RESEARCH Revista Mexicana désica65 (2019) 82—88 JANUARY-FEBRUARY 2019

Analytical solution of the time fractional diffusion equation
and fractional convection-diffusion equation
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In this paper, we obtain analytical solutions for the time-fractional diffusion and time-fractional convection-diffusion equations. These equa-
tions are obtained from the standard equations by replacing the time derivative with a fractional derivative @f Brdetional operators of

type Liouville-Caputo, Atangana-Baleanu-Caputo, fractional conformable derivative in Liouville-Caputo sense, and Atangana-Koca-Caputo
were used to model diffusion and convection-diffusion equation. The Laplace and Fourier transforms were applied to obtain analytical
solutions for the fractional order diffusion and convection-diffusion equations. The solutions obtained can be useful to understand the mod-
eling of anomalous diffusion, subdiffusive systems and super-diffusive systems, transport processes, random walk and wave propagation
phenomenon.
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1. Introduction the standard equations by replacing the time deriva-
tive with fractional derivatives of type Liouville-Caputo,

Recent studies in science and engineering demonstrated thatangana-Baleanu-Caputo, fractional conformable derivative

the dynamics of many systems may be described more ada Liouville-Caputo sense and Atangana-Koca-Caputo of or-

curately by means of differential equations of non-integerderq, with0 < o < 1.

order. The diffusion equation is a partial differential equa-  The following fractional diffusion equation is considered

tion that portrays density dynamics in a material subject to )

diffusion [1,2]. The convection-diffusion equation explains (0Dfu)(x,t) = p—u(z, t),

the flow of heat, particles, oil reservoir simulations, trans- O

port of mass and energy, global weather production, or other t>0, x€R, peR", 0<a<1, (1)
physical quantities in conditions where there are both diffu-

sion and convection or advection [3-5]. Fractional diffusion u(@,0) = ¥(z), @

equations are largely used in describing abnormal SlOWIyY/vhereu is the diffusion coefficient

diffusion phenomenon, and fractional diffusion equations are . . e . .
pher L on €q The fractional convection-diffusion equation considered
always used in describing abnormal convection phenomenon,

) - e S . S . is [4
Time-fractional diffusion is derived by considering continu- skl
ous time random walk problems, which are in general non- =~ 0 0? Q(z,t)
Markovian processes. oDiu)(a,t) = —enzru(z,t) + posu(e,t) + cp
Several definitions, related to fractional order-derivatives 150, 0<a<l, 3)

have been used in the literature. These definitions include,
Riemann-Liouville, Liouville-Caputo, conformable deriva- u(z,0) =(z), z€R, peR", 4)

tives, Caputo-Fabrizio, Atangana-Baleanu and Atangana-

Koca, to mention a few [6]. The choice of fractional differ- wherey = X/cp is the diffusion coefficient¢ is the poros-
entiation is motivated by the fact that the interaction with theity, 7 is the velocity,\ is the thermal conductivity; is the
medium is not local but global. The fractional operators carspecific heatp is the mass density, ar@l(z, t) is the source
be a useful way to include memory in a dynamical processterm.

A dynamical process that is modelled through fractional or-

der derivatives carries information about its present as welb_ Basic Tools

as past states.

In this paper, we consider the time-fractional diffu- The Liouville-Caputo (C) fractional operator of orderis
sion and convection-diffusion equations, obtained fromdefined as [7]
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n

(), a=né€N,

Dput,z) = (5)

¢
ﬁ =zt 2z, 2)dz, n—1<a<néeN,
a

where§ D¢ is the Liouville-Caputo fractional operator of ordemwith respect ta.

Atangana and Baleanu considered the generalized Mittag-Leffer function as the kernel of differentiation. This kernel is
non-singular and nonlocal and preserves the benefits of the above fractional operators. Replaced the exponential kernel wit
the generalized Mittag-Leffler function, we obtain the fractional operator of type Atangana-Baleanu in Liouville-Caputo sense
(ABC) of ordera defined as follows [8]

ABCp(te), ) ( t)—l/tE (— gla)(t - )Q)w( )d ~l<a<neN (6)
“ h u |(x, _g(a) o gla z Dt r,z)dz, n a<n .

wheren € N andg(«) is a normalization function that dependscafwhich satisfies thag(0) = g(1) = 1.
Let0 < o < 1 andn € N, the Laplace transforms of the Liouville-Caputo and Atangana-Baleanu-Caputo fractional
operators are given by

