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Axisymmetric modelling of transient thermal response in solids for
application to infrared photothermal radiometry technique
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Received 4 May 2018; accepted 4 September 2018

To induce temperature changes on the sample surface by the incidence of a monochromatic modulated light beam and detect the changes
produced in the thermal radiation emission, is the basic principle of the infrared photothermal radiometry technique. Until now, in order to
analyze the thermal response mathematical models based in an one-dimensional model were used considering a sample with a finite thickness
and an infinite incidence surface, as well as the linear approximation of the Stefan-Boltzmann Law in the calculus of the heat losses due to
thermal radiation. In this work, analytical and numerical models for the 2D heat diffusion in homogenous finite solid samples, are presented.
These models were obtained by solving the heat diffusion equation, under cylindrical symmetry, considering mixed boundary conditions to
include radiation and convection heat losses through the surfaces of the sample, and a monochromatic Gaussian excitation beam impinging
on the front of the sample. The analytical models were obtained by solving the governing equations, considering the well-known linear
approximation of the Stefan-Boltzmann law in the calculus of the heat losses due to thermal radiation. To analyse the effects of the non-
linearity of the heat losses by thermal radiation on the thermal transient response, in the numerical model it was taken into account the full
expression of the Stefan-Boltzmann law, and the transport equation was solved numerically by means of the Finite Element Method (FEM).
The analytical solution for the oscillatory thermal response reveals the close dependence of the thermal response on the ratio of thickness to
the radius of the sample, represented by the form factor sf. Both, the analytical and the numerical solutions were employed to simulate the
thermal response of homogenous materials, and compared with experimental results reported elsewhere by part of our same research group.
Finally, the difference between the thermal response predictions, from the analytical and numerical models, were analyzed.
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1. Introduction

There are several techniques for the thermal characterization
of condensed matter samples, which can be divided in two
classes: Steady state and dynamical methods [1]. Among the
latter one can mention the Photothermal (PT) techniques [1-
2], which are based in the generation and detection of thermal
waves. A particular type of PT technique is the one proposed
in 1979 by Nordal and Kanstad for the spectroscopic analysis
of solid and semi-solid materials [3], which they called Pho-
tothermal Radiometry (PTR), although a preliminary presen-
tation was published a year earlier by these authors, for the
analysis of powders [4]. The basic principle of this technique
is to induce temperature changes on the sample surface by
the incidence of a monochromatic modulated light beam and
detect the changes produced in the thermal radiation emis-
sion. Since then, several variants of PTR technique have
been reported, but its principle remains the same. Nowadays,
this technique is named Modulated Photothermal Radiome-
try (MPTR) and, if a pulse of light replaces the exciting light
beam the technique is named Pulsed Photothermal Radiom-

etry (PPTR) [5,6]. Within the reports on the quantitative de-
scription of the modulated PTR technique, it is found that,
in the eighties Santos and Miranda [7] presented a quantita-
tive derivation of the modulated PTR production in both, fre-
quency and time domain, using the one-dimensional model
for the heat flow. From the model developed, Santos and Mi-
randa successfully found the surface temperature fluctuation,
neglecting the heat lost through the lateral walls of the sam-
ple and convection heat lost. A few years ago, Fuenteet al.
analyzed the ability of modulated PTR to retrieve simulta-
neously and accurately the optical absorption coefficient and
the thermal diffusivity in homogeneous slabs [8]. Their anal-
ysis was based on considering the oscillating component of
the temperature in the absence of heat losses obtained from
the solution of one dimensional (1D) heat diffusion equation.
Salazaret al. [9] reported the solution of 1D heat diffusion
equation with non-adiabatic boundary conditions and con-
cluded that the front and rear surface temperatures are af-
fected by heat losses at low frequencies. Recently, Martı́nez
et al. [10] obtained a theoretical model for the PT signal in
frequency domain in a 1D configuration considering convec-
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tion and radiation heat losses (CRHL) in order to determine
the thermal diffusivity of some low thermal conductivity ma-
terials, showing that CRHL should be taken into account for
poor heat conductors at low frequencies.

