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An accelerated growth model to generate complex networks
with connectivity distribution slope that varies with time
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Many real-life complex networks have in-degree and out-degree distributions that decay as a power-law. However, the few models that have
been able to reproduce both of these properties, can not reproduce the wide range of values found in real systems. Another limitation of
these models is that they add links from nodes which are created into the network, as well as between nodes already present in this network.
However, adding links between existing nodes is not a characteristic available in all systems. This paper introduces a new complex network
growth model that, without adding links between existing nodes, is able to generate complex topologies with in-degree and out-degree
distributions that decay as a power-law. Moreover, in this growth model, the ratio at which links are created is greater than the ratio at
which nodes are born, which produces an accelerated growth phenomenon that can be found in some real systems, like the Internet at the
Autonomous System level. This model also includes a behavior in which the slope of the in-degree distribution changes as the network grows,
in other words, it is a function of time. Similar behaviors have been previously observed in some real systems, like the citation network of
patents approved in the US between 1975 and 1999. However, in this latter network, the slope of the out-degree decreases as the network
grows.
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1. Introduction out-degree distributions that follow a power-law function [7],
P(k) ~ k7, which means that the properties observed in this
Many systems and their interactions can be described udYP€ Of nétworks may not be the result of simple random pro-
ing Directed Complex Networks (DCN) which share similar C€SSeS, hence they have been called complex networks (CN).
properties [1-3]. In order to model a system as a comple%‘ewer studies have _uncovered that many other systems fol-
network, a set of components in the system are defined 49" theé CN mechanisms and properties [3]. For example:
nodes, and the relationships between them as links. For ef® Power grid, airline networks, social-contact disease net-
ample, scientific papers’ citation networks represent article¥/0rks, neuronal networks, protein-protein interactions, sci-

as nodes, and citations as the links that join them. Citation€Ntific papers’ citation networks [4], the WWW and the In-

in an article are outwardly directed to the articles they cite'®Met at the autonomous system scale, to mention a few.

to. When directed links are necessary to represent a network The collective study of real systems that have power-law
it is called a DCN. However, when all the links are bidirec- connectivity distributions has found that their in-degree dis-
tional or non-directional, the network is considered to be aributions’ exponent;y;,,, vary in a range betweeh05 and
non-directed complex network (NDCN). In a DCN, the num- 4.69, while their out-degree distributions’ exponent,,.,

ber of links that leave a node is called its out-degree, whilehave a range betwedr5 and5.01 [2, 8].

the number of links that enter a node is called its in-degree.  Tnhese values have an important effect on the properties
Before the turn of the century, the random network modelbf this type of networks. For example, networks with ex-
was considered suitable to study most known networks. Iponent values, and~.) in the range between two and
this model, each node randomly selects to which nodes it corthree are considered scale-free [2]. In this type of networks,
nects to. This generates out-degree and in-degree values farlarge percentage of nodes have a smaller than average de-
all the nodes in the network that follow a Poisson probabil-gree, while a few nodes possess a high degree value. An-
ity distribution. However, research published in 1998 andother particular property of scale-free networks [9], is that
1999 [4-6] reported that some real networks have in- andhey have a small network diameté(see Fig. 1). Typically,
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tial attachment model to the out-degree, while Dorogovtsev

Network

Diameter et al [13] added links with preferential destination and links
with random source and destination, both tried to produce
Shortest path in-degree and out-degree distributions that follow a power-
""""" e 3 law. However, the models proposed by Bobsiet al. and

