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Role of the cut-off function for the ground state variational
wavefunction of the hydrogen atom confined by a hard sphere
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A variational treatment of the hydrogen atom in its ground state, enclosed by a hard spherical cavity of radiusRc, is developed by considering
the ansatz wavefunction as the product of the free-atom 1s orbital times a cut-off function to satisfy the Dirichlet boundary condition imposed
by the impenetrable confining sphere. Seven different expressions for the cut-off function are employed to evaluate the energy, the cusp
condition, the Shannon entropy,〈r−1〉, 〈r〉, 〈r2〉, and the critical cage radius, as a function ofRc in each case. We investigate which of the
proposed cut-off functions provides best agreement with available corresponding exact calculations for the above quantities. We find that
most of these cut-off functions work better in certain regions ofRc, while others are identified to give bad results in general. The cut-off
functions that give, on average, better results are of the form(1− (r/Rc)

n), n = 1, 2, 3.
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1. Introduction

In the middle 1930’s, shortly after the formulation of quan-
tum mechanics, Michels, de Boer and Bijl [1] proposed to
study how the polarizability of the hydrogen atom would
change when subjected to high pressures. They developed
a model consisting of a hydrogen atom with its nucleus cen-
trally located inside a confining impenetrable sphere of radius
Rc. The impenetrable character of the sphere boundary rep-
resents, as first approximation, the repulsive potential due to
all negative charges surrounding the hydrogen atom [2]. Un-
der these conditions, the wavefunction of the particle must
vanish at the walls, satisfying the Dirichlet boundary con-
dition. This simple model predicted qualitative results that
explain some experimental results and, over the years, it be-
came one of the most successful models about the study of
confined quantum systems [2-10]. Confined quantum sys-
tems are used to study a great variety of problems of physics
and chemistry [1-20]. For example, the effects on electronic
structure of atoms and molecules trapped in fullerenes [13]
and in other microscopic cavities, the study of artificial sys-
tems built within semiconductors, such as quantum wells,
wires, and dots [11,12,14]. Other applications for confined
quantum systems are: the study of specific heat of a crystal
subjected to an external pressure [15], spectroscopic data for
astrophysics [16], matter inside electromagnetic fields [17],
nuclear models [18], etc.

The model of the confined hydrogen atom proposed by
Michels et. al. [1], is the following: a hydrogen atom is
boxed in a spherical impenetrable cavity with the nucleus
clamped at the center of the sphere, and the electron is mov-
ing within the volume of the sphere. The impenetrable walls
impose Dirichlet condition over the wave functions on the
surfaceδΩ of the sphere.

ψ(~r)|~r∈δΩ = 0

This simple model has been widely used to test new tech-
niques to solve the Schrödinger equation (exact solutions)
or to explore new trial variational wavefunctions to compare
with the most accuarte calculations [10]. One of the approx-
imate methods is the direct variational method (DVM), in
which the trial wavefunction is constructed as the product of
a wave function, similar to the wave function of the free (un-
bounded) system, times a non-singular functionfcut, which
vanishes on the boundary of the boxδΩ.

The selection of the cut-off termfcut in the literature
has been arbitrary. Some authors have used different forms
of cut-off function: linear [5-7], exponential [19], or(1 −
r/Rc)n, wheren is a positive integer number [20], etc. On
the other hand, to our knowledge there is no systematic study
about the effect of the cut-off function on the energy of the
confined hydrogen atom, obtained in a variational way.

The objetive of this work is to explore several criteria to
decide which of the cut-off functions is the best. We tested
seven trial wavefunction constructed as a product of the free
1s hydrogen-like orbital times seven different cut-off function
fcut. We compared the calculated physical quantities with
the exact ones [9,10,33] to decide which of the trial wave-
functions give the best aproximations.

The organization of this work is as follows: in Sec. 2 we
present the methodology used to solve the confined hydrogen
atom (CHA) problem within spherical impenetrable cavity
using the direct variational method. We used seven different
cut-off functions to compute the ground state energy and sev-
eral expectation values of r as functions of the confinement
radius. In Sec. 3 we compute the Shannon entropy in coordi-
nate space for the different trial wave functions of Sec. 2. In
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Sec. 4 we compare the results obtained by using the differ-
ent trial wave functions with the accurate numerical results
[9-10,33]. Finally in Sec. 5 we give our conclusions.