The aim of this paper is to obtain analytical models closer
to the physical reality for the transient thermal response in
solids for application in infrared photothermal radiometry
technique that takes into account the dimensions of the sam-
ple and heat losses by convection and radiation. Also, an-
alyze the validity range of the linear approximation of the
Stefan-Boltzmann’s Law, for the heat losses by thermal ra-
diation, used in the deduction of the analytical model. This
latter, by comparing results with the numerical model, ob-
tained by means the finite element method considering the
full expression of the Stefan-Boltzmann Law.

2. Theoretical Model

Consider a disc shaped sample (Fig. 1) of radius a and
thickness ls that is heated by the absorption of a modulated
monochromatic Gaussian beam. The generated heat flux den-
sity can be expressed as follows:

Φin(ρ, t) = (1−RS)I0 exp

(
−2

∣∣∣∣
ρ

w0

∣∣∣∣
2
)
·Ψmod(t). (1)

Where,I0 andw0 are the irradiance and the waist size of
the excitation beam at the sample’s surface respectively,Rs

is the sample’s reflectivity,ρ is the radial cylindrical coordi-
nate andΨmod is a function describing the modulation. An
electromagnetic-into-heat energy conversion efficiency equal
to unity was assumed, as well as optical opacity of the sam-
ple. If the sample is homogenous and isotropic, then the ho-
mogenous parabolic heat diffusion equation (under cylindri-
cal symmetry) models the heat transport,i.e.

∇2∆T − 1
αs

∂

∂t
∆T = 0. (2)

FIGURE 1. Schematic representation of the physical system used
for the mathematical model.

Here,∆T = T − T0 is the variation of sample tempera-
ture,T , from room temperature,T0. The solution of Eq. (2) is
constrained by the following initial and boundary conditions:

lim
t→0

∆T = 0,

lim
t→0

∆T = 0,

Φcond+ Φconv + Φrad|Si = Fi (3)

In Eq. (3), Fi, represents the heat flux through theith
sample surfaceSi(i = 1, 2, 3 as schematically showed in
Fig. 1). Also in Eq. (3),Φcond represents the conductive heat
flux, given by the Fourier heat conduction law,Φconv is the
convective heat flux given by the Newton’s law of cooling,
andΦrad stands for the thermal radiation flux, described by
the Stefan Boltzmann law.

2.1. Analytical model

The Stefan-Boltzmann law, a non-linear expression that can
be written as follows, gives the thermal radiation flux.

Φrad = σbεs(T 4 − T 4
0 ) (4)

Whereσb is the Stefan-Boltzmann constant, andεs is the
optical emissivity of the surface, at absolute temperatureT .
If ∆T ¿ T0, by expandingΦrad as a Taylor series aroundT0

a linear approximation of the Stefan-Boltzmann law is ob-
tained [2]

Φrad = 4σbεsT
3
0 ∆T (5)

In this way, the boundary conditions can be rewritten as:

ks
∂

∂n̂i
∆T + hs∆T |si = Fi,

lim
ρ→0

∆T exists (6)

Fi =
{

0, i 6= 1
Φin, i = 1 . (7)

Here, n̂i are the unitary outward vectors normal to the
surfaces,Si, ks is the thermal conductivity of the sample,
andhs = hconv + hrad is the total thermal exchange coeffi-
cient, beinghrad = 4εsσbT

3
0 [2] the radiative heat transfer

coefficient. The value for the convective heat transfer co-
efficient, hconv, was set on4 × 10−4 W·cm−2·K−1 for all
samples, consistent with the value reported by Martinezet
al. [10]. To solve the model uprising from Eq. (2) and (3),
considering Eq. 4-7, the dimensionless variablesr = ρ · a−1

andς = z · l−1
s will be employed, along with the parameter

σ0 = w0 · 2−1/2a−1. Therefore, using the Fourier-Bessel
orthonormal basis,∆T can be spanned as:

∆T (t, ~r) =
∞∑

n=1

Θn(t, ζ) ·Rn(r)

Rn(r) =
√

2j0(vnr)√
j2
0(vnj2

1(vn)
(8)
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In Eq. (8),Θn are the expansion coefficients of∆T in the
Fourier-Bessel orthonormal basis, defined through the set of
the Bessel functions of first kind,J0(vnr) and the associated
eigenvalues,vn, are given by the roots of the next transcen-
dental equation:

