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By using the generalized exponential rational function method, we obtain new periodic and hyperbolic soliton solutions for the conformable
Ginzburg-Landau equation with the Kerr law nonlinearity. The conformable derivative is considered to obtain the exact solutions under
constraint conditions. Numerical simulations are performed to confirm the efficiency of the proposed method.
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1. Introduction

iD}q + ages + blgl?q
The Ginzburg-Landau equation describes the optical soli-
ton propagation through a wide range of waveguides such B [2|q|2 (la1*),, — [(\q|2)$]2} + g
as crystals, optical metamaterials, optical fibers, and opti- = P ;@
cal couplers [1-9]. Many powerful methods have been estab- ) o
lished to find soliton solutions of the Ginzburg-Landau equaWhereD;" is the conformable derivative of ordere (0, 1],
tion including the modified simple equation method [10,11],% represents the nor_1—¢men3|onal dlstan.ce across _thecﬂber,
the semi-inverse variational principle [12,13], the extended®Presents the coefficient of group velocity dispersion, tand
Jacobi elliptic function expansion method [14,15], the expolepresents the coefficient of nonlinearity. The tefrarises
nential rational function [16], the generalized exponential raffom the perturbation effects andis related to the detun-

tional function method (GERFM) [17], among others. ing effect. All above-mentioned parameters are constants real

. . values.
Due to the complex nature of the optical soliton propa-

gation, several works consider the fractional calculus to con- ] ] ]

struct new optical soliton solutions [18-21]. Nevertheless2. Overview of the generalized exponential ra-
fractional derivatives do not obey some basic properties of  tional function method

integer derivative such as product rule and chain rule. Re- .

cently, a local derivative called conformable derivative has-€t us state the main steps of GERFM as follows [17]

been formulated by Khalil in [22]. The conformable calcu- 1. Let us take into account the following nonlinear partial
lus satisfies all the properties of the standard calculus, for differential equation

instance, the chain rule. This derivative can be considered to

be a natural extension of the classical derivative [23-30]. LT T, T, Tay o) = 0 ®)
Let f : [0,00) — R, the conformable derivative of a Using the transformatiori = Y(x) andy = oz —¢t,
function f(¢) of ordera, is defined as [22] in nonlinear partial differential equation (3), we define
attain
I=ay L(C,Y,7"...)=0, 4
D2 (1)  tim SEE ) =) (1.7, 7",...) (4)
=0 € which is proposed as an ordinary differential equation;
a€(0,1], t>0. (1) where the values aof andy will be determined later.
2. Consider Eq. (4) has the solution of the form
In this paper, the conformable GERFM is employed to M M
study the complex time Ginzburg-Landau equation with Kerr T(x) = Ao+ Y AT+ > Be¥(x) %, (5)
law nonlinearity [31]. k=1 k=1
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where
B pleth +p2€q2X
 p3edsX 4 pyedax’

P(x) (6)
The values of constanis, ¢;(1 < i < 4), Ap, A and
Bi(1 < k < M) are determined, in such a way that
solution (5) always satisfy Eq. (4). By considering the
homogenous balance principle, the valueldfis de-
termined.

. Placing Eq. (5) into Eq. (4), we give the following al-
gebraic equatiorE(A1, A, As, Ay) = 0, in terms of
A, = e¥X fori = 1,...,4. After setting each of the
coefficients of variables i& to zero, a system of non-
linear equations in terms qf;, ¢;(1 < ¢ < 4), and
o, p, Ay, A, and By (1 < k < M) are generated.

any symbolic computation software, the values of
piaQi(l <i< 4), Ag, Ay, andBk(l <k< M) are

determined, replacing these values into Eq. (5) pro-

vides us the soliton solutions of Eq. (3).

3. Application

In order to find solutions of Eq. (2), the following new vari-
ables are introduced
r— ( ) e

()

iP(r 14
q (.I',t) = G(X)el@(ht% § -

Q
Oz, 1) = —ka + (g) e,

wherev and k are the speed and frequency of the soliton,
respectively;w represents the wave number of the soliton.
Considering Eqg. (7), we convert Eq. (2) in the following
expression

(a—4B8)0" — (w+ak®>+7)©+b6% =0, (8)

from real part

v = —2ak, (9)
and Eq. (9), from the imaginary parts.

If we apply the balance principle on the ter@s and®”
in Eq. (8), we hav&M = M + 2,so0M = 1. Using Eg. (6)
together withM = 1, we have

B,

(10)

Proceeding as outlined in second section, we obtain the fol-

lowing sets of solutions

Set 1:
One obtaingy = [-1,0,1,1] andg = [0,0,1, 1], so Eq. (6)
turns to

11

. By solving the above equations systems using
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We also obtain

k=k, w=—-k’a—a/2+208—7,

A ~V2ViB—a
0 2\/5 )
4, = —V2ViB—a v\}‘;ﬁ—“? B —o.

