-
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tion and radiation heat losses (CRHL) in order to determine Here,AT = T — Tj is the variation of sample tempera-
the thermal diffusivity of some low thermal conductivity ma- ture,T’, from room temperaturdy. The solution of Eq. (2) is
terials, showing that CRHL should be taken into account forconstrained by the following initial and boundary conditions:
poor heat conductors at low frequencies.

The aim of this paper is to obtain analytical models closer }E% AT =0,
to the physical reality for the transient thermal response in . _

. T - lim AT =0,
solids for application in infrared photothermal radiometry t—0

technique that takes into account the dimensions of the sam- B eond+ Peony + Prad
ple and heat losses by convection and radiation. Also, an-
alyze the validity range of the linear approximation of the  In Eq. (3), I, represents the heat flux through tié
Stefan-Boltzmann’s Law, for the heat losses by thermal rasample surfacesi(i = 1,2,3 as schematically showed in
diation, used in the deduction of the analytical model. ThisFig. 1). Also in Eq. (3)®cond represents the conductive heat
latter, by comparing results with the numerical model, ob-flux, given by the Fourier heat conduction la®ony is the
tained by means the finite element method considering theonvective heat flux given by the Newton’s law of cooling,
full expression of the Stefan-Boltzmann Law. and ®,4 Stands for the thermal radiation flux, described by
the Stefan Boltzmann law.

s, = F; (3

2. Theoretical Model 2.1. Analytical model

Consider a disc shaped sample (Fig. 1) of radius a andhe Stefan-Boltzmann law, a non-linear expression that can
thickness Is that is heated by the absorption of a modulatelie written as follows, gives the thermal radiation flux.
rr_lonochromatm Gaussian beam..The generated heat flux den- Bpog = Ubes(T4 B Té) 4)
sity can be expressed as follows:
Whereoy is the Stefan-Boltzmann constant, ands the
2 optical emissivity of the surface, at absolute temperaiure
“Umod(t). (1) If AT <« Tp, by expandingb,,q as a Taylor series aroung
a linear approximation of the Stefan-Boltzmann law is ob-
Where, I, andwy are the irradiance and the waist size of tained [2]
the excitation beam at the sample’s surface respectivgly,

Pin(p,t) = (1 — Rs)Ipexp <2 ’p
wo

) e . = : Brag = dope  TSAT 5
is the sample’s reflectivity, is the radial cylindrical coordi- rad = 20bEs50 ©®)
nate and¥ 4 is a function describing the modulation. An In this way, the boundary conditions can be rewritten as:
electromagnetic-into-heat energy conversion efficiency equal 9
to unity was assumed, as well as optical opacity of the sam- ksafAAT + hAT|,, = Fj,
ple. If the sample is homogenous and isotropic, then the ho- .
mogenous parabolic heat diffusion equation (under cylindri- ;11% AT exists (6)
cal symmetry) models the heat transposd,
0, i#1
VAT — ——AT = 0. (2 in,
oy Ot

Here, n; are the unitary outward vectors normal to the
surfaces,S;, k; is the thermal conductivity of the sample,
andh, = hconv + hrag is the total thermal exchange coeffi-

Z, axis cient, beingh,..q = 4¢,0, T3 [2] the radiative heat transfer
coefficient. The value for the convective heat transfer co-
p a > efficient, heon, Was set ont x 10~* W.cm=2.K—! for all

samples, consistent with the value reported by Martieiez
al. [10]. To solve the model uprising from Eq. (2) and (3),
considering Eg. 4-7, the dimensionless variablesp - ¢!
ands = z - I;! will be employed, along with the parameter
oo = wy - 27 /2a=1. Therefore, using the Fourier-Bessel
orthonormal basis)\T can be spanned as:

|
1
|
|
. |
i

AT(t, T_') = Z ®7L(t7 C) ' Rn(T‘)