−vnJ1(vn) + 2BiρJ0(vn) = 0

Biρ =
ahs

2ks
(9)

Here, Biρ stands for the radial Biot number. Substituting
Eq. (8) into the previous Eqs. (2-6) leads to the subsequent
reduced problem:

∂2

∂ζ2
Θn − 1

πfc

∂

∂t
Θn − λ2

nΘn = 0 (10)

lim
t→0

Θn = 0

∂

∂ζ
Θn −BizΘn|ζ=0 = H0

n ·Ψmod(t);

∂

∂ζ
Θn + BizΘn|ζ=1 = 0. (11)

In Eq. (11),fc ≡ αs · (πl2s)−1 is the characteristic fre-
quency that represents the modulation frequency at which the
thermal diffusion lengthµs = (αs/πf)1/2 matches the sam-
ple thicknessls [11]; Biz = lshs · k−1

s defines the axial Biot
number andλn = sfvn, beingsf ≡ ls · a−1 the so-called
shape factor of the cylindrical sample. Additionally, the co-
efficientsH0

n are determined as follows:

H0
n ≡

−(1−Rs)lsI0

ks

×



1∫

0

Rn(r) · exp

(
−

∣∣∣∣
r

σ0

∣∣∣∣
2
)

rdr


 (12)

2.1.1. Oscillatory regime

If the modulation functionΨmod is harmonic, then the re-
duced 1D-problem (Eq. (10)) can be re-written in frequency
domain, using the Unitary Fourier Transform (UFT), F, lead-
ing to the following partial differential equation (PDE) prob-
lem:

Θ̃n = Θ̃osc
n =

∑

m∈Z
Θ̃nm(ωm, ζ) · δ(ω − ωm) (13)

∂2

∂ζ2
Θ̃nm − γ2

nmΘ̃nm = 0 (14)

∂

∂ζ
Θ̃nm −BizΘ̃nm

∣∣
ζ=0

= H0
n · F [Ψmod];

∂

∂ζ
Θ̃nm + BizΘ̃nm

∣∣
ζ=1

= 0 (15)

The accent marks refer to the dependant variables in fre-
quency domain. The damping coefficientsγ2

nm = λ2
n +

2imf · f−1
c are closely related to the complex diffusion co-

efficientsσm = (1 + i) · µ−1
m , beingµm = µs · m−1/2 the

thermal diffusion length corresponding to them − th har-
monic contribution. After a straightforward calculation, the
following results were obtained:

∆̃T
osc

=
√

2π
∑

n∈N

∑

m∈Z
DnmUnm(r, ζ) · δ(ω − ωm)

Unm=−µ(−) exp(γnm(ζ−1))+µ(+) exp(−γnm(ζ−1))
µ2

(+) exp(γnm)−µ2
(−) exp(−γnm)

×Rn(r)µ(±) = γnm ±Biz

Dnm = CmH0
n (16)

∆T osc =
∑

n∈N

∑

m∈Z
DnmUnm(r, ζ) · exp(iωmt) (17)

In Eq. (16) and (17),{Cm} are the expansion coefficients
of Ψmod in the Fourier basis (ωm = 2πmf ). By definition,
the Biot number - for a cylinder-shape sample - is related to
the radial and axial Biot numbers through Eq. (18):

Bi =
[

1
Biρ

+
2

Biz

]−1

(18)

When the ratioBiz ·Bi−1
ρ ¿ 1, or equivalentlysf ¿ 1,

the damping (and therefore the thermal regime), is solely
characterized byf · f−1

c as usual, consistent with a semi-
infinite sample. Otherwise, the effects of the radial heat dif-
fusion cannot be neglected. To exemplify the effect of dif-
ferent values of the shape factorsf , in Fig. 2, the magnitude
of γnm coefficients are calculated for a balsa wood sample
(αs = 23× 10−6 m2·s−1; ks = 0.11 W·m−1·K−1).

As can be seen from Fig. 2, by increasing the shape fac-
tor sf , the maximal magnitudes of the damping coefficients
increase -from 40 to 300, for a given value offc. The previ-
ous implies that when the shape factor increases, the lateral
surface heat transfer (heat losses) increases too, and the ra-
dial heat flow through the sample tends to acquire a greater
importance.

