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Analytical solution of the time fractional diffusion equation
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In this paper, we obtain analytical solutions for the time-fractional diffusion and time-fractional convection-diffusion equations. These equa-
tions are obtained from the standard equations by replacing the time derivative with a fractional derivative of orderα. Fractional operators of
type Liouville-Caputo, Atangana-Baleanu-Caputo, fractional conformable derivative in Liouville-Caputo sense, and Atangana-Koca-Caputo
were used to model diffusion and convection-diffusion equation. The Laplace and Fourier transforms were applied to obtain analytical
solutions for the fractional order diffusion and convection-diffusion equations. The solutions obtained can be useful to understand the mod-
eling of anomalous diffusion, subdiffusive systems and super-diffusive systems, transport processes, random walk and wave propagation
phenomenon.
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1. Introduction

Recent studies in science and engineering demonstrated that
the dynamics of many systems may be described more ac-
curately by means of differential equations of non-integer
order. The diffusion equation is a partial differential equa-
tion that portrays density dynamics in a material subject to
diffusion [1,2]. The convection-diffusion equation explains
the flow of heat, particles, oil reservoir simulations, trans-
port of mass and energy, global weather production, or other
physical quantities in conditions where there are both diffu-
sion and convection or advection [3-5]. Fractional diffusion
equations are largely used in describing abnormal slowly-
diffusion phenomenon, and fractional diffusion equations are
always used in describing abnormal convection phenomenon.
Time-fractional diffusion is derived by considering continu-
ous time random walk problems, which are in general non-
Markovian processes.

Several definitions, related to fractional order-derivatives
have been used in the literature. These definitions include,
Riemann-Liouville, Liouville-Caputo, conformable deriva-
tives, Caputo-Fabrizio, Atangana-Baleanu and Atangana-
Koca, to mention a few [6]. The choice of fractional differ-
entiation is motivated by the fact that the interaction with the
medium is not local but global. The fractional operators can
be a useful way to include memory in a dynamical process.
A dynamical process that is modelled through fractional or-
der derivatives carries information about its present as well
as past states.

In this paper, we consider the time-fractional diffu-
sion and convection-diffusion equations, obtained from

the standard equations by replacing the time deriva-
tive with fractional derivatives of type Liouville-Caputo,
Atangana-Baleanu-Caputo, fractional conformable derivative
in Liouville-Caputo sense and Atangana-Koca-Caputo of or-
derα, with 0 < α ≤ 1.

The following fractional diffusion equation is considered

(0Dα
t u)(x, t) = µ

∂2

∂x2
u(x, t),

t > 0, x ∈ R, µ ∈ R+, 0 < α ≤ 1, (1)

u(x, 0) = ψ(x), (2)

whereµ is the diffusion coefficient.
The fractional convection-diffusion equation considered

is [4]

(0Dα
t u)(x, t) = −εη

∂

∂x
u(x, t) + µ

∂2

∂x2
u(x, t) +

Q(x, t)
cρ

,

t > 0, 0 < α ≤ 1, (3)

u(x, 0) = ψ(x), x ∈ R, µ ∈ R+, (4)

whereµ = λ/cρ is the diffusion coefficient,ε is the poros-
ity, η is the velocity,λ is the thermal conductivity,c is the
specific heat,ρ is the mass density, andQ(x, t) is the source
term.

2. Basic Tools

The Liouville-Caputo (C) fractional operator of orderα is
defined as [7]
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C
a Dα

t u(t, x) =





dn

dtn u(x, t), α = n ∈ N,

1
Γ(n−α)

t∫
a

(t− z)n−α−1 ∂n

∂zn u(x, z)dz, n− 1 < α < n ∈ N.
(5)

whereC
0 Dα

t is the Liouville-Caputo fractional operator of orderα with respect tot.
Atangana and Baleanu considered the generalized Mittag-Leffer function as the kernel of differentiation. This kernel is

non-singular and nonlocal and preserves the benefits of the above fractional operators. Replaced the exponential kernel with
the generalized Mittag-Leffler function, we obtain the fractional operator of type Atangana-Baleanu in Liouville-Caputo sense
(ABC) of orderα defined as follows [8]