2. The ground state energy of the CHA by us-
ing different cut-off functions

The Hamiltonian of the confined hydrogen atom, in atomic
units, is given by

H = −1
2
∇2 − 1

r
+ Uc(r)

Uc(r) =
{

0, r ≤ Rc

∞, r > Rc
(1)

In the DVM, the ground state wavefunctionψt of the
CHA is the product of a functionψf , similar to the 1 s or-
bital of the free hydrogen atom, times a nonsingular cut-off
functionfcut, such thatfcut(r = Rc) = 0.

ψt = ψffcut. (2)

In this wayψt satisfies the Dirichlet boundary condition
of the problem

ψt(r = Rc, θ, ϕ) = 0 . (3)

We propose the wave functionψf as the 1 shydrogen-like
wavefunction:

ψf (r) = Ae−αr, (4)

whereA is the normalization constant andα is the variational
parameter.

The trial wavefunction for the ground state of the CHA,
with its nucleus clamped at the origin of a sphere of radius
Rc is given by:

ψt(r, θ, ϕ) = Ae−αrfcut(r), (5)

This function must be a decreasing function ofr in the
interval [0,Rc] and it is valid for negative and positive energy
values.

We use this trial wave function (5) and the variational
method to minimize the energy functionalE(α), wich is
given by:

E(α) =
〈ψt|H|ψt〉
〈ψtψt〉 , (6)

As we mentioned above the cut-off functionfcut is, in
principle, arbitrary. We selected seven different cut-off func-
tions to evaluate the quality with which they reproduce the
energy of the CHA ground state and several expectation val-
ues ofr. The following seven trial wavefunctions are con-
structed by using the rule given by the Eq. (5) :

I

e−αr

(
1− r

Rc

)
.

II

e−αr

(
1−

(
r

Rc

)2
)

.

III

e−αr

(
1−

(
r

Rc

)3
)

.

IV

e−αr

(
1−

(
r

Rc

)4
)

.

V

e−αr

(
1− r

Rc

)2

.

VI

e−αrj0

(
X10

Rc
r

)
.

VII

e−αr

(
c1j0

(
X10

Rc
r

)
+ c2j0

(
X20

Rc
r

))
,

wherej0 is the zeroth-order spherical Bessel function.X10 =
π andX20 = 2π are the first and second zeros of the spherical
Bessel function,c1 andc2 are linear variational parameters,
respectively.j0 is the wave function, with angular momen-
tum l = 0, of the free particle in a spherical impenetrable
box. The wave functionsj0(X10/Rcr) and j0(X20/Rcr),
are the gound state and the first excited state wave function
of the free particle in a box, respectively. The wavefunction
VII is the linear superposition of the two linearly independent
wavefunctions.

We must note that all the differences in the calculated val-
ues of physical properties are due to the kind of cut-off func-
tion used.

According to the variational theorem, we must calculate
the expectation value of the energy using the trial wavefunc-
tion. Thus, because of the symmetry of the problem, the in-
tegrals we need to calculate are:

〈ψt|H|ψt〉 =
〈ψt|T |ψt〉+ 〈ψt|V |ψt〉

〈ψt|ψt〉 (7)

Where

〈ψt|V |ψt〉 = −
Rc∫

0

[e−αrfcut(r)]2rdr, (8)

〈ψt|T |ψt〉 = −1
2

Rc∫

0

e−αrfcut(r)

×
{

1
r2

d

dr

[
r2 d

dr
(e−αrfcut(r))

]}
r2dr, (9)
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TABLE I. Ground state energy for the CHA, with seven different trial wavefunctions (see the text) by means of the variational method. These
results are compared with the exact value [10]. Distances are in Bohrs, while energies are in Hartrees.