2.1.2. Transient regime

Employing the Duhamel’s Theorem [12], and considering an
arbitrary -but integrable- modulation function, the solution of
the 1D reduced problem, Eq. (10), is given as follows:

Θn = Θtran
n = H0

n

∑
m=1

EnmZm(ζ) ·
t∫

0

Ψmod(τ)

· ∂

∂t
exp(−πfc$

2
nmt)|t−τdτ (19)

Where:$2
nm = (β2

m + λ2
n), and:

Zm = βm cos βmζ + Biz · sin βmζ (20)

Enm =

1∫

0

Zmχndζ (21)
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FIGURE 2. Calculated values of|γnm| for a balsa wood sample, for: (a)sf = 1, (b) sf = 0.4, (c) sf = 0.2 and (d)sf = 0.133. Here the
modulation frequency was set on 100 mHz.

Theχn function stands for the stationary solution of the
reduced problem, specified by the following expression:

χn =
η(−) exp(λn(ζ − 1)) + η(−) exp(λn(ζ − 1))

η2
(+) exp(λn)− η2

(−) exp(−λn)

η(±) = ηn ±Biz (22)

The eigenvalues{βm}, corresponding to the eigenfunc-
tions {Zm}, are determined by the zeros of the following
transcendental equation:

tanβm =
2βmBiz

β2
m −Bi2z

; βm ∈ R+/{Biz} (23)

This equation most be solved numerically, however, it can
be demonstrated thatβm ≈ mπ as long asBiz ¿ 1. If Ψmod

is continuous and can be spanned in the Fourier basis, then
the convolution product in Eq. (19) is calculated to be:

t∫

0

Ψmod(τ) · ∂

∂t
exp(−πfc$

2
nmt)|t−τdτ = −πfc$

2
nm

×
∑

k∈Z
Ck

[
exp(iωkt)− exp(−πfc$

2
nmt)

$2
nm + 2ikf · f−1

c

]
(24)

Again, {Ck} are the expansion coefficients ofΨmod in the
Fourier basis. Otherwise, ifΨmod has discontinuity points,
the integral in Eq. (19) must be solved by integration by parts
over the continuity subdomains.

2.2. Numerical Model

In this work, COMSOL Multiphysics (CMP) [13] has been
used to solve numerically the problem described earlier in
§2, by the Finite Element Method (FEM). To solve numer-
ically Eq. (2) it is necessary to define, not only, the physi-
cal model (equations, and boundary and initial conditions),
but also global parameters, the geometry (coordinate system,
symmetries, physical boundaries, etc.), the material proper-
ties, and auxiliary functions (i.e. the power density distri-
bution and the modulation function). To simulate the power
density distribution in CMP, a modulated Gaussian function
was defined.

Φsq
mod = (1−Rs)I0e

−2((x2+y2)/w2
0) ·Ψsq

mod(t) (25)

In Eq. (25) Rs is the reflectivity,I0 is the irradiance,w0

is the laser spot radius,x andy are the independent variables,
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FIGURE 3. Meshing of the elements which defines the spatial do-
main for the numerical solution (units are not shown).

andΨsq
mod is the unitary rectangular wave train, multiplied by

the left-continuous unitary step function. Notice thatΦsq
mod in

Eq. (25), is a particular case ofΦin, defined in Eq. (1). For
solving the presented physical problem using CMP, the heat
transfer in solids module was employed, in which the dy-
namical equation is given by the convection-diffusion equa-
tion [14].

ρCp
∂

∂t
∆T + ρCp~u · ∇(∇T ) = ∇ · (k∇(∇T )) + Q (26)

In Eq. (26),ρ, Cp andk are the mass density, the specific
heat (at constant pressure), and the thermal conductivity of
the material, respectively,~u is the translational motion of the
surrounding fluid (here,~u is assumed to be null); andQ the
heat source term. Here, both~u andQ are assumed to be null,
so that for a homogeneous and isotropic sample with constant
thermal conductivity, the above equation becomes the well-
known homogeneous heat diffusion equation. The following
boundary conditions have been considered for the numerical
solution by FEM:

n̂i · (k∇T ) + hconv · (T − T0)

+ εsσb(T 4 − T 4
0 )|Si = Fi (27)

In Eq. (27), the full expression of the Stefan-Boltzmann
law was considered, instead of the linear approximation of
the previous section, so that the boundary conditions become
non-linear. For the FEM processing, a tetrahedral mesh with
two different element sizes was constructed over the domain:
One element size was calibrated for “general physics” with

a “normal” distribution for the cylinder’s area, and the sec-
ond one using a finer element distribution for both surfaces
(z = 0, ls) as showed in Fig. 3.

