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The Riemann-Silberstein vector in the Dirac algebra
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It is shown that the Riemann-Silberstein vector, defined asE + iB, appears naturally in theSL(2, C) algebraic representation of the
electromagnetic field. Accordingly, a compact form of the Maxwell equations is obtained in terms of Dirac matrices, in combination with
the null-tetrad formulation of general relativity. The formalism is fully covariant; an explicit form of the covariant derivatives is presented in
terms of the Fock coefficients.
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1. Introduction

The Riemann-Silberstein (RS) vector is defined as the com-
plex sum of the electric and magnetic field vectors:E + iB.
It appeared in 1907 in an article by Silberstein [1], and was
applied many years later by various authors to different prob-
lems [2–4] (see, in particular, Ref. [3] for a historical account
and full bibliography).

The RS vector appears conspicuously in electromag-
netism because it describes the electromagnetic field in a par-
ticular representation of the Lorentz group, namely an irre-
ducible representation of theSL(2, C) group. This is evident
if the method of spin coefficients is applied to the Maxwell
equations.

As for the applications of spinor algebra, several formu-
lation of the Maxwell and Einstein equations have been pro-
posed following the pioneering article of Newman and Pen-
rose [5]. A particulary compact formulation was worked out
by Plebanski [6] in the seventies, based on the use of a null
tetrad as a system of reference (see Ernst [7] for its relation
with other authors formulations).

The aim of the present article is to further elucidate the
role of the RS vector in the context of spinorial calculus. For
this purpose, the null tetrad formalism of general relativity is
used in combination with Dirac spinors,i.e. four-components
spinors, and the related matrices of the Dirac algebra. The RS
can thus be identified as the spinorial image of the electro-
magnetic field in this particular representation. Being fully
covariant, our approach is valid in any Riemannian space-
time. Furthermore, it generalizes to the Maxwell equations a
previous work on the Dirac equation in curved space-time [8].
The result is a particularly compact and covariant form of the
Maxwell equations that can be used in combination with the
Dirac equation in problems of general relativity.

2. Maxwell equations and Dirac matrices

The Dirac matricesγα are such that

γαγβ + γβγα = −2gαβ , (1)

wheregαβ is the metric tensor (signature{− + ++} and
c = 1, in the following)

In the chiral gauge, for instance, they take the form

γ0 =
(

0 −I
−I 0

)
, (2)

γi =
(

0 σi

−σi 0

)
, (3)

whereσi are the usual Pauli matrices.
Let Aµ be the electromagnetic potential andfαβ =

∂βAα − ∂αAβ the electromagnetic tensor. In flat space and
Cartesian coordinates (f01 = Ex, f12 = −Bz, etc.), we have

γµAµ ≡ /A =
(

0 A0 + σ ·A
A0 − σ ·A 0

)
(4)

and it follows from the definition ofE = −(∂/∂t)A−∇A0

andB = ∇×A in terms ofAµ –which are equivalent to the
homogeneous Maxwell equations–:

−/∂ /A =
(

σ · (E + iB) 0
0 −σ · (E− iB)

)
≡ F, (5)

if the Lorentz gauge,

∇µAµ =
∂

∂t
A0 +∇ ·A = 0,

is used.
Accordingly, the inhomogeneous Maxwell equations take

the compact form

−/∂F = /∂ /∂ /A = 4π/J, (6)

whereJµ = (ρ,J) is the electromagnetic current
We thus see that the RS vector, defined as

F ≡ E + iB, (7)

appears naturally in the above representation of the electro-
magnetic field.
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Defining

σαβ =
1
2
(γαγβ − γβγα),

it simply follows that

1
2
fµνσµν = F =

(
σ · F 0

0 −σ · F∗
)

. (8)

The components offµν will be identified in the context of the
null-tetrad formalism (see below).

2.1. The RS vector

Defining the invariants of the field:

E2 −B2 ≡ E2 − B2, E ·B ≡ EB,

we haveF2 = (E + iB)2, and it follows that

F2 =
(

(E + iB)2I 0
0 (E − iB)2I

)
. (9)

ThusF2 is totally diagonal.
In the particular case of a null-electromagnetic field,E =

0 = B, the matrixF turns out to be nilpotent of degree 2:
F2 = 0.

In the general case, the matrixF satisfies the equation

F4 − 2(E2 − B2)F2 + (E2 + B2)2I = 0, (10)

implying that the eigenvaluesλ of F are

λ2 = (E ± iB)2.

Accordingly we have in general 4 eigenvalues,λ(i) = ±(E ±
iB), with 4 eigenfunctionsψ(i) such that

Fψ(i) = λ(i)ψ(i) i = (1...4).