Rc I II III IV V VI VII Exact value

0.5 14.8971 14.8152 14.8774 15.0390 16.1512 14.7621 14.7619 14.7480

0.6 9.6180 9.5657 9.6056 9.7117 10.4975 9.5419 9.5416 9.5277

0.7 6.5272 6.4921 6.5190 6.5924 7.1791 6.4842 6.4839 6.4699

0.8 4.5808 4.5565 4.5752 4.6279 5.0838 4.5577 4.5574 4.5434

0.9 3.2870 3.2699 3.2831 3.3220 3.6873 3.2765 3.2762 3.2622

1 2.3906 2.3784 2.3878 2.4170 2.7168 2.3884 2.3880 2.3740

1.2 1.2767 1.2705 1.2753 1.2924 1.5053 1.2838 1.2833 1.2693

1.5 0.4388 0.4371 0.4384 0.4464 0.5861 0.4515 0.4508 0.4370

1.7 0.1396 0.1394 0.1395 0.1441 0.2541 0.1535 0.1527 0.1391

2 -0.1250 -0.1240 -0.1249 -0.1232 -0.0431 -0.1108 -0.1118 -0.1250

3 -0.4225 -0.4206 -0.4224 -0.4237 -0.3902 -0.4116 -0.4132 -0.4240

4 -0.4811 -0.4796 -0.4811 -0.4824 -0.4670 -0.4741 -0.4760 -0.4833

5 -0.4947 -0.4937 -0.4948 -0.4956 -0.4884 -0.4906 -0.4924 -0.4964

6 -0.4982 -0.4976 -0.4983 -0.4988 -0.4953 -0.4959 -0.4974 -0.4993

7 -0.4993 -0.4989 -0.4994 -0.4996 -0.4978 -0.4979 -0.4990 -0.4999

8 -0.4997 -0.4995 -0.4997 -0.4999 -0.4989 -0.4988 -0.4996 -0.5000

9 -0.4998 -0.4997 -0.4999 -0.5000 -0.4994 -0.4993 -0.4998 -0.5000

10 -0.4999 -0.4998 -0.4999 -0.5000 -0.4996 -0.4996 -0.4999 -0.5000

and the overlap integral is given by

〈ψt|ψt〉 = −
Rc∫

0

(e−αrfcut(r))2 (10)

The energy functional as a function of the variational pa-
rameterα for a given confinement radiusRc is the following:

Evar(α; Rc) = 〈ψt|H|ψt〉 . (11)

Minimizing Evar respectα for a fixed value ofRc, we find
an upper limit for the ground state energyE of the CHA.

Most of the integrals involved in the calculation of the en-
ergy functional (11) are obtained in analytical form, except
for the cut-off functions VI and VII. In order to minimize the
energy functional, it is necessary to fix the value ofRc and
vary α. We used the program Mathematica 9 and the com-
mandFindMinimum to obtain the minimum of Eq. (11) for
each value ofRc. The optimum values of the energy for ev-
ery trial wavefunction as a function ofRc are shown in Table
I. We also show the most accurate energy values [10], which
we will call “the exact values”.

3. The Shannon entropy

The Shannon entropy in coordinate space is defined as
[27,28]

Sr =

0∫

Rc

d3~r|ψt|2 ln |ψt|2, (12)

where ψt is normalized to one. We must remember
that the trial wavefunction has the following formψt =
Ae−αrfcut(r)Y00(θ, ϕ), whereA is the normalization con-
stant andY00(θ, ϕ) = 1/

√
4π.

Gadreet al. used the Shannon entropy as a measure of
the quality of the basis set for free atomic and molecular sys-
tems [27,28]. In their calculations they constructed a wave
function as a linear combination of functions from a basis
set. They observed that, on having increased the number of
functions of the basis set, the constructed wavefunction ap-
proaches better the exact wavefunction of the system, and the
Shannon entropy increases approaching the Shannon entropy
of the exact wavefunction [9-10,33]. According to the Max-
imum Entropy Principle due to Jaynes [29] one must choose
the trial wavefuntion whose Shannon entropy is the highest
among a set of functions that satisfy the appropriate con-
straints of the system. In this way, Shannon entropy could
offer an alternative form to determine the quality of the trial
wavefunction for confined systems.
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FIGURE 1. Relative percentage error in the ground state energy of
CHA produced by the seven different trial wavefunctions as a func-
tion of the confinement radiusRc. The wavefunction V gives the
mayor errors. Whereas the wavefunctions V and VI give the lowest
errors for the strong confinement.