Once the model and the meshing were defined, the nu-
merical solver was selected to generate the simulation. In
this case, a direct multifrontal massively parallel sparse di-
rect (MUMPS) solver was chosen, due to its high calculus
resolution capabilities and efficient memory management in
parallel computing [15]. The MUMPS solver was imple-
mented in combination with a time stepping feature using a
backward differentiation formula (BDF) [16] method in strict
mode, considering second-order and fourth-order BDF to en-
sure a fast and accurate numerical convergence in the numer-
ical solution of the model; obtaining a solution at the edges
of the temporal subintervals, during the stipulated simulation
time range. Finally, a parametric sweep was used to obtain
the solutions of the model, described in the present section,
at different frequencies with the same boundary and initial
conditions.

3. Results and Discussion

In the present study, four different samples were considered:
Two of them were low thermal conductivity balsa wood (BW)
and high-density polyethylene (HDPE) materials, and the
other two were high thermal conductivity cooper (Cu) and
aluminium (Al) samples. The geometrical characteristics and
reported physical properties of the samples are displayed in
Table I [17,18].

In all cases, and for the analytical and numerical mod-
els, the modulation functionΨmod considered was the unitary
rectangular wave train, with oscillation periodτmod = f−1

and wideτmod/2, multiplied by the left-continuous unitary
step function.

3.1. Analytical calculations: Oscillatory regime

The temperature distributions (surface thermograms) at
ζ = 1 were calculated - using the analytical model, Eq. (10b)
- for the samples defined in Table I considering, a modula-
tion frequency,f , of 100 mHz, a value of 0.2 for the shape
factor, sf , and the following values for the other input pa-
rameters:I0 = 12.7 × 104 W·m−2; σ0 = 4.24 × 10−2;
andT0 = 300 K. In Fig. 4, the obtained results in temper-
ature difference are shown at four different simulation times
(0, (1/4)f−1, (1/2)f−1, (3/4)f−1).

TABLE I. Geometrical and physical parameters considered for calculations.

a ls εs Rs αs ks hconv fc

Sample Material ×10−3 m ×10−3 m ×10−6 m2·s−1 W·m−1·K−1 W·m−2·K−1 Hz

M1 BW 5 1 0.91 0.20 0.22 0.11 4.0 0.070

M2 HDPE 5 1 0.93 0.20 0.21 0.52 4.0 0.067

M3 Al 5 1 0.03 0.96 93 238 4.0 29.61

M4 Cu 5 1 0.05 0.60 116 400 4.0 36.92
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FIGURE 4. Simulated thermograms for: a) M1, b) M2, c) M3, and d) M4 samples, at four different simulation times. In each figure, 2.5 s
equalsf−1/4. The units in colour bars are K.

To have a better insight on the time evolution of the ra-
dial temperature distribution, the full-width at half-maximum
(FWHM) were calculated. They are shown in Fig. 5 as a
function of time, and for values of 0.2 and 0.4 for the shape
factorsf .

An important feature in the surface thermograms in all
samples is that the radial distribution of temperature has a
Gaussian-like profile, inherit from the power distribution.
However, att = 7.5 s (3/4 foldτmod), the broadening of the
radial temperature distribution covers the hole surface in M3
and M4 samples, for the particular choice of the shape fac-
tor sf = 0.2. This effect cannot be attributed solely to the
radial heat flux, but also to a combination of the magnitudes
of the radial and axial heat fluxes, and finally, to the values
of Biρ andf · f−1

c , since the shape factor is the same for all
samples. Contrary, for M1 and M2 samples, the maximum
FWHM values occur just at one-half ofτmod, Fig. 5a). How-
ever, the minimal FWHM value in sample M1 does not occur
at integer multiples ofτmod, but coincidently at 3/4 foldτmod;
while the evolution of the FWHM values of the M2 sample
is quite symmetric. Figure 5b) shows a significant change in
the behaviour of FWHM, in all cases, with an important de-
crease in the FWHM value of more than 20% when the shape

factor changes from 0.2 to 0.4, which shows the importance
of the shape factor in the temperature distribution in the sam-
ple. In Figs. 6 and 7, the radial temperature distribution of
samples M1 and M4 (corresponding to the highest and low-
estBiρ values) are displayed. In all cases,sf = 0.2, and
f = 100 mHz.