L [th("*‘“)u(x,t)] (z,8) = Sn{a (s"ﬁ [u(z,t)] — "t (z,0) —. .. — u" ™ (a, 0)) 7)
ABC(n+a) 1 1 s"MLu(x,t)] — s™u(x,0) — s" 1 (x,0)... — u™ (2,0)
c [OB D u(z,t)} (5:9)= 05 5= ey . @®)

Khalil in [9] gives a new definition of derivative called
“conformable derivative”. Leff : [a,00) — R. The con- If € Cp .([a,0]), (f € CF 4([a,b])). Then the left fractional

formable derivative off (¢) is given by conformable derivative in the Liouville-Caputo sense is given
by [10]
DEF(E) = I f(ere) 1@ (©) [ ((t—a) )
oDr' =M J : 1 (t—a)® —(x—a)*\np-1
e—0 ¢ Bya —
‘ DI F(n—ﬂ)/( a )
forallt > 0, « € (0,1). If f(t) is a-differentiable in @
some(0,a), a > 0, and lim_ f@(t) exists, then define aDgf(lx_)a gz =nF If(ZD?f(t)), 12)
f(0) = lim f@1). (z—a)
e—0
The left conformable integral is given by The Atangana-Koca fractional derivative in Liouville-
Caputo sense (AKC) is given by [11,12]
[ @)
(63 z (0%
aIt f(t) = / mdﬂ?7 X Z a, 0 <« S 17 (10) (fKCDt U) (m,t) = m
t
Iteratingn-times the integral (10) and replacing the inte- x / EX9 (= gla)(t—2)*) @(x’ 2)dz,  (13)
gern, for 3 € C, with Rg(3) > 0, we define the following “ 0z

fractional conformable integral

where g(«) is a normalization function as in the previous
t

) 1 (t — a)® — ( — a)*\ A1 cases.
PIZF(t) = T ( ) Let0 < a < 1, the Laplace transform of the Atangana-
(%) . @ Koca fractional-order derivative is given as
f(z) AKC 1
X ———— dx. (11) L Diu(zx,t) p(z,8) = ——————
(x —a)t—« {0 ' } g(a)(1 - g(a))”
Considering the definition given by Eq. (11) we get the X (s*"aﬁ [u(z,t)] — s~ 1y (x,O)). (14)
left fractional conformable derivative in the Liouville-Caputo
sense. Let Rg?) > 0, n = [Re(B)] + 1, Given a functionu(z) € Ly (R), the Fourier transform is
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given by In the Atangana-Baleanu-Caputo sense we have the fol-
oo lowing diffusion equation
u(k) = (Fyu(x)) (k) := / e y(x)d, (15) )
= (PCDR ) ,1) = sl 1),
. . . ox
and the inverse Fourier transformfz) is given by
1 t>0, z€R, peR™, 0<a<l, (24)
—1 T
Fi (Foul) (@) =50 u(x,0) = ¥(x), (25)
X / e~ ™% (Fou(x)) (k)dk. (16)  wherey is the diffusion coefficient.
—oo Solution. Applying the Laplace transform to Eq. (24) and

taking the condition (25) we get
3. Fractional diffusion equations
5% (L) (z,8) — s Lp(x 0?

In this paper, we solved the diffusion and convection- L )§9+;(a) @) =h5s (Leu) (z,8). (26)
diffusion equation considering fractional operators of type
Liouville-Caputo, Atangana-Baleanu-Caputo, fractional con- ] ] o
formable derivative in Liouville-Caputo sense and Atangana-  APPlying the Fourier transform to Eq. (26) and simplify-
Koca-Caputo. ing, we have the following relation fai(k, s)
Diffusion Equation.

In the Liouville-Caputo sense we have the following dif-

s 1w (k)

fusion equation (k. s) = 5%+ pk? (s« 4 g(a))’ 27)
2
(D) (2, t) = o aul(@, ), and applying the inverse Fourier transform to Eq. (27) we
have
t>0, z€R, peR", 0<a<l, an
a—1
u(z,0) = ¥(z), (18) i(z,s) = (F @) (z,5) = 82
7

wherey is the diffusion coefficient. o
Solution. Applying the Laplace transform to Eq. (17) and « (k) —ikz gp, 28)
taking the condition (18) we get s+ pk? (s + g()) ‘ '

— 0o

2
(Lo (2, 5) = 571 0() = s (Lo (2,5). (19)

Applying the Fourier transform in the left hand of the Eq.
(19) we have

Finally, applying the inverse Laplace transform to the
above equation we get

‘7_;{804 (‘Ctu) (x,s) _Sa_lw(x)}(kvs) 1 o
u(z,t) = — / e*s* 1ds
= s Gk, s) — s* 10 (k), (20) mi )
and for the right hand of the Eq. (19) we have oo
1 \P(k) —ikx
32 82 X % 5o ,uk2 (SO‘ n g(a)) e dk. (29)
Fo{usgs (Lo) } (k. s) = po (Folrw)(k, 5) .