(
ABC
a D(n+α)

t u

)
(x, t) =

1
g(α)

t∫

a

Eα

(− g(α)(t− z)α
)∂n+1u

∂zn+1
(x, z)dz, n− 1 < α < n ∈ N. (6)

wheren ∈ N andg(α) is a normalization function that depends ofα, which satisfies that,g(0) = g(1) = 1.
Let 0 < α ≤ 1 andn ∈ N, the Laplace transforms of the Liouville-Caputo and Atangana-Baleanu-Caputo fractional

operators are given by

L
[

C
0 D(n+α)

t u(x, t)
]
(x, s) =

1
sn−α

(
snL [u (x, t)]− sn−1u (x, 0)−. . .− u(n−1) (x, 0)

)
. (7)

L
[

ABC
0 D(n+α)

t u(x, t)
]
(x, s) =

1
g(α)

1
s1−α

sn+1L [u (x, t)]− snu (x, 0)− sn−1u̇ (x, 0) . . .− u(n) (x, 0)
s + g (α)

. (8)

Khalil in [9] gives a new definition of derivative called
“conformable derivative”. Letf : [a,∞) −→ R. The con-
formable derivative off(t) is given by

aDα
t f(t) = lim

ε→0

f
(
t + εt1−α

)
− f(t)

ε
, (9)

for all t > 0, α ∈ (0, 1). If f(t) is α-differentiable in
some(0, a), a > 0, and lim

ε→0+
f (α)(t) exists, then define

fα(0) = lim
ε→0+

f (α)(t).

The left conformable integral is given by

aIα
t f(t) =

t∫

a

f(x)
(x− a)1−α

dx, x ≥ a, 0 < α ≤ 1, (10)

Iteratingn-times the integral (10) and replacing the inte-
gern, for β ∈ C, with Re(β) > 0, we define the following
fractional conformable integral

β
aIα

t f(t) =
1

Γ(β)

t∫

a

( (t− a)α − (x− a)α

α

)β−1

× f(x)
(x− a)1−α

dx. (11)

Considering the definition given by Eq. (11) we get the
left fractional conformable derivative in the Liouville-Caputo
sense. Let Re(β) ≥ 0, n = [Re(β)] + 1,

f ∈ Cn
α,a([a, b]), (f ∈ Cn

α,b([a, b])). Then the left fractional
conformable derivative in the Liouville-Caputo sense is given
by [10]

c β
aDα

t f(t) =
1

Γ(n− β)

t∫

a

( (t− a)α − (x− a)α

α

)n−β−1

× aDα
x f(x)

(x− a)1−α
dx =n−β

a Iα
t

(
n
aDα

t f(t)
)
, (12)

The Atangana-Koca fractional derivative in Liouville-
Caputo sense (AKC) is given by [11,12]

(
AKC
a Dα

t u
)
(x, t) =

1
g(α)

×
t∫

a

Eγ,q
α,β

(− g(α)(t− z)α
)∂u

∂z
(x, z)dz, (13)

whereg(α) is a normalization function as in the previous
cases.

Let 0 < α ≤ 1, the Laplace transform of the Atangana-
Koca fractional-order derivative is given as

L
{

AKC
0 Dα

t u(x, t)
}

(x, s) =
1

g(α)
(
1− g(α)

)q

×
(
s−nαL [u (x, t)]− s−nα−1u (x, 0)

)
. (14)

Given a functionu(x) ∈ L1(R), the Fourier transform is
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given by

û(k) = (Fxu(x)) (k) :=

∞∫

−∞
eikx u(x)dx, (15)

and the inverse Fourier transform ofu(x) is given by

F−1
k (Fxu(k)) (x) :=

1
2π

×
∞∫

−∞
e−ikx (Fxu(x)) (k)dk. (16)

3. Fractional diffusion equations

In this paper, we solved the diffusion and convection-
diffusion equation considering fractional operators of type
Liouville-Caputo, Atangana-Baleanu-Caputo, fractional con-
formable derivative in Liouville-Caputo sense and Atangana-
Koca-Caputo.
Diffusion Equation.