While sample M1 shows the maximal broadening at one-
half of the time period, sample M4 exhibits a significantly
larger broadening in the radial distribution, reaching the max-
imal broadening att = 7.5 s. This feature in the radial tem-
perature distribution in M4 sample predicts a “homogeniza-
tion” of the superficial temperature of the sample, consistent
to a 1D-heat diffusion. As consequence of the particular ra-
dial distribution, the thermal wave front differs from one sam-
ple to another. This is an important issue for the analysis of
the modulated photothermal radiometric signal. Taken the
normalized magnitude of the spatial average|〈∆T 〉|, the form
of the calculated MPTR signal is clearly distinguishable for
each sample (Fig. 8). As theBiρ decreases andfc increases,
the MPTR signal becomes symmetrical. Notice also a tem-
poral shift, due to the axial heat diffusion, and therefore, to
thefc value.
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FIGURE 5. FWHM values, at different times, of: M1 (empty circles), M2 (empty squares), M3 (empty-up triangles) and M4 (empty-down
triangles) samples. (a)sf = 0.2 and (b)sf = 0.4. In both casesf = 100 mHz.

FIGURA 6. Calculated radial temperature distribution of sample
M1, at: t = 0 s (solid line),t = 2.5 s (dash-asterisk line),t = 5 s
(dash-circle line) andt = 7.5 s (dashed line).

Naturally, the influence of other parameters must be taken
into account, for example, the magnitude of the absorbed en-
ergy flux averaged over the surface of incidence -considered
in the coefficientH0

n, Eq. (7b)-decreases as the ratioRs ·k−1
s

decreases. This fact, in combination with smallest values of
Biρ and higher thermal diffusivities (as it was mentioned in
previous lines), provokes that the radial temperature distribu-
tion gets broader. This result confirms that the radial depen-
dence of the temperature distribution should not be neglected
if the shape factor is not small, in particular in the thermally

FIGURA 7. Calculated radial temperature distribution of sample
M4, at: t = 0 s (solid line),t = 2.5 s (dash-asterisk line),t = 5 s
(dash-circle line) andt = 7.5 s (dashed line). For a better visual-
ization, in this case the vertical axis is in logarithmic scale.

thin regime. Even so, for metallic samples like M3 and M4,
the temperature oscillations could be difficult to be measured
accurately because of the highly reflective and low IR emis-
sivity surfaces, resulting in small thermal oscillations. A
possible solution could be increasing of the ratiohs · k−1

s ,
by the deposition of high-emissivity, low-reflectivity conduc-
tive thin coatings on the free surfaces of the sample (just as
Mart́ınezet al. does [10]). However, a precaution must be
taken when the coating and the sample respond in the same
thermal regime (in this case, the thermally thin regime), being
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FIGURE 8. Normalized magnitude of the spatial average of the temperature oscillations of samples: (a) M1, (b) M2, (c) M3 and (d) M4. In
all cases,sf = 0.2 andf = 100 mHz.

FIGURE 9. ∆T calculated atf = 100 mHz, by FEM, for: (a) M1, and (b) M2. Here,∆t = 0.1 s.
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FIGURE 10. ∆T calculated atf = 100 mHz, by FEM, for: (a) M3, and (b) M4. Here,∆t = 1 s.

necessary to consider a three layers’ system in the heat diffu-
sion model [19].