4. Results

The optimized energies as a function ofRc for every trial
wave function, appears in the Table I. We also calculate the
relative percentage error defined in the following way:

Erel =
E − Eexact

Eexact
× 100. (13)

This quantity,Erel, is always positive because the energy cal-
culated in a variational wayE is always greater than the exact
energy [9-10,33]. In Fig. 1 we plottedErel vs Rc for every
trial wavefunction considered in this work.

From Table I, we see that for confinement radii less than
1.0 au, the trial wavefunction VI gives the lowest energy with,
fcut(r) = j0((X10r/Rc). This can be understood because
in the strong confinement regime the system behaves like a
free particle inside an impenetrable spherical box [25] whose
radial wavefunctions are precisely the spherical Bessel func-
tions [26]. For confinement radii between 0.8 and 1.7 au, the
trial wavefunction II gives the lowest energy. From Fig. 1
we can observe that the wavefunctions VI and VII produce
an overestimation of the energy in a neighborhood ofRc = 2
au. We also can observe that the trial wavefunction IV over-
estimates the ground state energy forRc < 2 au.

As we can see from the Fig. 1, every trial wavefunction
has a region inRc at which it approaches better to the ex-
act energy [9-10,33]. Nevertheless, the trial wavefunctions I
- III are those that predict energies nearer to the exact value
[9-10,33]. The wavefunction V gives the largest error in the
region0.5 ≤ Rc ≤ 4.

FIGURE 2. Relative percentage error in the Shannon entropy, for
the CHA ground state produced by the seven different trial wave-
functions as a function of the confinement radiusRc. The wave-
function IV produces the lowest error forRc > 2, whereas the
wavefunction V produces the highest error.

Finally, for Rc larger than 2.0 au all trial wavefunctions
give good estimations for the ground state energy. This be-
havior is shown graphically in Fig. 1.

We calculated the Shannon entropy for each of the trial
wavefunctions. The Shannon entropy for all trial wavefunc-
tions have smaller values than the Shannon entropy for the
exact wavefunction [9-10, 33]. We define the Shannon en-
tropy relative errorSrel

r as follows:

Srel
r =

Sexact
r − Strial

r

Sexact
r

× 100, (14)

whereSexact
r andStrial

r , are the Shannon entropy for the exact
wavefunction [9-10,33] and for any trial wavefunction, re-
spectively. In the Fig. 2 we show the relative errorSrel

r for
each of the trial wavefunctions. For the region,0.5 < Rc <
0.8 au, the trial wavefunctions that have values closer to the
exact Shannon entropy [32] are I - III and VI - VII. While in
the region0.8 < Rc < 2 au, the trial wavefunctions with less
error are I - III. For values,Rc > 2 au, the trial wavefunction
IV has the lowest errors. Whereas the wavefunction V pro-
duces the largest errors. The maximum error produced by the
all wavefunction are reached near theRc = 0.8.

In the interval, [0.5,1.5], trial wavefunction II produces
small errors on the prediction of the Shannon entropy and in
the energy whereas the function IV has similar behavior in
for Rc > 5 au. We conclude that the Gadre’s conjecture is
not a good criterion to decide the quality of the trial wave-
functions.

In Fig. 3 we show the cusp condition at the origin of the
trial wavefunctions I-VII as a function ofRc. The cusp con-
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FIGURE 3. The cusp condition of CHA produced by the seven dif-
ferent trial wavefunctions as a function of the confinement radius
Rc.