In the Liouville-Caputo sense we have the following dif-
fusion equation

(C
0 Dα

t u)(x, t) = µ
∂2

∂x2
u(x, t),

t > 0, x ∈ R, µ ∈ R+, 0 < α ≤ 1, (17)

u(x, 0) = ψ(x), (18)

whereµ is the diffusion coefficient.
Solution. Applying the Laplace transform to Eq. (17) and
taking the condition (18) we get

sα (Ltu) (x, s)− sα−1ψ(x) = µ
∂2

∂x2
(Ltu) (x, s). (19)

Applying the Fourier transform in the left hand of the Eq.
(19) we have

Fx

{
sα (Ltu) (x, s)− sα−1ψ(x)

}
(k, s)

= sα û(k, s)− sα−1Ψ(k), (20)

and for the right hand of the Eq. (19) we have

Fx

{
µ

∂2

∂x2
(Ltu)

}
(k, s) = µ

∂2

∂x2
(FxLtu)(k, s)

= µ(−ik)2û(k, s). (21)

Equating Eqs. (20) and (21) the following explicit rela-
tion is deduced for̂u(k, s)

û(k, s) =
sα−1Ψ(k)
sα + µk2

. (22)

Now, applying the inverse Laplace and inverse Fourier
transforms to Eq. (22) we have

u(x, t) =
1
2π

∞∫

−∞
Eα,1

(− µk2tα
)

Ψ(k)e−ikxdk. (23)

In the Atangana-Baleanu-Caputo sense we have the fol-
lowing diffusion equation

(ABC
0 Dα

t u)(x, t) = µ
∂2

∂x2
u(x, t),

t > 0, x ∈ R, µ ∈ R+, 0 < α ≤ 1, (24)

u(x, 0) = ψ(x), (25)

whereµ is the diffusion coefficient.

Solution. Applying the Laplace transform to Eq. (24) and
taking the condition (25) we get

sα (Ltu) (x, s)− sα−1ψ(x)
s + g(α)

= µ
∂2

∂x2
(Ltu) (x, s). (26)

Applying the Fourier transform to Eq. (26) and simplify-
ing, we have the following relation for̂u(k, s)

û(k, s) =
sα−1Ψ(k)

sα + µk2 (sα + g(α))
, (27)

and applying the inverse Fourier transform to Eq. (27) we
have

ũ (x, s) =
(F−1

k (û)
)
(x, s) =

sα−1

2π

×
∞∫

−∞

Ψ(k)
sα + µk2 (sα + g(α))

e−ikxdk. (28)

Finally, applying the inverse Laplace transform to the
above equation we get

u(x, t) =
1

2πi

ε+i∞∫

ε−i∞

estsα−1ds

× 1
2π

∞∫

−∞

Ψ(k)
sα + µk2 (sα + g(α))

e−ikxdk. (29)

Considering the fractional conformable derivative in the
Liouville-Caputo sense we have the following diffusion equa-
tion

(c β
0 Dα

t u)(x, t) = µ
∂2

∂x2
u(x, t),

t > 0, x ∈ R, µ ∈ R+, 0 < α ≤ 1, (30)

u(x, 0) = ψ(x), (31)

whereµ is the diffusion coefficient.
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Solution. Applying the Laplace transform to Eq. (30) and
taking the condition (31) we get

Γ(1− αβ)
α−βΓ(1− β)

(
sαβ (Ltu) (x, s)− sαβ−1ψ(x)

)

= µ
∂2

∂x2
(Ltu) (x, s). (32)

Applying the Fourier transform to Eq. (32) and simplify-
ing, we have

û(k, s) =
sαβ−1Ψ(k)

sαβ + µk2
Γ(1− β)

αβΓ(1− αβ)

. (33)

Now applying the inverse Laplace and inverse Fourier
transforms to Eq. (33) we have

u(x, t) =
1
2π

∞∫

−∞
Eαβ,1

(
− µk2 Γ(1− β)

Γ(1− αβ)
tαβ

)

×Ψ(k)e−ikxdk. (34)

In the case whenα = 1 the expression (34) matches the
solution obtained in the Eq. (23) in the Liouville-Caputo
sense.

Considering the Atangana-Koca fractional-order deriva-
tive in the Liouville-Caputo sense we have the following dif-
fusion equation

(AKC
0 Dα

t u)(x, t) = µ
∂2

∂x2
u(x, t),

t > 0, x ∈ R, µ ∈ R+, 0 < α ≤ 1, (35)

u(x, 0) = ψ(x), (36)

whereµ is the diffusion coefficient.
Solution. Applying the Laplace transform to Eq. (35) and
taking the condition (36) we get

1
a

(
s−nαL [u (x, t)]− s−nα−1u (x, 0)

)

= µ
∂2

∂x2
(Ltu) (x, s), (37)

wherea = g(α)
(
1− g(α)

)α
.