Placing values in Egs. (10) and (11), yields the following

solution
(-9 VAF—aV2
Ol = Vb (2 + 2ex)
and
(1-el+5)) VT =av2
q1 (l‘,t) = L 2ak a4
Vb (2 + 26(”“+Tt ))
x (ke ()e) (12)

Set 2:
One obtaing = [-3, 2,1, 1] andgq = [1,0, 1, 0], so Eq.
(6) turns to

-3 2ex

YO =T (13)

We also obtain
V2VAB—a—2y—2w
= NG

 —5V2yiB—a
B 2V/b

_ —6V2yA3—a
= =

Placing values in Egs. (10) and (13), yields the following

solution
_ V2AB —a(2eX —3)
Vb (6 + 4ex)

k , W =w,

Ao A =0,

)

By

O (x)

and

g2 (l‘,t) = (

x el

ZI/’Jrzikt“

V2T —a (20l
NG (6 + 4e(m+

k()

)_3)
)

2ak to
=t

|

Set 3: One obtaing = [2,0,1,1] andg = [-1,0,1, —1], so
Eq. (6) turns to

(14)

cosh () — sinh (x) .

V(x) = (15)

cosh (x)
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We also obtain ¥ (x) = _sinh (x) +2 cosh (). (18)
k_\/86—2a—’y—w B cosh ()
= 7 , wW=w,
V2/AiB—a We also obtain
AO = )
\[L V
80 —2a—v—+4w
— — k = =
A = \@\/455(1’ By =0. (16) Ja , wW=w,
Placing values in Egs. (10) and (15), yields the following Ay = 2v2v4B—a
solution b () VIV NG ’
sin 2 —a
o (y) = MHIVEAT A 3V3VIT—a
Vb cosh (x) A1 =0, Bj=————.
and Vb
” 2ak 4a Vo -
qs (z,t) = (bmh \(;C;_ ﬁ(t )\?k 4)ﬂ a) Placing values in Egs. (10) and (18), yields the following
cosh (z 4 <37t solution
x ei(Ret(5)1%) 17)
Set 4: O (x) = V2yAB —a (2 sinh (x) + cosh (x))
One obtaing = [-3,—1,1,1] andg = [1,—1,1,—1], so Vb (2 cosh (x) + sinh (x))
Eq. (6) turns to
| and

— i 2ak ya 2ak 1«
g (@,1) = NEONZY (2 sinh (x—i— ot ) + cosh (x—l— ot )) o gi(—kat(2)e7) (19)
Vb (2 cosh (x + %t“) + sinh (a: + 2%’“150‘))
Set 5:
One obtaing = [1 —¢,—1 —¢,—1,1] andq = [i, —i,4, —i], SO Eq. (6) turns to
cos — sin
¥ (y) = 500 Zsin (), (20)
sin ()
We also obtain
NONZY T 2V2V/AB —a
k=k, =—k’a+2a—-8B—v, Aj=—Y—F——— A1 =0, B = )
w a a 8- 0 7 1 1 NG
Placing values in Egs. (10) and (20), yields the following solution
@ (X) — (Sin (X) + cos (X)) \/§V 4ﬂ —a
Vb (cos (x) —sin(x))
and
i 2ak por 2ak o)) /2[5 — . w
0 (x’t) _ (sm (l‘ + P ) ‘ZC:S (-’L' + .a )) 2\/; ﬁ a % e¢(—kx+(;)t ) (21)
Vb (cos (z + 22k¢o) —sin (z + 22Ege))
Set 6:
One obtaing = [-2 —¢,2 — i, —1,1] andgq = [¢, —i, i, —i], SO EQ. (6) turns to
2 sin + cos
W (y) = 280 Feos (o) 22)
sin (x)
We also obtain
9 —2\/5\/4ﬂ—a 5\/5\/46—(1
k:k7 w:_ka+2a—86_’y, AO:T7 A1:07 Bl:T

Rev. Mex. . 65 (2019) 73-81



76 BEHZAD GHANBARI AND J.F. GOMEZ-AGUILAR

Placing values in Egs. (10) and (22), yields the following solution

V2V/AB = (sin (x) — 2 cos ()

@ = )
) Vb (cos (x) + 2 sin (x))
and
wo(ot) = [V2YAB—a(sin (;: fartt) —2cos (;fa: ) ) o (ke ()
Vb (cos (z + 22kto) + 2 sin (2 + 22E¢e))
Set 7:

One obtaing = [2 —i,—2 — i, —1,1] andq = [i, —i,4, —i], SO Eq. (6) turns to

~ 2sin(x) —cos (X)

¥ (x) =

sin ()
We also obtain
2V2V4A3 — 2v4 5 —
k':k, w=—k2a—|—2a—8ﬁ—% AO:W\/?7 A1:O7 31:5\/7\/\/?

