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A SU(5)× Z2 kink solution and its local stability
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A non-abelian kink inducing asymptotically the breaking patternSU(5)×Z2 → SU(4)×U(1)/Z4 is obtained. We consider a fourth order
Higgs potential in a1 + 1 theory where the scalar field is in the adjoint representation ofSU(5). The perturbative stability of the kink is
also evaluated. A Schrödinger-like equation for the excitations along eachSU(5) generator is determined, and in none of the cases negative
eigenvalues compromising the stability of solution are found. In particular, several bounded scalar states are determined, being one of them
the translational zero mode of the flat spaceSU(5)× Z2 kink.
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1. Introduction

In theories with a simple scalar field and aZ2 invariant self-
interaction potential, it is possible to find stable topological
kinks interpolating asymptotically between the minima of the
system. These solutions are interesting in the framework of
the gravitational theories with extra dimensions because the
kink or domain wall interpolates between two Anti de Sitter
spacetimes and induces the standard gravitational interaction
on the four-dimensional sector of the warped structure [1–4].
Such scenarios are referred to as brane-worlds, and it is sur-
mised that the standard model fields should be localized on
the topological defect [5–7].

As a first approximation to a scenario where the symme-
try group of the standard model can be recovered inside the
domain wall, in absence of gravity but in presence of a non-
abelian symmetry, kink solutions have been obtained in sev-
eral opportunities [8–10]. In Ref. [8] three kink solutions for
a SO(10) theory inducing asymptotically the breaking sym-
metrySO(10) → SU(5) were determined; subsequently, in
Ref. [10] the local stability of these scenarios was evaluated
finding in two of them tachyonic P̈oschl-Teller modes in the
spectrum of scalar perturbations. Other models in terms of
E6 group were discussed in Ref. [9].

Among the non-abelian solutions we highlights the one
where the kink interpolates betweenSU(3)×SU(2)×U(1)
vacuum expectation values (vev) of aSU(5) × Z2 invariant
potential [11–14]. Since this issue is the focus of this paper,
let us review in detail this scenario.

Consider the bosonic sector of theSU(5) model in(1+1)
dimensions

L = −Tr(∂mΦ∂mΦ)− V (Φ), (1)

V (Φ) = −µ2Tr(Φ2) + h(Tr(Φ2))2 + λTr(Φ4) + V0 (2)

with Φ a scalar field transforming in the adjoint representa-

tion of the symmetry group

Φ → UΦU†, U = exp(iαjTj),

Tr(Tj1Tj2) =
1
2
δj1j2 (3)

whereTj , j = 1, . . . , 24, are traceless hermitian generators
of SU(5). In the potential (2),µ, h andλ are the parameters
of the theory andV0 is a constant to adjust conveniently the
minimum to zero.

It is well know that there are two possible non-trivial form
for the minimum of (2) [15]:

< ΦA >∼ diag(2, 2, 2,−3,−3), λ > 0, (4)

and

< ΦB >∼ diag(1, 1, 1, 1,−4), λ < 0; (5)

which lead to the breaking patterns

SU(5) → SU(3)× SU(2)× U(1) (6)

and

SU(5) → SU(4)× U(1), (7)

respectively.
Due to the absence of cubic terms in (2) theZ2 symme-

try is included in the model and kink solutions are expected,
such that

Φ(z = −∞) = −UΦ(z = +∞)U†, (8)

whereU is an element ofSU(5) andΦ depends only on the
coordinatez. In fact, forh = −3λ/20 andλ > 0, the sym-
metry breaking pattern

SU(5)× Z2 → SU(3)× SU(2)× U(1)
Z3 × Z2

(9)
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can be induced asymptotically by the following non-abelian
kink

ΦA =
√

5
2

µ√
λ

[
diag(1,−1, 0, 1,−1)

+
1
5

tanh
( µz√

2

)
diag(−1,−1, 4,−1,−1)

]
. (10)

which, atz = ±∞ goes to

ΦA(z = +∞) =
1√
5

µ√
λ

diag(2,−3, 2, 2,−3) (11)

ΦA(z = −∞) =
1√
5

µ√
λ

diag(3,−2,−2, 3,−2). (12)

Notice that (12) is compatible with the constraint (8) and that,
from trace properties, the vacuums (4) and (11) are equivalent
for the scalar potential. On the other hand, in accordance with
(11) and (12),SU(3)×SU(2)×U(1) is embedded asymptot-
ically in SU(5) in different ways. Moreover, inside the kink,
ΦA(z = 0) ∼ diag(1,−1, 0, 1,−1), the unbroken group is

SU(2)× SU(2)× U(1)× U(1)
Z2 × Z2

. (13)

This solution, as well as its perturbative stability, were
determined in [11]; subsequently, (10) was recovered as a
particular case of a kink inSU(N) × Z2 [12], the exten-
sion to curved spacetime in five dimensions was found in
[13, 14] where (10) induces the symmetry group of the stan-
dard model at the boundary of an AdS5 warped spacetime.