3.2. Numerical calculations: Transient regime

Once that the FEM simulations were obtained to discuss the
behaviour of the transient thermal response of all samples,
the surface pointP = (0, 0, ls) was chosen to calculate the
∆T vs. t curves. In Fig. 9, the results atP, calculated by
FEM for M1 and M2 samples, are shown forf = 100 mHz.
These samples, having high emissivity and low thermal con-
ductivity, respond closely to thermally thin regime, and qual-
itatively alike as the thermal response described by Martı́nez
et al. [10], analysed by using the 1D model. Next, Fig. 10
shows the∆T vs. t curves for M3 and M4 samples, atP.

The small values of the temperature variation in samples
M3 and M4 in relation to those of the samples M1 and M2 are
because large values ofk give small resistance to heat con-
duction (low values ofBi) and, therefore, small temperature
gradients. This is the same reason why the predicted values
of the temperature variation in sample M1 are greater than
those corresponding to sample M2. Unlike this, the highest
values of the temperature variation of the sample M4 with re-
spect to those of sample M3 are due to the difference between
the reflectivity values Rs of these samples (see Table I).

FIGURE 11. Amplitudes of the temperature variations, as function
of f , for M1 sample (full circle (a), empty circle (n)), and M2 sam-
ple (full square (a), empty square (n)). Here: (a) = analytical, (n) =
numerical.

In Figs. 11 and 12, the amplitudes of the temperature os-
cillations as function of the modulation frequency, are shown
for all samples, calculated by means of the analytical and nu-
merical models.
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FIGURE 12. Amplitudes of the temperature variations, as function
of f , for M3 sample (full up-triangle (a), empty up-triangle (n)),
and M4 sample (full down-triangle (a), empty down-triangle (n)).
Here: (a) = analytical, (n) = numerical.

FIGURE 13. Predicted radiometric signal, calculated by analytical
(solid black line), and FEM (black dashed line). Here, the full dia-
monds and fill circles correspond to the experimental available data
for balsa wood and plasticine, respectively [10].

The results of Fig. 12 show a good agreement between
the analytical and numerical models for the sample M4, for
which the condition∆T ¿ T0 is well fulfilled and the
Stefan-Boltzmann law behaves with good approximation in
a linear way. However, when the condition∆T ¿ T0 is not
adequately fulfilled, the correspondence between both mod-
els is not so good, as shown by the results for samples M1,
M2 y M3 in Figs. 11 and 12. In these cases, it is convenient
to analyze the problem using the numerical model to obtain
reliable results. On the other hand, it can be notice that M3

and M4 samples behaves almost as thermally thin samples,
since theA vs. f (inset in Fig. 12) keep af−1 dependence,
unlike the behaviour of the samples M1 and M2 whose char-
acteristic frequencies are around 5 times smaller than those
of M3 and M4, see Table I.

A graph with the comparison among the numerical and
analytical models with the experimental results of balsa wood
and plasticine reported in Ref. [10], is shown in Fig. 13. A
good agreement among them is observed, in particular, in the
regions where the behavior is as a straight line the slopes are
very similar, which is where the values of thermal diffusivity
are obtained.

4. Conclusions

By solving the 2D heat diffusion equation, analytical and nu-
merical models were obtained to describe transient and oscil-
latory thermal response in homogenous and finite solid sam-
ples (with cylindrical symmetry). Heat losses due to radia-
tion and convection through front, rear and lateral surfaces
were considered and a monochromatic Gaussian excitation
beam that impinge on the front face of the sample. The an-
alytical solution for the oscillatory thermal response reveals
the close dependence of the thermal response on the dimen-
sions of the sample, represented by a form factorsf , show-
ing that whensf ¿ 1 the problem is reduced to 1D of the
semi-infinite sample model. In any other case, the lateral sur-
face heat transfer (heat losses) cannot be neglected, making
its consideration necessary in a complete description of the
physical situation. The results obtained for the transient ther-
mal response are in congruence with the experimental results
reported by Martinez Ket al [10]. In the transient thermal re-
sponse it was obtained that when the condition∆T ¿ T0 is
well fulfilled the results obtained between the analytical and
numerical models agree very well showing the utility of the
Stefan-Boltzmann law linearization considered in the analyt-
ical model. However, as long as the thermal response moves
away from the thermally thin regime the correspondence of
the results obtained between both models becomes increas-
ingly less, until it becomes necessary to analyze the thermal
response using only the numerical model to obtain reliable
results.
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