Incident light beam
5
FIGURE 1. Schematic representation of the physical system used R,(r) = M (8)
for the mathematical model. J6 (vnji (vn)
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In Eq. (8),0,, are the expansion coefficientsAfl" inthe  thermal diffusion length corresponding to the — ¢~ har-
Fourier-Bessel orthonormal basis, defined through the set ahonic contribution. After a straightforward calculation, the
the Bessel functions of first kind (v,,r) and the associated following results were obtained:
eigenvaluesy,,, are given by the roots of the next transcen-

~__0SC
dental equation: AT = V2T Z Z DnmUnm (T7 C) : 5(("') - wﬂl)
nelN meZz
—opJ1(vn) + 2Bi,Jo(v,) =0
! L) eXp('Y’rL7rL(<_1))+N(+) exp(—Ynm(¢—1))
Bi, = 4hs 9 Unm== 0y exXP(Yam) —H{_) exp(—=Ynm)
1y = ok, 9) H{ 4y @XPYnm ) = H(_y €XP{—Ynm
Here, Bi, stands for the radial Biot number. Substituting X Rn(r)pt(+) = Ynm £ Bi.

Eq. (8) into the previous Egs. (2-6) leads to the subsequent

_ 0
reduced problem: Dum = Cn Hy, (16)

92 L0 g —g (10) AT =" " Dy Upm (1, C) - exp(iwmt) (17)
oc2 " wf.oot " Tt neNmez
lim®©,, =0 In Eq. (16) and (17)}{Cm} are the expansion coefficients
t=0 of Upeq in the Fourier basisu,, = 2mm f). By definition,

0 . 0 ) the Biot number - for a cylinder-shape sample - is related to
aig‘@" = BizOnlc=0 = Hyy - Pmod(t); the radial and axial Biot numbers through Eq. (18):

0 -1

—0,, + Bi.0,|c=1 =0. (11) |2

¢ Bi Bi, + Bi. (18)

In Eq. (11),f. = as - (7l?)~! is the characteristic fre- . .
quency that represents the modulation frequency atwhich the When the ratiaBi. - Bi ' < 1, or equivalentlys; <1,
thermal diffusion length, = (o, /7 f)*/? matches the sam- the dampmg (and therefore the thermgl reglme), is solgly
ple thickness, [11]; Bi. = l,h, - k7 * defines the axial Biot characterized by - f-! as usual, consistent with a semi-
number and\,, = s vy, beings; = I, - a~* the so-called infinite sample. Otherwise, the effects of the radial heat dif-

shape factor of the cylindrical sample. Additionally, the co-fusion cannot be neglected. To exemplify the effect of dif-

efficientsH? are determined as follows: ferent values of the shape factgy, in Fig. 2, the magnitude
—(1 = BRI of v,.., coefficients are calculated for a balsa wood sample
H? = % (s =23 x 107 m?.s7!; kb, = 0.11 W-m~L.K—1).

As can be seen from Fig. 2, by increasing the shape fac-
L 9 tor s¢, the maximal magnitudes of the damping coefficients
% /Rn(r) - exp < r ) rdr (12) increase -from 40 to 300, for a given value fof The previ-
5 g0 ous implies that when the shape factor increases, the lateral
surface heat transfer (heat losses) increases too, and the ra-
2.1.1. Oscillatory regime dial heat flow through the sample tends to acquire a greater
importance.

If the modulation function¥,,,,; is harmonic, then the re-
duced 1D-problem (Eq. (10)) can be re-written in frequency, 1 o Transient regime

domain, using the Unitary Fourier Transform (UFT), F, lead-

ing to the following partial differential equation (PDE) prob- Employing the Duhamel’s Theorem [12], and considering an

lem: arbitrary -but integrable- modulation function, the solution of
0, = ézsc _ Z énm(w7n7 Q) 6(w—wn) (13) the 1D reduced problem, Eq. (10), is given as follows:
me”Z t
82 ~ 2 A ®n == 62;&1“ = H2 Z Eanm(<) : /\Ilmod(T)
874.2@717% - ’Ynm@nm - (14) m=1 0
96, - Bi.6 |y = HY - F[¥mod; -gexp(—ﬂfCWQ )¢ dr (19)
84 nm z9nm|—q n mod) ot nm
~ - 2 (32 2 .
%@nm + Bi-Opm|._, =0 (15) Where:ey, = (B 1 An), and:
Zm = 6m Cos ﬂmg + B’Lz - sin 5m< (20)