FIGURE 4. Relative percentage error of〈r−1〉 produced by the
seven different trial wavefunctions as a function of the confinement
radiusRc.

dition at the origin of the exact wavefunction for CHA is
equal to 1. Accordingly, the best trial wavefunction will
be the one with the cusp closer to 1. As we can see, for
large confinement radius all functions satisfy this require-
ment. However, as the confinement radiusRc decreases the
cusp condition for all trial functions start to move away from
1. In the region,Rc ≤ 2 au, this difference begins to be
noticeable. The wavefunctions V, VI and VII are those closer

FIGURE 5. Relative percentage error of〈r〉 produced by the seven
different trial wavefunctions as a function of the confinement ra-
diusRc. The mayor error is produced by the wavefunctions V and
VI for Rc > 2 au.

to one, reaching a value of 0.5 atRc ∼ 0.5 au. The cusp
values for the rest of the trial functions are not good, few of
them having a cusp value greater than 1.5, as for example, the
wavefunction I, II and IV at,Rc ∼ 0.5 au.

These two criteria, the Shannon entropy and the cusp con-
dition, are not sufficient to decide which of trial wavefunc-
tions approximates better to the exact one. To try to give a
clearer answer to this question, we need to compute few ex-
pectation position values by using the trial wave functions
I-VII and comparing those results with the exact ones.

The position expectation values are given by:

〈rn〉 =
〈ψt|rn|ψt〉
〈ψt|ψt〉

=

Rc∫
0

(e−αrfcut(r))2rn+2dr

Rc∫
0

(e−αrfcut(r))2r2dr

, n ∈ Z, (15)

whereas the relative error is the following:

Error〈rn〉 =
〈rn〉 − 〈rn〉exacto

〈rn〉exacto
× 100. (16)

The relative error forn = −1, 1 and 2 are shown in
Figs. 4-6. In Fig. 4 we show the relative error in the cal-
culation of the expectation value〈r−1〉 as a function of the
confinement radius,Rc, for all wavefunctions I-VII. For
a confinement radius ofRc = 0.5 au all the trial wavefunc-
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FIGURE 6. Relative percentage error of〈r2〉 produced by the seven
different trial wavefunctions as a function of the confinement radius
Rc. The mayor error is produced by the wavefunction V.

tions give errors between 0.5% to 2.5%, the wavefunctions
V-VII have the lowest relative error. However, as the ra-
dius, Rc increases, the percentage error produced by those
trial wavefunctions also increases up to a maximum value of
about 1.6%. Whereas, the trial wavefunction I-III give errors
smaller than 15% at,1 < Rc < 2 au.

In the region,1 ≤ Rc ≤ 2 au, the trial wavefunction II
produces the lowest error of〈r−1〉. For the regionRc > 2 au,
in general, the best results are obtained with the trial wave-
function I and III. The function IV has the highest relative
error forRc < 2 au. The trial wavefunction V produces un-
satisfactory results for2 ≤ Rc ≤ 8 au.

Regarding the relative error of〈r〉 we see that in the re-
gion,0 ≤ Rc ≤ 2 au, all functions except the function of type
V, produce very small errors. In the region,2 ≤ Rc ≤ 4 au,
the trial wavefunction VI produces an error which can reach
more than 10%. For the regionRc > 2 the trial wavefunc-
tions I-IV and VII produce errors less than 4%. While the
functions V and VI have the largest errors.

For the relative error of〈r2〉 as a function ofRc we found
the following features. In the region,0 ≤ Rc ≤ 2 au, all
functions except the function V produce errors lower than
2%. For the regionRc > 2 au the functions VI and VII pro-
duce the largest errors, between 9-12%, around,Rc = 5 au,
and the error tends to diminish asRc grows. While the func-
tions I-IV have errors lower than 8%, and those errors tend to
diminish fast asRc increases. The largest error is produced
for the function V.

On the other hand, there exist two additional criteria to
test the variational trial wave functions I-VII. They are: the
critical cage radius [30,32,34,36-37] and a degeneracy which
results from choosing the radius of confinementRc exactly
at nodes of the free hydrogen wave functions [38-40].