With respect to the vev (5), curiously, up to now, a kink
solution for the model (1) has not been reported; however,
a self-gravitating kink inducing unbroken group (7) was ob-
tained in [13]. Considering the absence of a flat kink for (5),
our proposal for this paper is to find this solution and evaluate
its stability under small perturbations.

2. Kink solution

Let us consider a kink solution,ΦB, for (1) in correspon-
dence, at infinity, with the symmetry breaking pattern

SU(5)× Z2 → SU(4)× U(1)
Z4

. (14)

For this case, it is convenient to write the non-abelian
field in terms of diagonal generators ofSU(5)

Φ = φ1T21 + φ2T22 + φ3T23 + φ4T24 (15)

where

T21 =
1
2

diag(1,−1, 0, 0, 0), (16)

T22 =
1

2
√

3
diag(1, 1,−2, 0, 0), (17)

T23 =
1
2

diag(0, 0, 0, 1,−1), (18)

T24 =
1

2
√

15
diag(2, 2, 2,−3,−3). (19)

The unbroken group (14) is induced by a kink when (15)
satisfy the boundary conditions

Φ(z = +∞) = v
(
T23 +

√
3
5
T24

)
=< ΦB >, (20)

Φ(z = −∞) = v
(
T23 −

√
3
5
T24

)

= −U < ΦB > U†. (21)

The equations of motion for the coefficients of (15) are
given by

φ′′1=−
[
µ2−

(
h+

2λ

5

)
φ2

4−
(

h+
λ

2

)
(φ2

1+φ2
2)−hφ2

3

]
φ1

+
2λ√

5
φ1φ2φ4, (22)

φ′′2 = −
[
µ2−

(
h+

2λ

5

)
φ2

4−
(

h+
λ

2

)
(φ2

1+φ2
2)−hφ2

3

]
φ2

+
λ√
5
φ4(φ2

1 − φ2
2), (23)

φ′′3 = −
[
µ2 −

(
h +

9λ

10

)
φ2

4

−
(

h +
λ

2

)
φ2

3 − h(φ2
1 + φ2

2)
]
φ3, (24)

φ′′4 = −
[
µ2 −

(
h +

7λ

30

)
φ2

4 −
(

h +
2λ

5

)
(φ2

1 + φ2
2)

−
(

h +
9λ

10

)
φ2

3

]
φ4 +

λ√
5
φ2

(
φ2

1 −
φ2

2

3

)
. (25)

where prime means derivative with respect toz. Suggested
by (20, 21) we choose convenientlyφ1 = φ2 = 0; thus, we
obtain a pair of coupled equations forφ3 andφ4, namely

φ′′3 =
[
−µ2 +

(
h +

9λ

10

)
φ2

4 +
(

h +
λ

2

)
φ2

3

]
φ3, (26)

φ′′4 =
[
−µ2 +

(
h +

7λ

30

)
φ2

4 +
(

h +
9λ

10

)
φ2

3

]
φ4, (27)

which can be decouple forλ = −10h/9, h > 0. Now, for
the remaining equations we require

φ3(z = ±∞) = v, φ4(z = ±∞) = ±
√

3
5
v; (28)

thus, we find the solution

ΦB = v

[
T23 +

√
3
5

tanh
(

µz√
2

)
T24

]
,

v =
3µ

2
√

h
(29)
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such that atz = ±∞, the unbroken group (14) is embedded
in SU(5) in different ways. On the other hand, in the core of
the kink,z = 0, the remaining symmetry group is

SU(3)× U(1)× U(1)
Z3

. (30)

3. Perturbative stability

Now, in order to study the perturbative stability of (29) let us
consider, in the energy of the system, small deviations from
kink solution

E =
∫

dz
[
Tr(∂zΦB + ε ∂zΨ)2 + V (ΦB + εΨ)

]
,

ε ¿ 1, (31)

whereΨ = ψjTj . Thus, to second order inε (the term pro-
portional toε is zero via the equation of motion ofΦB), we
find that

E = E[ΦB]

+ ε2
∫

dz ψj1

(−δj1j2∂
2
z + Vj1j2

)
ψj2 +O(ε3) (32)

where

Vj1j2(ΦB) = −1
2
µ2δj1j2 + hTr(Φ2

B)δj1j2

+ 4hTr(ΦBTj1)Tr(ΦBTj2)

− 40
9

hTr(Φ2
BTj1Tj2)

− 20
9

hTr(ΦBTj1ΦBTj2) (33)

which is diagonal and, hence, the double sum in (32) can be
written as follows

(
−1

2
δj1j2∂

2
z + Vj1j2

)
ψj2 = m2

j1j2ψ
2
j2 , (34)

and the stability problem consists in determining the eigen-
value associated with each generator ofSU(5). Fortunately,
for several generators we obtain the same eigenvalues equa-
tion and, after group them, only five non trivial cases need to
be checked. For the trivial cases,j = 19, 20, whose genera-
tors are broken everywhere, a vanishing potential is obtained.