The accent marks refer to the dependant variables in fre-
quency domain. The damping coefficients,, = A2 + P
2imf - f-! are closely related to the complex diffusion co- Epm = /mendg‘ (21)
efficientso,, = (1 +4) - .}, beingu, = pus - m~1/? the J
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FIGURE 2. Calculated values dfy..| for a balsa wood sample, for: () = 1, (b) sy = 0.4, (c) s; = 0.2 and (d)s; = 0.133. Here the
modulation frequency was set on 100 mHz.

The x,, function stands for the stationary solution of the Again, {C};} are the expansion coefficients &f,,.q in the
reduced problem, specified by the following expression: Fourier basis. Otherwise, i¥,,,4 has discontinuity points,
e exp(An (¢ — 1)) + ny exp(An (¢ — 1)) the integral in Eq. (19) must pe solved by integration by parts
= over the continuity subdomains.

" 77(2+) eXp(/\n) - 77(2_) eXp(—/\n)
N(+) = N = Bi, (22) 22 Numerical Model

The eigenvalue$(,,}, corresponding to the eigenfunc- _ _ _
tions {Z,,}, are determined by the zeros of the following In this work, COMSOL Multiphysics (CMP) [13] has been

transcendental equation: used to solve numerically the problem described earlier in
28, Bi §2, by the Finite Element Method (FEM). To solve numer-
tan B, = ﬁ; Bm € RT/{Bi,}  (23) ically Eq. (2) it is necessary to define, not only, the physi-

) ) ) ~cal model (equations, and boundary and initial conditions),

This equation most be solved numerically, however, it canyt a1s0 global parameters, the geometry (coordinate system,
be demonstrated thaf,, ~ mraslongas3i.: < 1. f Wyoa  symmetries, physical boundaries, etc.), the material proper-
is continuous and can be spanned in the Fourier basis, thgs and auxiliary functionsi.e. the power density distri-

the convolution product in Eq. (19) is calculated to be: bution and the modulation function). To simulate the power
density distribution in CMP, a modulated Gaussian function
t P was defined.
[ Urdr) - g exp(m R )irir =
3 O = (1 — Ry) e 2@ Hv)/wo) . gsd (1) (25)
exp(iwgt) — exp(—mfow?, t . o ) . .
X Z Ck [ p( kQ) n QZSc(f ) ff_1 ) (24) In Eg. (25) Rs is the reflectivity, is the irradiancew
kez Dinm € is the laser spot radius,andy are the independent variables,
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a “normal” distribution for the cylinder's area, and the sec-
ond one using a finer element distribution for both surfaces
(z =0,1,) as showed in Fig. 3.

Once the model and the meshing were defined, the nu-
merical solver was selected to generate the simulation. In
this case, a direct multifrontal massively parallel sparse di-
rect (MUMPS) solver was chosen, due to its high calculus
resolution capabilities and efficient memory management in
parallel computing [15]. The MUMPS solver was imple-
mented in combination with a time stepping feature using a

WA, & ZAVAVAVAVAY =
\A%%XAVAVAVAVAvQX backward differentiation formula (BDF) [16] method in strict
\VAVAVAVAVA mode, considering second-order and fourth-order BDF to en-

FIGURE 3. Meshing of the elements which defines the spatial do- SUre a fast and accurate numerical convergence in the numer-
main for the numerical solution (units are not shown). ical solution of the model; obtaining a solution at the edges
of the temporal subintervals, during the stipulated simulation
and ;! is the unitary rectangular wave train, multiplied by time range. Finally, a parametric sweep was used to obtain
the left-continuous unitary step function. Notice tdgf ,in  the solutions of the model, described in the present section,
Eq. (25), is a particular case &f;,, defined in Eq. (1). For at different frequencies with the same boundary and initial
solving the presented physical problem using CMP, the heatonditions.
transfer in solids module was employed, in which the dy-