= u(—ik)*u(k, s). (21)
] _ o Considering the fractional conformable derivative in the
Equating Eqs. (20) and (21) the following explicit rela- | joyville-Caputo sense we have the following diffusion equa-

tion is deduced fofi(k, s) tion
a—1
ak,s) = =) (22) 92
s+ pk (57 Dfu) (@, 1) = (e, b),
Now, applying the inverse Laplace and inverse Fourier t
transforms to Eq. (22) we have t>0, teR, peR", 0<a<l, (30)
17 _ u(z,0) = (z), (31)
u(z,t) = 7 / Eoq( — pk?t™) U(k)e " dk.  (23)
s
—o0 wherey is the diffusion coefficient.
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Solution. Applying the Laplace transform to Eq. (30) and Convection-Diffusion Equation

taking the condition (31) we get o )
In the Liouville-Caputo sense we have the following

(1 -« B . T . .
7( B) (s(xﬁ (Lou) (2, 5) — %8 1¢(x)) convection-diffusion equation
o PT(1 =) 5 5
02 ((?D?u) (z,t) = 767]%“(:% t) + ﬂwu(% t)
= M@ (Leu) (2, ). (32) 0. 1)
T, t
Applying the Fourier transform to Eq. (32) and simplify- + cp t>0, 0<axl, (40)
ing, we have
’ . u(@,0) = $(x), T€R, peRT, (41)
N b=l (k
u(k,s) = ° F((l)— 3 (33)  whereu = \/cp is the diffusion equation.
58 + M/ﬂ2m Solution. Applying the Laplace transform to Eg. (40) and

taking the condition (41) we get
Now applying the inverse Laplace and inverse Fourier

0
transforms to Eq. (33) we have s (Lou) (x,8) — s Mop(x) = —eng (Leu) (2, 5)
o0 2
_ 1 5 T'(1=0) a5 + iﬁu merM (42)
U(l}t)—g/ EO‘BJ( /Jk mt MaxQ( t )( ’ ) cp
- 4 Applying the Fourier transform to Eq. (42) and simplify-
x U(k)e~*dk. (34) ing, we have the following relation far(k, s)
In the case when = 1 the expression (34) matches the alk, 5)= s* U (k) 1 Q(k, s) (43)
solution obtained in the Eq. (23) in the Liouville-Caputo so+(uk2—enik) — cp s® + (uk? — enik)’

sense.
Considering the Atangana-Koca fractional-order deriva-
tive in the Liouville-Caputo sense we have the following dif-

Applying the inverse Laplace transform and the inverse
Fourier transforms to Eq. (43) we get

fusion equation 1 o0 _
ke 52 u(z,t) = > / Eaﬁl(—(ukz - enik)to‘) U (k)e ke dk
(0" " Diu)(z,t) = N@U(%t% “oo
t>0, r€R, peR", 0<a<l, (35) 1 /OO *i’”dkl
€ o
u(,0) = v(x), (36) amep J 2!
wherey is the diffusion coefficient. etico Ok 5)
Solution. Applying the Laplace transform to Eq. (35) and X / - 2’ —e®ds. (44)
taking the condition (36) we get I + (uk? — enik)
1 (S—na£ [u (2, 1)] — s~ L (z, O)) _In the AtanganaTBaI_eanu-Caputo sense we have the fol-
a lowing convection-diffusion equation
(92 o 82
= tggr () (2:9), G @D t) = —engule, ) + ppula,)
wherea = g(a) (1 — g(oz))a. Q(x,t)
Applying the Fourier transform to Eq. (37) and simplify- + o t>0,0<asl, (45
ing, we have N
u(z,0) =9¢(z), z€R, peRT, (46)
- s~ (k) . I .
u(k,s) = TR (38)  whereu = \/cpis the diffusion equation.
Now applying the inverse Laplace and inverse FourierSolution. Applying the Laplace transform to Eq. (45) and
transforms to Eq. (38) we have taking the condition (46) we get
17 fna s* (L) (z,5) — s* Mp(x) . )
-2 _ _ = —en— (L) (,5)
u(@, ) 27 / [1 Em’l( a/,LkQH s+ g(a) oz "
- 0? Q(z, s)
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Applying the Fourier transform to Eq. (47) and simplify- Finally, applying the inverse Laplace transform and the