For the remaining five cases it is convenient to consider
ξ = µz/

√
2, to make dimensionless the equations of mo-

tions. For the set of generators labelled byj = 1, . . . , 6,
21, 22, basis forSU(3) in (30), we get

[
−1

2
∂2

ξ +
1
4

(
5 + 3 tanh2 ξ

)]
ψj = 2

m2
j

µ2
ψj , (35)

which can be rewritten in terms of a Pöschl-Teller potential,
whose bound states are well known [16]. Thus, the spectrum

of scalar states is determined for allj by a pair of normaliz-
able eigenfunctions

m2
0 =

4 +
√

7
8

µ2 , ψ0 ∼ cosh(1−√7)/2(ξ) (36)

m2
1 =

3
√

7
8

µ2 , ψ1 ∼ cosh(1−√7)/2(ξ) sinh(ξ) (37)

and a set of free states fromm2 > 3
√

7µ2/8.
In the cases identified withj+ = 7, . . . , 12 and j− =

13, . . . , 18, broken generators with respect to (30) but unbro-
ken with respect to (14) atξ → ±∞, we have

[
−1

2
∂2

ξ + tanh ξ (tanh ξ ± 1)
]

ψj± = 2
m2

j±

µ2
ψj± . (38)

In this case the Schrödinger-like equation is associated to a
non-conventional potential (see Fig. 1) which exhibits a neg-
ative well in−∞ < ξ ≤ 0 for ψ+. Forψ− the potential has
an equivalent profile, but in the region∞ > ξ ≥ 0. However,
the eigenvalues of the equation are positive since (38) can be
factorized as follows [17]

(−∂ξ + β±) (∂ξ + β±) ψj± = 4
m2

j±

µ2
ψj± , (39)

where

β± = ∓2
1 + 3 cosh 2ξ ∓ sinh 2ξ + 2(tanh ξ ∓ 1)ξ

4 + e±2ξ + e∓2ξ(3± 4ξ)
. (40)

In addition, the zero mode can be obtained,ψ0 ∼ 1∓ tanh ξ,
which is out of the spectrum of eigenfunctions because it is
not normalizable, as expected in concordance with Fig. 1.

Finally, in the scalar field directionsT23 andT24, we find
(
−1

2
∂2

ξ + 2
)

ψ23 = 2
m2

23

µ2
ψ23 (41)

(
−1

2
∂2

ξ + 3 tanh2 ξ − 1
)

ψ24 = 2
m2

24

µ2
ψ24, (42)

FIGURE 1. Plot of the potential for the scalar perturbationsψj+
along the broken generatorsj+ = 7, . . . , 12. The potential profile
for ψj− with j− = 13, . . . , 18 is a mirror image of the shown one.
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with eigenvalues bounded asm2
23 > µ2 andm2

24 ≥ 0. In the
last case, two localized states are found

m2
0 = 0 , ψ0 ∼ cosh−2(ξ) (43)

m2
1 =

3
4
µ2 , ψ1 ∼ cosh−2(ξ) sinh(ξ), (44)

being the first one, (43), the translational mode of the flat
spaceSU(5)× Z2 kink [11].

Since in all cases the eigenvalues are positive, the per-
turbations do not induce instability on (29) and hence the
non-abelian flat domain wallΦB is a locally stable solution
of (1, 2).

4. Ending comments

We have derived a flatSU(5)×Z2 kink interpolating asymp-
totically between Minkowskian vacuums with the symmetry
breaking patternSU(5)×Z2 → SU(4)×U(1)/Z4 and with
unbroken groupSU(3)×U(1)×U(1)/Z3 in the core of the
wall.

With regard to the spectrum of scalar fluctuations, we do
not find tachyonic modes compromising the local stability of

the non-abelian wall. In particular, we find the translational
zero mode and several Pöschl-Teller confined scalar states
alongSU(3) basis.

Non-abelian kinks as brane worlds is the next issue that
we would like to study. The main problem is that we need
to find a scenario where the symmetry group of the standard
model corresponds to the unbroken symmetry inside the kink.
In our opinion, solutions similar to (10) and (29) are a first
approximation to this open problem.

As commented in the introduction, another option has
been already explored in [8, 9] where the symmetry of the
theory is determined by theSO(10) group. In this case, the
unbroken symmetry for finitez is achieved used the clash-of-
symmetries mechanism. Thus,SU(3) × SU(2) × U(1) ×
U(1) may be obtained in the core of aSO(10) wall, which is
almost the symmetry expected for a more realistic model.
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