The confinement radius at which the CHA total energy
becomes zero is called the critical cage radiusrc [30,34,36].
Sommerfeld and Welker [30], and recently Ley-Koo [37]
showed thatrc can be obtained as a function of the zeros of
the Bessel function of first classJ of order2l + 1.

rc =
1
8
(χi,2l+1)2, (17)

Whereχi,2l+1 denotes theith zero ofJ2l+1.
The exact value of the critical radius for the CHA ground

state is equal to 1.8353. The critical radius predicted by the
trial wave functions I-VII are: 1.83, 1.83, 1.79, 1.75, 1.69,
1.851 and 1.852, respectively. The wave functions I-III are
the best to predict a critical cage radius.

Seven decades ago de Groot and ten Seldam [38] noted
that each zero of the wave function, of some state of the free
hydrogen atom, is a cage sizeRc for the confined atom, and
the latter has the same energy as the state of the former. For
example, the2s wave function of the free hydrogen atom has
a node atr = 2 au.[39-41] The ground state energy of the
hydrogen atom confined in a boxRc = 2 au, is−1/8 au, that
corresponds to the energy of the2s state of the free hydrogen
atom.

The wave function of the state 2s of the free hydrogen
atom is

ψ2s = N(2− r)e−r/2 = (2N)(e−r/2)
(
1− r

2

)
, (18)

apart from the normalization, it is identical to the function I
for Rc = 2 andα = 1/2.

The first node of the wave function of any given state of
the free hydrogen atom gives a cage of sizeRc, in which
case the ground state of the CHA has the same energy as the
free hydrogen atom. This argument can be extended for the
identification of the excited states of the CHA. However, this
procedure gives the ground state energy of the CHA only for
particular values ofRc.

5. Conclusions

In this work we used the direct variational method to compute
the ground state energy of the confined hydrogen atom in an
impenetrable spherical box. In this approach, the trial wave-
function is constructed as the product of the 1s hydrogen-like
(free) orbital times a cut-off function. Seven different cut-off
functions were used for calculations of the energy, cusp con-
dition, Shannon entropy,〈r−1〉, 〈r〉, 〈r2〉 and the critical cage
radius as a function ofRc.

We found that there are regions ofRc for which certain
trial wavefunctions predict a physical property with a small
error, but in other regions the same wavefunctions predict it
with a high error. For example, the trial wavefunctios VI and
VII, predict energy values with small errors in the region of
strong confinement,Rc < 1, but large error in1 ≤ Rc ≤ 3.
On the other hand, the wavefunction I-III give small errors
in the energy for the regionRc > 2. It should be noted that
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the functions I and III behave in much the same way, but the
calculations with the wavefunction of type I are more sim-
ple than those with the wavefunction of type III. The trial
wavefunction V gives the largest errors in the estimation of
the energy, and for this reason it is not recommended for this
kind of computations.

Acording to the criterion on the degeneracy which results
from choosing the confinement radius,Rc, on the radial node
of the free wave function, the best function should be the
wavefunction I. However, this is apparent because this wave-
function I does not behave as the wave function of the free
particle, for small radii. A good trial wave function must be-
have as the wavefunction of a free particle in a box for small
values ofRc and like a free1s hydrogen wavefunction for
large values ofRc.

The best wavefunction is one that reproduces all the phys-
ical properties of the system with the lowest error comparing
with the exact ones. None of the wavefunctions studied in this
work satisfy this definition. We can conclude that, the wave-
functions VI and VII are very useful for strong confinement
(small Rc). For intermediate and large values ofRc wave
functions of types I and II are the most recommendable.

One way to construct better trial wavefunctions for this
problem consists in the inclusion of more radial terms and
variational parameters in the radial wavefunction. For exam-

ple, Varshni [22] improved wavefunction I, as follows:

ψ =
(

1− r

Rc

)
e−αr(1 + βr),

Whereα andβ are variational parameters.
Whereas, Montgomery [36] proposed a generalization of

Varshni’s vawefunction:

ψ =
(

1− r

Rc

)
e−αr(1 + βr)

(
e−αr

∑
p

apr
p

)

Wherean, are linear variational parameters andα is a
non-linear variational parameter.

The last trial wavefunction gives energy and other physi-
cal properties near to the exact ones [10]. We must note that
Varshni [10] and Montgomery [36] used(1 − (r/Rc)) as a
cut-off function.
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