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The Riemann-Silberstein vector in the Dirac algebra
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It is shown that the Riemann-Silberstein vector, definedZas ‘B, appears naturally in th§ L(2, C) algebraic representation of the
electromagnetic field. Accordingly, a compact form of the Maxwell equations is obtained in terms of Dirac matrices, in combination with
the null-tetrad formulation of general relativity. The formalism is fully covariant; an explicit form of the covariant derivatives is presented in
terms of the Fock coefficients.

Keywords: Maxwell equations; Dirac matrices algebra.

PACS: 03.50 De

1. Introduction where g*# is the metric tensor (signatue- + ++} and

¢ =1, in the following)

The Riemann-Silberstein (RS) vector is defined as the com- | the chiral gauge, for instance, they take the form
plex sum of the electric and magnetic field vectdest iB.
It appeared in 1907 in an article by Silberstein [1], and was 0o ( 0o I ) @
applied many years later by various authors to different prob- =01 o0 ’
lems [2—4] (see, in particular, Ref. [3] for a historical account ;
and full bibliography). A= ( Oi 7 ) , 3)

The RS vector appears conspicuously in electromag- o 0
netism because it describes the electromagnetic field in a Paliheres are the usual Pauli matrices.
ticular representation of the Lorentz group, namely an irre-
ducible representation of th#L(2, C') group. This is evident
if the method of spin coefficients is applied to the Maxwell

Let A, be the electromagnetic potential arfds =
0gAa — 0, Ap the electromagnetic tensor. In flat space and
Cartesian coordinategf; = E., fi» = —B., etc.), we have

equations.
As for the applications of spinor algebra, several formu- wa 0 A+ o A
lation of the Maxwell and Einstein equations have been pro- VA= A= Ao A 0 (4)

posed following the pioneering article of Newman and Pen-
rose [5]. A particulary compact formulation was worked outand it follows from the definition oE = —(9/9t)A — V A°
by Plebanski [6] in the seventies, based on the use of a nuindB = V x A in terms of A* —which are equivalent to the
tetrad as a system of reference (see Ernst [7] for its relatiohomogeneous Maxwell equations—:
with other authors formulations). _

The aim of the present article is to further elucidate the 4 — < o-(E+iB) 0 > —F, (5
role of the RS vector in the context of spinorial calculus. For 0 —o - (E—1B) ’
this purpose, the null tetrad formalism of general relativity is
used in combination with Dirac spinoii. four-components
spinors, and the related matrices of the Dirac algebra. The RS d .
can thus be identified as the spinorial image of the electro- VAt = &A +V-A=0,
magnetic field in this particular representation. Being fully
covariant, our approach is valid in any Riemannian spacelS Used. . .
time. Furthermore, it generalizes to the Maxwell equations a  Accordingly, the inhomogeneous Maxwell equations take
previous work on the Dirac equation in curved space-time [8]the compact form
The result is a particularly compact and covariant form of the
Maxwell equations that can be used in combination with the —JF = 994 = 4r/, ®)
Dirac equation in problems of general relativity.

if the Lorentz gauge,

whereJ* = (p,J) is the electromagnetic current
We thus see that the RS vector, defined as
2. Maxwell equations and Dirac matrices
F =E + B, @
The Dirac matriceg® are such that
appears naturally in the above representation of the electro-
FeP 4 APy = g8, (1)  magnetic field.
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Defining

1

*F = 5(7°W’6 — Py,

(2

it simply follows that

1 cF 0
e L g— =
gl =F ( 0 —o-F )

The components of,,,, will be identified in the context of the
null-tetrad formalism (see below).

(8)

2.1. The RS vector
Defining the invariants of the field:

E’-B?>=¢62-1B?, E-B=¢EB,

ThusFF? is totally diagonal.

In the particular case of a null-electromagnetic fiéld:
0 = B, the matrixF turns out to be nilpotent of degree 2:
F2 = 0.