ing, we have the following relation fai(k, ) inverse Fourier transform to Eq. (53), we get
Sa71W(k) 1 x r
u(k = _ 2 . (1 — ﬂ) af
'Z,L( ;S) S + (’uk.Z _ E'I]Zk) (S + g(Oé)) U(I7t)—% /Eaﬁ’l ( — (ILLk - GUZk)mt
1 (s+9(0)Qk,s) ) ) .
cp s® + (,uk’z _ 6771]1') (3 + g(a)) % \Ij(k)efzk‘xdk + % zi / efikzdk
Finally, applying the inverse Fourier transform and the cpalL(1 — af) T
inverse Laplace transform to Eq. (48) we get oo
e+ic0 1 Q(k, S) st
u(z,t) = — e‘“sa_ldsi 8 2mi 598 + (uk? — em‘k)ir(lfﬁ) crds. (54)
’ 2mi ) 27 e—ioo aPr(1-ap)
e In the case when: = 1 the expression (54) matches the so-
iy U (k) 4 lution obtained in the Eq. (44) in the Liouville-Caputo sense.
X / - 2 . e~k q Considering the Atangana-Koca fractional-order deriva-
g8 T (k&2 — enik) (s + g(a) tive in the Liouville-Caputo sense we have the following
oo convection-diffusion equation
1 st 1 ) 9?
amicp | ¢ T 9l@)ds o FEODFu) (@, t) = —en—u(a,t) + g (o, )
0 LO@Y 0 0ca<t (55)
Q(kv 5) —ikx cp
X = 5 - e dk.  (49)
st (Mk —em ) (S + g(a)) U(I‘,O) = ¢(33)7 T e Ra we R+7 (56)

Considering the fractional conformable derivative in thewherey is the diffusion coefficient.
Liouville-Caputo sense we have the following convection-Solution. Applying the Laplace transform to Eq. (55) and

diffusion equation taking the condition (56) we get
> 8 82 1 —nao —na—1
¢ B _ Z _ o —
(6" D) (z,t) = —en%u(x,t) + u@u(x,t) 5 (8 Llu(z,t)] —s u(x, O))
3 2
9D g 0<ast,  (50) — e (Leu) (2,5) + g (Lou) (2, 5)
cp
u(e,0) = ¥(x), T€R, peRY,  (51) 1 Qws) (57)
cp

wherey is the diffusion coefficient.
Solution. Applying the Laplace transform to Eq. (50) and
taking the condition (51) we get

whereb = g(a) (1 — g(a))a.
Applying the Fourier transform to Eq. (57) and simplify-

ing, we have
LUZ0D) (09 (L) (0,5) - 50 4(0)) = SN S 105
a1 - p) alk, s) = s 4 buk? — enbik
— eni (Leu) (z,s) + ya—Q (Leu) (z,s) b Q(k,s)
Oz ’ 2 ’ +— 5 . (58)
cp s + buk? — enbik
+ M (52) Applying the inverse Laplace transform and the inverse
ep Fourier transform to Eq. (58) we get
Applying the Fourier transform to Eq. (42) and simplify- ) oo o
ing, we have - = 1—-E _
) U(xy t) o / [ no,1 b,U,kQ — E'f]blk
. 5P 10 (k) —00
u(k’s) - af 2 ; ra-p) i
S + (/J/k — emk)m e+1i00 1
—ikx —ikx =
r(1-g) x U(k)e " dk + orcp ) e ""dk 57
CpOéﬁF(l — O{ﬂ) €—100
Q(k’ s) e+ioo Q(k 5)
X . (53) J stds.
520 + (uk? — enik)% . / s 4 buk? — enbz’ke ds (59)

€—100
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ulz, t)

u(z,t)
u(z,t)

(©) (d)

FIGURE 1. Numerical solutions of Eqs. (44), (49), (54) and (59). In (a) Eq. (44); in (b) Eq. (49); in (c) Eq. (54) and (d) (59), we
considera = 0.85 for the cases (a), (b), (d) and for (c), we consider 0.92- = 0.83 for the fractional conformable derivative in the
Liouville-Caputo sense.

4. lllustrative examples volved in the fractional derivative and the fractional-order
« has an important influence on the concentration. When

Figures 1(a-d) show numerical simulations of the Eqs. (44)memory effects described by the fractional ordeare incor-

(49), (54) and (59) forv = 0.85 andar = 0.92-3 = 0.83for  horated using fractional time derivatives, the crossover dy-

the fractional conformable derivative in the Liouville-Caputo namics is richer. The alternative solutions obtained in this

sense, these values were chosen arbitrarily. paper provide a new theoretical perspective of the diffusion
and convection-diffusion phenomena.

5. Conclusion
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