Furthermore, sinceF2 is completely diagonal, its eigenvec-
tors can be taken as any set of four linearly independent
spinorsu(i), namely

F2u(i) = λ2
(i)u(i).

It then follows that, in general,

ψ(i) = (F+ λ(i))u(i), (11)

which can be interpreted as a generalization to Dirac spinors
of the two-components Bloch spinors (if theu(i) are chosen
as constant units spinors).

3. Null tetrad formalism

The null-tetrad is a set of null-vectorsea
α defining one-forms

ea = ea
µ dxµ, such thate1 ande2 are complex conjugates to

each other,e3 ande4 are real, and

ds2 = gαβ dxα dxβ = ηab eaeb,

where

ηab = ηab =




0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0




As shown in Ref. [8], a convenient choice of the Dirac
matrices in the null-tetrad formalism is

γ1 =
√

2




0 0 0 0
0 0 1 0
0 0 0 0
−1 0 0 0




γ2 =
√

2




0 0 0 1
0 0 0 0
0 −1 0 0
0 0 0 0




γ3 =
√

2




0 0 0 0
0 0 0 −1
−1 0 0 0
0 0 0 0




γ4 =
√

2




0 0 1 0
0 0 0 0
0 0 0 0
0 1 0 0


 , (12)

satisfying the condition

γaγb + γbγa = −2ηabI.

With the above choice of Dirac matrices, it follows that
in (standard) Cartesian coordinates

/∂ = γn∂n =
√

2




0 0 ∂4 ∂2

0 0 ∂1 −∂3

−∂3 −∂2 0 0
−∂1 ∂4 0 0


 , (13)

where the directional derivatives∂n are

∂1 =
1√
2
(∂x + i∂y), ∂2 =

1√
2
(∂x − i∂y),

∂3 =
1√
2
(∂z + ∂t), ∂4 =

1√
2
(∂z − ∂t). (14)

The associated matricesσab = (1/2)(γaγb−γbγa) were
given in [8]; here we repeat them in the appendix for the sake
of completeness. From their explicit form, it follows that for
the electromagnetic tensorfab, in particular, and foranyan-
tisymmetric tensor,fab = −fba, in general,
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fabσ
ab = 2




f12 + f34 −2f42 0 0
2f31 −f12 − f34 0 0

0 0 f12 − f34 −2f32

0 0 2f41 −f12 + f34




. (15)

Comparing with (5), we see that the cartesian components
of the RS vectorF are

Fx + iFy = 2f31,

Fx − iFy = −2f42, Fz = f12 + f34,

F ∗x + iF ∗y = −2f41,

F ∗x − iF ∗y = 2f32, F ∗z = −f12 + f34. (16)

3.1. General coordinates system

In a general system of coordinates, the directional derivatives
∂n must be replaced by the covariant directional derivative
∇n. The Dirac equation in a general coordinates system can
thus be written as

γn∇nψ + imψ = 0 (17)

in terms of the covariant derivative

∇n = ∂nψ + Γn, (18)

whereΓn are the Fock coefficients [9,10]. In a tetradial rep-
resentation, they are defined as

Γn = −1
4
Γabnσab,

whereΓa
bc are the Ricci rotation coefficients given by

dea = eb ∧ Γa
b,

with Γa
b = Γa

bce
c, andΓabc = −Γbac (see,e.g. Refs. [6,7]).

In the null-tetrad formalism, their forms follow from (15) (see
also [8]).

For a rank two tensor, in particular, we have

∇cfab = ∂cfab − Γn
acfnb − Γn

bcfan. (19)

Applying this formula to our matrixF, one finds after some
lengthy but straightforward algebra that

∇nF = ∂nF+ Γn F− F Γn , (20)

a formula that can also be checked by direct substitution.
Accordingly, the inhomogeneous Maxwell equations take

the form
γn∇nF = 4π/J, (21)

valid in general.

4. Concluding remark

The above analysis clarifies the role of the Riemann-
Silberstein vector in the context of a spinorial approach to
classical electromagnetism. Given the full covariance of all
the formulas obtained in this paper, the present formulation
can be applied in future publications to problems in general
relativy involving electromagnetism and Dirac fields.

Appendix

A.

The matricesσab associated to the Dirac matrices (12) are [8]

σ12 + σ34 = 2




1 0
0 −1 0

0 0




σ31 = 2




0 0
1 0 0

0 0




σ42 = 2




0 −1
0 0 0

0 0




−σ12 + σ34 = 2




0 0

0
−1 0
0 1




σ32 = 2




0 0

0
0 −1
0 0




σ41 = 2




0 0

0
0 0
1 0


 . (A.1)
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