Applying the Fourier transform to Eq. (37) and simplify-
ing, we have

û(k, s) =
s−nα−1Ψ(k)
s−nα + aµk2

. (38)

Now applying the inverse Laplace and inverse Fourier
transforms to Eq. (38) we have

u(x, t) =
1
2π

∞∫

−∞

[
1− Enα,1

(
− tnα

aµk2

)]

×Ψ(k)e−ikxdk. (39)

Convection-Diffusion Equation

In the Liouville-Caputo sense we have the following
convection-diffusion equation

(C
0 Dα

t u)(x, t) = −εη
∂

∂x
u(x, t) + µ

∂2

∂x2
u(x, t)

+
Q(x, t)

cρ
, t > 0, 0 < α ≤ 1, (40)

u(x, 0) = ψ(x), x ∈ R, µ ∈ R+, (41)

whereµ = λ/cρ is the diffusion equation.
Solution. Applying the Laplace transform to Eq. (40) and
taking the condition (41) we get

sα (Ltu) (x, s)− sα−1ψ(x) = −εη
∂

∂x
(Ltu) (x, s)

+ µ
∂2

∂x2
(Ltu) (x, s) +

Q(x, s)
cρ

. (42)

Applying the Fourier transform to Eq. (42) and simplify-
ing, we have the following relation for̂u(k, s)

û(k, s)=
sα−1Ψ(k)

sα+
(
µk2−εηik

) +
1
cρ

Q(k, s)
sα +

(
µk2 − εηik

) . (43)

Applying the inverse Laplace transform and the inverse
Fourier transforms to Eq. (43) we get

u(x, t) =
1
2π

∞∫

−∞
Eα,1

(−(
µk2 − εηik

)
tα

)
Ψ(k)e−ikxdk

+
1

2πcρ

∞∫

−∞
e−ikxdk

1
2πi

×
ε+i∞∫

ε−i∞

Q(k, s)
sα +

(
µk2 − εηik

)estds. (44)

In the Atangana-Baleanu-Caputo sense we have the fol-
lowing convection-diffusion equation

(ABC
0 Dα

t u)(x, t) = −εη
∂

∂x
u(x, t) + µ

∂2

∂x2
u(x, t)

+
Q(x, t)

cρ
, t > 0, 0 < α ≤ 1, (45)

u(x, 0) = ψ(x), x ∈ R, µ ∈ R+, (46)

whereµ = λ/cρ is the diffusion equation.

Solution. Applying the Laplace transform to Eq. (45) and
taking the condition (46) we get

sα (Ltu) (x, s)− sα−1ψ(x)
s + g(α)

= −εη
∂

∂x
(Ltu) (x, s)

+ µ
∂2

∂x2
(Ltu) (x, s) +

Q(x, s)
cρ

. (47)
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Applying the Fourier transform to Eq. (47) and simplify-
ing, we have the following relation for̂u(k, s)

û(k, s) =
sα−1Ψ(k)

sα +
(
µk2 − εηik

)
(s + g(α))

+
1
cρ

(
s + g(α)

)
Q(k, s)

sα +
(
µk2 − εηik

)
(s + g(α))

. (48)

Finally, applying the inverse Fourier transform and the
inverse Laplace transform to Eq. (48) we get

u(x, t) =
1

2πi

ε+i∞∫

ε−i∞

estsα−1ds
1
2π

×
∞∫

−∞

Ψ(k)
sα +

(
µk2 − εηik

)
(s + g(α))

e−ikxdk

+
1

2πicρ

ε+i∞∫

ε−i∞

est(s− g(α))ds
1
2π

×
∞∫

−∞

Q(k, s)
sα +

(
µk2 − εηik

)
(s + g(α))

e−ikxdk. (49)

Considering the fractional conformable derivative in the
Liouville-Caputo sense we have the following convection-
diffusion equation

(c β
0 Dα

t u)(x, t) = −εη
∂

∂x
u(x, t) + µ

∂2

∂x2
u(x, t)

+
Q(x, t)

cρ
, t > 0 0 < α ≤ 1, (50)

u(x, 0) = ψ(x), x ∈ R, µ ∈ R+, (51)

whereµ is the diffusion coefficient.
Solution. Applying the Laplace transform to Eq. (50) and
taking the condition (51) we get

Γ(1− αβ)
α−βΓ(1− β)

(
sαβ (Ltu) (x, s)− sαβ−1ψ(x)