In the general case, the matiixsatisfies the equation

we haveF? = (€ +iB)?, and it follows that

F? ( (€ +iB)%I 0
- 0

(€ —iB)2I )

F* —2(82 — BY)F? + (€% 4 B?)*1 =0, (10)
implying that the eigenvaluelsof IF are
M\ = (E+iB)%

Accordingly we have in general 4 eigenvalugg, = +(€ +
iB), with 4 eigenfunctiong) ;) such that

Fiby = Aoy ¥

Furthermore, sinc&? is completely diagonal, its eigenvec-

i=(1..4).
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where
01 0 0
_ ab _ 1 0 0 O
Nab =17 = 00 0 1
0 0 10

As shown in Ref. [8], a convenient choice of the Dirac
matrices in the null-tetrad formalism is

0 0 0 O

- 0 010
Y =VZL g g0 0
-1 0 0 O

0 0 0 1

5 0 0 0 0
Y=VZL g D g
0O 0 0 O
0O 0 0 O
3 0 0 0 -1
P=VZL D g0 o
0 0 0 O

00 1 0

. 000 0

01 0 0

satisfying the condition

'}/a'}/b+'}/b7a — 7277017}1'

With the above choice of Dirac matrices, it follows that
in (standard) Cartesian coordinates

tors can be taken as any set of four linearly independent 8 8 24 :95
spinorsu;), namely P=7"0,=V2 5. _& 01 03 . (13)
—u3 =02
F2u(i) = )\%Z-)’LL@). —01 O4 0 0
It then follows that, in general, where the directional derivatives, are
Py = (F+ Ay, (11) 1 1
. . . . . . 81 = 7(8¢ + Zay)7 82 = 7(858 - Z8@/)7
which can be interpreted as a generalization to Dirac spinors 2 2
of the two-components Bloch spinors (if thg;) are chosen
as constant units spinors). 1 1
03 =—=(0,+ ), 04=-—=(0,— ). 14
3 \/5( 1), Oa \/5( ). (14)

3. Null tetrad formalism

The null-tetrad is a set of null-vectoe§ defining one-forms
e® = et dx*, such thae' ande? are complex conjugates to
each otherg? ande* are real, and

ds® = Gap dz® dx? = Nab eaeb,

The associated matrice€® = (1/2)(y*v® —+*~*) were
given in [8]; here we repeat them in the appendix for the sake
of completeness. From their explicit form, it follows that for
the electromagnetic tensgy;, in particular, and foanyan-
tisymmetric tensorf,, = — fya, in general,
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Ji2 + f34 —2f42 0 0
231 —f12 — fa 0 0
fabo® =2 0 0 fr2—fsa —2f3 : (15)
0 0 2fn —fi2 + faa

Comparing with (5), we see that the cartesian components
of the RS vectoiF are !

Fy +iFy =2f3, 4. Concluding remark

Fo—ily = =2fs2,  F. = 2+ fos, The above analysis clarifies the role of the Riemann-

Fy +iF; = —2fu, Silberstein vector in the context of a spinorial approach to
. . classical electromagnetism. Given the full covariance of all

By =il =2fs, F.=—fiz+ fa (16)  the formulas obtained in this paper, the present formulation

can be applied in future publications to problems in general

3.1. General coordinates system relativy involving electromagnetism and Dirac fields.

In a general system of coordinates, the directional derivatives
0, must be replaced by the covariant directional derivativeA
V... The Dirac equation in a general coordinates system can
thus be written as A

Y'Vapth +imip =0 a7

in terms of the covariant derivative

ppendix

The matrices*? associated to the Dirac matrices (12) are [8]

1 0 0
Vi =0nh + Ty, (18) o240 =2( 0 -1
wherel’,, are the Fock coefficients [9, 10]. In a tetradial rep- 0 0
resentation, they are defined as 0 0
31 0
1 oo =2 1 0
Fn = _Zrabnaaba 0 0
wherel'% . are the Ricci rotation coefficients given by 0 -1
42
o =2 0 O
de® = e® ATY 0
with I'% =T% ¢, andlyp. = —T'pqc (S€€2.9 Refs. [6,7]). 0 0
In the null-tetrad formalism, their forms follow from (15) (see R ) 0 -1 0
also [8]). 0 1
For a rank two tensor, in particular, we have 0 0
chab = 8(:fab - Fn;;cfnb - Tchan (19) 032 =2 0 0 -1
0 0
Applying this formula to our matriX¥, one finds after some
lengthy but straightforward algebra that 0 0
A=) 0 0 (A1)
V.F=0,F+T,F-FT,, (20) % 10

a formula that can also be checked by direct substitution.
Accordingly, the inhomogeneous Maxwell equations take
the form
V'V, F =4rJ, (21)

valid in general.
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