namical equation is given by the convection-diffusion equas  Resuylts and Discussion
tion [14]. '
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In the present study, four different samples were considered:
— AT+ pCpi-V(VT) =V - (kV(VT))+ Q (26)  Two of them were low thermal conductivity balsa wood (BW)
ot and high-density polyethylene (HDPE) materials, and the
In Eq. (26),p, C, andk are the mass density, the specific other two were high thermal conductivity cooper (Cu) and
heat (at constant pressure), and the thermal conductivity guminium (Al) samples. The geometrical characteristics and
the material, respectively,s the translational motion of the reported physical properties of the samples are displayed in
surrounding fluid (here is assumed to be null); ar@ the ~ Table I [17,18].
heat source term. Here, batrand( are assumed to be null, In all cases, and for the analytical and numerical mod-
so that for a homogeneous and isotropic sample with constagis, the modulation functiodmqq considered was the unitary
thermal conductivity, the above equation becomes the wellféctangular wave train, with oscillation periogod = =
known homogeneous heat diffusion equation. The following2nd WideTmoa/2, multiplied by the left-continuous unitary
boundary conditions have been considered for the numeric&tep function.
solution by FEM:

0
pCyp

3.1. Analytical calculations: Oscillatory regime
i (RVT) + oy (T =) The temperature distributions (surface thermograms) at
+es0p(T* = TY)|s, = F; (27) ¢ = 1 were calculated - using the analytical model, Eq. (10b)
- for the samples defined in Table | considering, a modula-
In Eqg. (27), the full expression of the Stefan-Boltzmanntion frequency,f, of 100 mHz, a value of 0.2 for the shape
law was considered, instead of the linear approximation ofactor, s¢, and the following values for the other input pa-
the previous section, so that the boundary conditions becomameters: I, = 12.7 x 10* W-m~2; oy = 4.24 x 1072;
non-linear. For the FEM processing, a tetrahedral mesh witland 7y = 300 K. In Fig. 4, the obtained results in temper-
two different element sizes was constructed over the domairature difference are shown at four different simulation times
One element size was calibrated for “general physics” with(0, (1/4)f=1, (1/2)f~1, (3/4)f~1).

TABLE |. Geometrical and physical parameters considered for calculations.

a Ls €s R as ks heony fe

Sample  Material x1073m  x1073m x107°m?.s7t  WmtK™!  wm2K™! Hz
M1 BW 5 1 0.91 0.20 0.22 0.11 4.0 0.070
M2 HDPE 5 1 0.93 0.20 0.21 0.52 4.0 0.067
M3 Al 5 1 0.03 0.96 93 238 4.0 29.61
M4 Cu 5 1 0.05 0.60 116 400 4.0 36.92
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FIGURE 4. Simulated thermograms for: a) M1, b) M2, c) M3, and d) M4 samples, at four different simulation times. In each figure, 2.5 s
equalsf ! /4. The units in colour bars are K.

To have a better insight on the time evolution of the ra-factor changes from 0.2 to 0.4, which shows the importance
dial temperature distribution, the full-width at half-maximum of the shape factor in the temperature distribution in the sam-
(FWHM) were calculated. They are shown in Fig. 5 as aple. In Figs. 6 and 7, the radial temperature distribution of
function of time, and for values of 0.2 and 0.4 for the shapesamples M1 and M4 (corresponding to the highest and low-
factorsy. est Bi, values) are displayed. In all cases, = 0.2, and