)
=

− εη
∂

∂x
(Ltu) (x, s) + µ

∂2

∂x2
(Ltu) (x, s)

+
Q(x, s)

cρ
. (52)

Applying the Fourier transform to Eq. (42) and simplify-
ing, we have

û(k, s) =
sαβ−1Ψ(k)

sαβ + (µk2 − εηik) Γ(1−β)
αβΓ(1−αβ)

+
Γ(1− β)

cραβΓ(1− αβ)

× Q(k, s)

sαβ + (µk2 − εηik) Γ(1−β)
αβΓ(1−αβ)

. (53)

Finally, applying the inverse Laplace transform and the
inverse Fourier transform to Eq. (53), we get

u(x, t)=
1
2π

∞∫

−∞
Eαβ,1

(
− (µk2 − εηik)

Γ(1− β)
αβΓ(1− αβ)

tαβ

)

×Ψ(k)e−ikxdk +
Γ(1− β)

cραβΓ(1− αβ)
1
2π

∞∫

−∞
e−ikxdk

× 1
2πi

ε+i∞∫

ε−i∞

Q(k, s)

sαβ + (µk2 − εηik) Γ(1−β)
αβΓ(1−αβ)

estds. (54)

In the case whenα = 1 the expression (54) matches the so-
lution obtained in the Eq. (44) in the Liouville-Caputo sense.

Considering the Atangana-Koca fractional-order deriva-
tive in the Liouville-Caputo sense we have the following
convection-diffusion equation

(AKC
0 Dα

t u)(x, t) = −εη
∂

∂x
u(x, t) + µ

∂2

∂x2
u(x, t)

+
Q(x, t)

cρ
, t > 0, 0 < α ≤ 1, (55)

u(x, 0) = ψ(x), x ∈ R, µ ∈ R+, (56)

whereµ is the diffusion coefficient.
Solution. Applying the Laplace transform to Eq. (55) and
taking the condition (56) we get

1
b

(
s−nαL [u (x, t)]− s−nα−1u (x, 0)

)
=

− εη
∂

∂x
(Ltu) (x, s) + µ

∂2

∂x2
(Ltu) (x, s)

+
Q(x, s)

cρ
, (57)

whereb = g(α)
(
1− g(α)

)α
.

Applying the Fourier transform to Eq. (57) and simplify-
ing, we have

û(k, s) =
s−nα−1Ψ(k)

s−nα + bµk2 − εηbik

+
b

cρ

Q(k, s)
s−nα + bµk2 − εηbik

. (58)

Applying the inverse Laplace transform and the inverse
Fourier transform to Eq. (58) we get

u(x, t) =
1
2π

∞∫

−∞

[
1− Enα,1

(
− tnα

bµk2 − εηbik

)]

×Ψ(k)e−ikxdk +
b

2πcρ

ε+i∞∫

ε−i∞

e−ikxdk
1

2πi

×
ε+i∞∫

ε−i∞

Q(k, s)
s−nα + bµk2 − εηbik

estds. (59)
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FIGURE 1. Numerical solutions of Eqs. (44), (49), (54) and (59). In (a) Eq. (44); in (b) Eq. (49); in (c) Eq. (54) and (d) (59), we
considerα = 0.85 for the cases (a), (b), (d) and for (c), we considerα = 0.92-β = 0.83 for the fractional conformable derivative in the
Liouville-Caputo sense.

4. Illustrative examples

Figures 1(a-d) show numerical simulations of the Eqs. (44),
(49), (54) and (59) forα = 0.85 andα = 0.92-β = 0.83 for
the fractional conformable derivative in the Liouville-Caputo
sense, these values were chosen arbitrarily.

5. Conclusion

In this work we applied fractional-order derivatives of
type Liouville-Caputo, Atangana-Baleanu, fractional con-
formable derivative and Atangana-Koca to obtain analytical
solutions for the diffusion and convection-diffusion equation.
The fractional equations were solved using the Laplace and
Fourier transform. The anomalous diffusion concept is nat-
urally obtained from diffusion equations using the fractional
calculus approach. Our results indicate that the kernel in-

volved in the fractional derivative and the fractional-order
α has an important influence on the concentration. When
memory effects described by the fractional orderα are incor-
porated using fractional time derivatives, the crossover dy-
namics is richer. The alternative solutions obtained in this
paper provide a new theoretical perspective of the diffusion
and convection-diffusion phenomena.
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