by Dorogotse\et al. are suitable for networks that are able to
create new links between existing nodes, but not for networks
FIGURE 1. The shortest path is the path with fewest number of lacking this mechanism, like the citation’s network.
links (hops) between tvyo nodes. Eor exam_ple the shortest path b_e- Among the models that may be used to study networks
tween nodes 0 and 3, is 2. The diameter in a graph or network i . . .
the longest shortest path or the distance between the two furtheﬁpat do not allow addmg and deleting links after nodes have
: - : d, the Krapivsky-Redner (K-R) model [14] allows
nodes. The diameter of this graph is 3, because the shortest paiheen created, i p y ( . )_ . [14]
between the two furthest nodes is 3. power-law behavior for the in-degree distribution of the net-
works generated, but the out-degree distribution follows a
d ~ In(In(N)), whereN is the number of nodes in the net- Poisson function. The model proposed by Jabr-Hametan
work. Therefore, it is common to refer to such networks asal- [15] simply assigns a power-law distribution to the outgo-
“ultra-small-world” networks. This property has an effect in ing links. While the model proposed by Esquietlal. [18]
the behavior of such networks. For example, in the imple-only reproduce power-law distribution for the out-degree, but
mentation of routing and searching algorithms, or the propanot for the in-degree. Other models have not been able to
gation of computer or biological viruses. concurrently produce out-degree and in-degree distributions
Since the publication of Baralsi and Albert's (BA) thatdecay as a power-law function.
growth model [10] to generate complex networks, this model ~ The motivation behind this work is that, for the case
has been used as a reference for others to add new procesgésomplex networks that do not allow to add and delete
which allow to reproduce other properties observed in realinks, there are no models able to simultaneously produce

networks [8]. out-degree and in-degree distributions that decay as a power-
For example, the original BA model included only ND- law. _ _
CNs and could only generate networks with the= 3 ex- This paper introduces a new DCN accelerated growth

ponent. Dorogovtseet al added an initial attractiveness model which, without adding new links or rewiring between

property [11] which allowed to model DCN and produced anéXisting nodes in the network, is able to generate networks

exponenty;,, that could vary between 2 and. in which the in-degree and the out-degree node distributions
Not all networks possess the same processes. For exarflecay as a power-law. Accelerated growth is a behavior avail-

ple, adding and deleting links is possible only in networksable in some complex networks, where the ratio at which new

like the WWW, where a web programmer may manually addinks are created is greater than the ratio at which new nodes

or delete hyperlinks between pages. Another example couldre added [17].

be a friendship network, where people may make new friends

a_nd _Iose others. quever, this property is not ava|labl_e iN&  Network growth model proposed

citation’s network, since once an article has been published,

itis usually nqt possible t(_) change_its referenf:es to other artirhe DCN growth model proposed in this paper is based in the

cles. Interestingly, a published article has a fixed out-degre&rapivsky-Redner [14] model. Initially the network has,

but its in-degree may increase over time as new articles majgolated nodes and at each time-step a new madecreated,

reference any published article. Therefore, it is possible tand one of the following two operations happens:

deduce that in-degree distributions that follow a power-law _ . .

function in this type of networks is due to preferential attach- 1. With probabilityl —p, a random number. is selected,

ment [15]: Articles that have many references have a greater ~ Wherem is the number of outgoing links for. The

probability to acquire new references. However, the preferen- ~ humberm has a range betweenand N, whereN is

tial attachment mechanism does not apply for the out-degree  the number of nodes in the network befargvas cre-
distribution of this type of networks and thus, it has not been ated. The new node randomly selectsn nodes in
possible to determine the laws, principles or rules that could ~ the network, and it connects to each of theseodes
explain why this distribution follows a power-law function through a directed link that originates;nand finishes
in networks without a rewiring mechanism, like the citation in eachm node.

network.

2. With probabilityp, n randomly selects an existing node
z and then connects to all ancestors of;, where the
directed links originate im and terminate at each an-

Models introduced after the one proposed by
Baratasi [15] define new processes that reproduce the be-
haviors and properties of specific real complex systems.