An important feature in the surface thermograms in allf = 100 mHz.
samples is that the radial distribution of temperature has a
Gaussian-like profile, inherit from the power distribution. ~ While sample M1 shows the maximal broadening at one-
However, att = 7.5 s (3/4 foldTmog), the broadening of the half of the time period, sample M4 exhibits a significantly
radial temperature distribution covers the hole surface in Mdarger broadening in the radial distribution, reaching the max-
and M4 samples, for the particular choice of the shape facimal broadening at = 7.5 s. This feature in the radial tem-
tor s; = 0.2. This effect cannot be attributed solely to the Perature distribution in M4 sample predicts a “homogeniza-
radial heat flux, but also to a combination of the magnitudedion” of the superficial temperature of the sample, consistent
of the radial and axial heat fluxes, and finally, to the valued0 @ 1D-heat diffusion. As consequence of the particular ra-
of Bi, andf - £, since the shape factor is the same for alldial distribution, the thermal wave front differs from one sam-
samples. Contrary, for M1 and M2 samples, the maximun®ple to another. This is an important issue for the analysis of
FWHM values occur just at one-half &f,qq, Fig. 5a). How- the modulated photothermal radiometric signal. Taken the
ever, the minimal FWHM value in sample M1 does not occurnormalized magnitude of the spatial averdgsT’) |, the form
at integer multiples ofmog, but coincidently at 3/4 foldog; of the calculated MPTR signal is clearly distinguishable for
while the evolution of the FWHM values of the M2 sample €ach sample (Fig. 8). As thigi, decreases anfl increases,
is quite symmetric. Figure 5b) shows a significant change ithe MPTR signal becomes symmetrical. Notice also a tem-
the behaviour of FWHM, in all cases, with an important de-poral shift, due to the axial heat diffusion, and therefore, to
crease in the FWHM value of more than 20% when the shap#he f. value.
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FIGURE 5. FWHM values, at different times, of: M1 (empty circles), M2 (empty squares), M3 (empty-up triangles) and M4 (empty-down
triangles) samples. (a) = 0.2 and (b)sy = 0.4. In both caseg = 100 mHz.

FIGURA 7. Calculated radial temperature distribution of sample
FIGURA 6. Calculated radial temperature distribution of sample M4, at:¢t =0's (solid line),t = 2.5 s (dash-asterisk line},= 5 s

M1, at:¢ = 0's (solid line),t = 2.5 s (dash-asterisk line),= 5s  (dash-circle line) and = 7.5 s (dashed line). For a better visual-
(dash-circle line) and = 7.5 s (dashed line). ization, in this case the vertical axis is in logarithmic scale.

Naturally, the influence of other parameters must be takethin regime. Even so, for metallic samples like M3 and M4,
into account, for example, the magnitude of the absorbed erthe temperature oscillations could be difficult to be measured
ergy flux averaged over the surface of incidence -consideredccurately because of the highly reflective and low IR emis-
in the coefficienttZ?, Eq. (7b)-decreases as the rafip- k! sivity surfaces, resulting in small thermal oscillations. A
decreases. This fact, in combination with smallest values opossible solution could be increasing of the ratio- k;?,

Bi, and higher thermal diffusivities (as it was mentioned inby the deposition of high-emissivity, low-reflectivity conduc-
previous lines), provokes that the radial temperature distributive thin coatings on the free surfaces of the sample (just as
tion gets broader. This result confirms that the radial depenMartinezet al. does [10]). However, a precaution must be
dence of the temperature distribution should not be neglectethken when the coating and the sample respond in the same
if the shape factor is not small, in particular in the thermallythermal regime (in this case, the thermally thin regime), being
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FIGURE 9. AT calculated aff = 100 mHz, by FEM, for: (a) M1, and (b) M2. Heré\t = 0.1 s.
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FIGURE 10. AT calculated aff = 100 mHz, by FEM, for: (a) M3, and (b) M4. Heré\t = 1s.

necessary to consider a three layers’ system in the heat diffu- 6.0 ] D/E'J\ ' ' i
sion model [19]. 554 PO I 3
O O ]

504 / ~ 3

TER E

3.2.  Numerical calculations: Transient regime 404 / ]
(‘f \D ]

'wn 3.5 3

Once that the FEM simulations were obtained to discuss the ¥ ;] TTa ]
behaviour of the transient thermal response of all samples,~ . 1 E

the surface poinP = (0,0, ;) was chosen to calculate the ™~
AT vs. t curves. In Fig. 9, the results & calculated by s ]
FEM for M1 and M2 samples, are shown fr= 100 mHz. 1'0_ . ]
These samples, having high emissivity and low thermal con- ‘ &W
ductivity, respond closely to thermally thin regime, and qual- 034 O\o\o\o E
itatively alike as the thermal response described by ezt 007 - . : —
et al. [10], analysed by using the 1D model. Next, Fig. 10 00 o 02 03 o4
shows theAT vs. t curves for M3 and M4 samples, &t S (Hz)