Placing values in Egs. (10) and (24), yields the following solution

_ —V2/4B —a(sin(x) + 2 cos(x))

@ )
00 Vb (—cos (x) + 2 sin (x))
and
g (1) = —V2y/43 =a (sin (za‘: 2ak gor) -|j2 cos (;L‘a:‘ ) (ke (2)e)
Vb (—cos (z + 22Ete) 4+ 2 gin (z + 22k¢a))
Set 8:

One obtaing = [2,0,1, —1] andg = [1,0, 1, —1], so Eq. (6) turns to

cosh () + sinh () .

¥ (x) = b ()
We also obtain
F—k we Ka—2a+80—~ Ay Y2VIF-a V\ﬁbﬁ_a Ay = ‘/év‘l\/g_" By = 0.
Placing values in Egs. (10) and (26), yields the following solution
o) - SSYNITS
Vbsinh ()

and

2ak —
i () = (ORI VRVATZa) | che (),
Vbsinh (x + %t“)
Figures 1(a-d) show numerical simulations of Eq. (27)doce 1, 0.7, 0.5, 0.3, arbitrarily chosen.

Set 9:
One obtaing = [-1,3,1,—1] andg = [1,—1, 1, —1], so Eq. (6) turns to

cosh (x) — 2 sinh (x)

\If =
(x) sinh (x)
We also obtain
h—k we— —Ka—2a+86 A0=_2\/§\[ v:ﬁ—a, A =0, Bl:—?"/i\[ V:ﬂ—“
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o (1,1 with order a=1 g (it with order a=0.7

(b)
G (%t with order a=0.4 ck (3t with order ¢=0.3

FIGURE 1. 3D Plot soliton solution related to Eq. (29).
Placing values in Egs. (10) and (28), yields the following solution

_ —V/2y/4F = a(—sinh (x) 4+ 2 cosh (x))

o ,
00 Vb (cosh (x) — 2 sinh (x))
and
— i —Q M « M «
4o (z,1) = \/5\/4,8 a( sinh (a:—i— ot ) + 2 cosh (m—i— ot )) " ez‘(—kz-&-(%)t“)‘ (29)
NG (cosh (:v + %t“) — 2 sinh (:v + %ta))
Figures 2(a-d) show numerical simulations of Eq. (29)doe 1, 0.7, 0.5, 0.3, arbitrarily chosen.
Set 10:
One obtaing = [, —i,1,1] andq = [i, —1, 4, —i], SO Eq. (6) turns to
sin (x)
] = — . 30
0 =~ s ) (30)

We also obtain

V3/TF G

~V2Vif—a
N :

k=k, w=-ka—4a+168—v, Ay=0, A =
B— 0 1 \/5

B, =
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ch it with order a=1 0t with order =07

10

(@) (b)

g (1) with order @=0.5 o) with order @=0.3

FIGURE 2. 3D Plot soliton solution related to Eq. (29).

Placing values in Egs. (10) and (30), yields the following solution

V243 —a
Vbeos (x) sin (x)’

O (x) =

and

- V2vaG —a (ke (2)e0)
qo (z,t) = <\/Ecos (ac n %kta) o (:v n %tﬂ) X e . (31)

Figures 3(a-d) show numerical simulations of Eq. (31)doe 1, 0.7, 0.5, 0.3, arbitrarily chosen.
Set11:
One obtaing = [1,1,—1,1] andq = [1,—1,1, —1], so Eq. (6) turns to

_ cosh (x) (32)

‘I’(X): m

We also obtain

_—V2V/iB—a

—V3/TF G
25, |

_32[-8a—v—w
- Vo

k \/a , wW=w, A0:07 Al Blz
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Gyt with order =1 Gyp (1) with order a=0.7

ot with order a=0.5

FIGURE 3. 3D Plot soliton solution related to Eq. (31).
Placing values in Egs. (10) and (32), yields the following solution

_ V2VAB =a (coth® (x) + 1)

o) Vbeoth (x)

)

and

- 2 (p 4 20k o , e
1 () = (“Mﬁﬁac o e )+ 1)> (ke (£)60), @)

Figures 4(a-d) show numerical simulations of Eq. (33)dct 1, 0.7, 0.5, 0.3, arbitrarily chosen.

4, Numerical simulations singular or combinations. Results showed that when the time

derivative decreases, the amplitude of the solitons also de-
In this work, we obtained different numerical solutions con-creases. It happens due to the decrease in velocity of the soli-
sidering different alfa orders to obtain soliton solutions. Theton, the orderr characterizing the existence of the fractional
numerical solutions show that the change of fractional ordestructures on the system. The new analytical soliton solutions
modify the nature of the solution, and has a huge influence oabtained in this paper have not been reported in the literature
the nonlinear propagation of the solitons. The analytical soso far. Classical soliton solutions are recovered in the limit
lutions allow graphing soliton solutions of type dark, bright, whenao — 1.
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() with order a=1 anqixt) with order a=0.7

(a) (b)
(et} with order @=0.5 o1 (6t) with order =03

FIGURE 4. 3D Plot soliton solution related to Eq. (33).
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