; . cestor ofz.
However, there is no generic model that could reproduce . _ _ _
the diverse number of properties found in the real world. This article considers that nodg is an ancestor ofs,
For example, Bollobs et al. [12] applied the preferen- if there is a link that originates at, and finishes at; .
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FIGURE 2. An example of the proposed model. (A) New node 5

performs operation 1, where it randomly chooses two nodes and
connects to them. (B) New node 6 performs operation 2, where it Ll
randomly selects node 5 and connects to this node’s ancestors. 1 10 100 1000 10000

Figure 2 shows an example for the proposed model. In

this example, the network has a set of noges|0, 1, . . . , 4], FIGURE 3. The in-degree connectivity distribution of networks

andp = 0.8. Then, at the first time-step, nodegets cre- 9enerated by the proposed model. This figure shows a family of

ated and randomly selects a real number between 0 and SHrves in which they:, varies fromoo to approximately 4.30.

which determines if it needs to execute the operation that | . .
- work’s growth is governed by non-biased random processes.

corresponds to probability or the one that corresponds to In other words. each node in the network has the same prob-

probability1 — p. For example, if the chosen numbeli0ig, ' P

then the operation correspond to probability- p (1 — 0.8) ability to obtain new incoming links.

as shown at Fig. 2a. Then, a random number betwi _ Whenp 0299, it is possible to see_that th_e distribution’s
] . . tail has approximately three decades in ghaxis that decay
N is selected, which determines the out-degree of the new :
. : . as a power-law with exponent= 4.30.
node,m. Notice that the range of: for this example is from These experiments show that for the pronosed model. the
1to 5. Assume a value ofr = 2 for this example, then two P prop ’

outgoing links are created from no@¢o two different nodes :\r;er?egewlrr:édeg_reg sI)rs])C;enils'?hseise:\?virrllertggrlf a%rf V:idelzsor ex-
randomly selected from the network: nodesnd3. Fig- pie, = 0. ’

: he average in-degree 4s79. In contrast, when the growth
ure 2b shows an example of the operation that corresponds 1o b .
e . reached0* and using the same the network has an average
probabilityp: a new nodeg, is created and randomly selects .

arumberbeeen 0and . Assume thatis urests |1 180CS DN 0L T ereenLn e e e
which is greater thah — p and, therefore, this should be an ' 9 ' P

operation that corresponds go Then, a random node from are born increases with respect to the speed at which nodes

the existing network is chosen, for example 5, and the nev?re born. In other words, the model exhibits accelerated

node copies all the outgoing links of this node. This is alsogrOWth [17].
expressed as node 6 connects to node 5's ancestors. 1
_ 0.1 | ", f
3. Experiments and results P ]
0.01

The following experiments were designed to find the impact
that the parameters of the proposed model have in the out-—. 0.001
degree and in-degree distribution of the generated networks a”
and to determine the range of the exponent in these distribu-

0.0001
p=0.99 10* nodes

tions. -05
The proposed model was tested using numerical simula- 187 = =099 10° nodes
tions. The generated networks were grown frdin= 1 to 1606 X330
N = 10%. The range for then outgoing links lies betweeh x40
and N. The value of probability varied from0 to 1. Logs 197 I
from these simulations were employed to generate the graph: 1 10 100 1000
shown in Fig. 3. For clarity, this figure only shows the distri- Kk

butlo_ns forp = 0.10, 0.80, 0.90, 0.97 and Q_gg_ .. FIGURE 4.The impact of growth in the value of;,, in a network
Figure 3 shows that, when= 0.10, the in-degree distri-  generated by the proposed model. When the network has grown
bution’s tail decays as an exponential function. In this casejo 10® nodes, the in-degree distribution has a slgpe- 3.3, but

the probability that a new node connects withrandomly  when the network reaches* nodes, the value of;,, has increased
selected existing nodes is 0.90. For this condition, the netto approximately 4.3.
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FIGURE 5. The out-degree connectivity distribution of networks
generated using the proposed model: whep 0, vo.: — 0 and
whenp — 1, Your — 1.

FIGURE 6. The out-degree connectivity distribution for the US
Patents citation’s network 1975-1999. When this network tafd
patents;y,.: was approximately.38; when the network reached

Figure 4 shows that, for a network that has grown t02’089’345 (all patents in the dataset).. changed tox 3.38.

103 nodes, the exponent,, ~ 3.30, and when the network
reachesl0* nodes,y;, ~ 4.30. In other words,y;, in-
creases as the network grows.