The small values of the temperature variation in samples ) o )
M3 and M4 in relation to those of the samples M1 and M2 areFIGURE 11. Amplitudes of the temperature variations, as function
. . of f, for M1 sample (full circle (a), empty circle (n)), and M2 sam-

because large values bfgive small resistance to heat con- A ; _

. . ple (full square (a), empty square (n)). Here: (a) = analytical, (n) =
duction (low values of5:) and, therefore, small temperature |, arical.
gradients. This is the same reason why the predicted values
of the temperature variation in sample M1 are greater than
those corresponding to sample M2. Unlike this, the highest In Figs. 11 and 12, the amplitudes of the temperature os-
values of the temperature variation of the sample M4 with re<illations as function of the modulation frequency, are shown
spect to those of sample M3 are due to the difference betwednr all samples, calculated by means of the analytical and nu-

the reflectivity values Rs of these samples (see Table I).  merical models.

2.0 B
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' " ' ‘ and M4 samples behaves almost as thermally thin samples,
i since theA vs. f (inset in Fig. 12) keep &' dependence,
unlike the behaviour of the samples M1 and M2 whose char-
1] acteristic frequencies are around 5 times smaller than those
of M3 and M4, see Table I.

§ A graph with the comparison among the numerical and
analytical models with the experimental results of balsa wood
] and plasticine reported in Ref. [10], is shown in Fig. 13. A
good agreement among them is observed, in particular, in the
] regions where the behavior is as a straight line the slopes are
very similar, which is where the values of thermal diffusivity

] are obtained.

fl/2 A (mK S-I/Z)

0.0 0.1 0.2 0.3 0.4 4. Conclusions
S (Hz)

FIGURE 12. Amplitudes of the temperature variations, as function

of f, for M3 sample (full up-triangle (a), empty up-triangle (n)),

and M4 sample (full down-triangle (a), empty down-triangle (n)).

Here: (a) = analytical, (n) = numerical.

By solving the 2D heat diffusion equation, analytical and nu-
merical models were obtained to describe transient and oscil-
latory thermal response in homogenous and finite solid sam-
ples (with cylindrical symmetry). Heat losses due to radia-
tion and convection through front, rear and lateral surfaces
- ' ' ' were considered and a monochromatic Gaussian excitation
beam that impinge on the front face of the sample. The an-
alytical solution for the oscillatory thermal response reveals
the close dependence of the thermal response on the dimen-
sions of the sample, represented by a form fasjorshow-
ing that whens; < 1 the problem is reduced to 1D of the
semi-infinite sample model. In any other case, the lateral sur-
face heat transfer (heat losses) cannot be neglected, making
its consideration necessary in a complete description of the
physical situation. The results obtained for the transient ther-
mal response are in congruence with the experimental results
reported by Martinez Ket al[10]. In the transient thermal re-
. , . , sponse it was obtained that when the conditldfil <« Ty is
013 022 031 0 048 %7 well fulfilled the results obtained between the analytical and
A Gl numerical models agree very well showing the utility of the
FIGURE 13. Predicted radiometric signal, calculated by analytical Stefan-Boltzmann law linearization considered in the analyt-
(solid black line), and FEM (black dashed line). Here, the full dia- ical model. However, as long as the thermal response moves
monds and fill circles correspond to the experimental available dateaway from the thermally thin regime the correspondence of
for balsa wood and plasticine, respectively [10]. the results obtained between both models becomes increas-

ingly less, until it becomes necessary to analyze the thermal

The re;ults of Fig. 12. show a good agreement betWeepesponse using only the numerical model to obtain reliable
the analytical and numerical models for the sample M4, for

which the conditionAT < T is well fulfilled and the ' CoU™

Stefan-Boltzmann law behaves with good approximation in

a linear way. However, when the conditidyii” <« T is not Acknowledgments

adequately fulfilled, the correspondence between both mod-

els is not so good, as shown by the results for samples MIThis work has been partially supported by Consejo Nacional
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