A consequence of the variation of,, with the growth

was selected because there is a record that allows to repro-
duce the network’s growth, which allows to analyze its state
and properties at different time intervals. This is impossible

of the system, is that it becomes complicated to use el considerable more complicated in other systems, like the

. o WW or the paper citation’s network, since there is no ac-
analytical tools that have been traditionally used to study . L
curate recordings on how these systems evolve with time.

complex networks: the master equation and the continuum
metrf)od [10,18] g The patents network analyzed here h2a989,345
T patents that have references of others that may have been

When in this modeln = 1 and remains constant during .
the growth of the network, the acceleration is equal to Zer@pproved befOTe or after 1975. This netvyork has a total
of 16,518,948 links. For the current analysis, the network

and t_he proposed model is Fdentical to the one published b6rowth has been divided in two stages: ST1 is used to repre-
Krapivsky et al. [14]. For this casey;, also varies from sent when the system has grownl@$ nc;des and ST2 when
o co. the network has reached its maximum number of nodes. Fig-

Figure 5 shows a family of curves that show the out- re 6 shows the out-degree distribution of this system when
degree distributions produced by the proposed model. Thlt e network is at both of these stages. It is possible to observe

figure shows that, whemapproximate$, the out-degree dis- thatr,,, ~ 4.38 at ST1 and it changes to approximatalgs

tribution exponenty,,,; also approximate8. In other words, o
asp gets closer t@, the out-degree distribution approximates at ST2. This 1S a_clt_aar example of a real sy;tem that has a
growth behavior similar to the one observed in the proposed

to a uniform distribution. Whemp tends tol, the~,,; also del. In oth q . . th
tends tol. Therefore, the numerical experiment shows that! 00" N ONETWOrdSy,.; Or v;, May vary over ime as the
network grows. Unfortunately, this analysis cannot be done

thev,.: has a range betwedérand1. . .
This result coincides with the analytical model publishedfqr Tin becau_se the data range stops at 1999, ‘.Nh'Ch hides all
citations received from patents created after this date.

by Esquivelet al. [16], where they applied the Krapivsky-
Redner model to a random generation of the out-degree to
generate their own model. Thg,; obtained with the model 5. Discussion
proposed in here is similar to the one obtained in [16] because

itis one of the components of the proposed model. The model introduced in this article has an accelerated
growth behavior which was expected, since each new node
4. US Patents and itsy,,, added to the network creates links, wherem may be

greater than one. However, the fact that theexponent
The references between the patents approved in the US behanges as the network grows, was not an expected behavior.
tween 1975 and 1999 [19] are an example of a CN thafherefore, it becomes important to study the mechanisms that
changes ity exponents value as it grows, similarly as in produce such behavior, which for the case of the patents cita-
the proposed model. In this network, each node repretion’s network, produces that the,,; exponent takes smaller
sents a patent and the directed links, the references betweealues as the network grows, while this same exponent does
patents. This system not change for the proposed model.
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It may also be interesting to study what could happen a§. Conclusions

the patent citation’s network system grows: will thg,; . ) .

changing? Maybe the,.; will stop when the network be- in _previous models by Krapivsky-Redner [14] _and by Es-
comes scale-freey,; between 2.0 and 3.0), where it may quivel et al. [18]. The new model has resulted in a growth

become an ultra-small-word network. This study may havenechanism that is able to generate DCN with an out-degree
implications when trying to model other systems. For ex-and in-degree node distribution that decays as a power-law

ample, if a network can be used to model the propagatio®"d Which also includes an accelerated growth phenomenon,
of a biological virus, it may be possible to anticipate howWhere the rate at which links are created is greater than the
the network will grow, its expected diameter and other strucSP€ed at which nodes are created. This causes the mean num-
tural properties, which may then help to predict or containPer of links per node to increase as the network grows, and it
the propagation of such virus. also exhibits an increase in thg, exponent, but not fof,.,;.

The answer to the previous questions may be available
once there is enough information about the evolution of this
type of networks and a deeper understanding about the dif-
ferent processes that allow to produce and model this type of
networks.
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