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Time dependent self-diffusion coefficient of methane molecules
confined into micropores structure of a sandstone
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In this work, the effect of pore structure of a sandstone on the molecular displacement of confined methane gas is analyzed. It was found that
the self-diffusion coefficient of a methane molecule depends on the pore size distribution. In particular, the time dependent self-diffusion
coefficient exhibits a maximum which is correlated with the effect of the molecular confinement. It was found that a sandstone with small
pores (whose diameter is less than20Å) traps the gas more efficiently than other sandstones.
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1. Introduction

The pore systems in a sandstone could be one of four basic
porosity types [1], namely: (1) intergranular, (2) porosity, (3)
dissolution, and (4) fracture. In the first case, intergranular
exists as space between detrital grains. In the second case,
porosity exists as small pores (less than 2µm) commonly as-
sociated with detrital and authigenic clay minerals. In the
third case, dissolution is the pore space formed from the par-
tial to complete dissolution of framework grains and/or ce-
ments. Finally, in the fourth case, fracture is the void space
associated with natural fractures.

Natural gas is a gaseous mixture containing at least 75
vol.% of methane [2], and initially occupies between 30-90
% of total space of pores in the sandstone in a fresh reser-
voir. As an example, natural gas initially occupies between
45-60 % of pores volume at the Burgos province at the north
of Mexico. Part of the volume is initially occupied by the gas
and the rest of the volume is occupied by water at the bottom
of reservoir. However, the reservoir is invaded by aquifer wa-
ter with the gas production on the well. At the end of the pro-
ductive live of the gas well, Residual Trapped Gas Saturation
(RTGS) measure is a key factor to evaluate the additonal gas
recovery from a drained gas reservoir, however, the measure-
ments of RTGS exhibit values which are scattered from 5 %
to 85 %. This fact represents one of the main uncertainties in
the recoverable reserves of the field. To understand the mea-
surements of RTGS some hypotheses are laid out to explain
this phenomenon [3, 4]. One of them is that during the gas
production, water invades into the gas-saturated zone trap-
ping a certain amount of gas independently of pores structure
of the sandstone [3]. Another hypothesis is that RTGS must
decrease for sandstones with high porosity but it is not clear
at all because for another sandstones (with similar porosity
as the first one), the RTGS increases [4]. At this point, the
last comment suggests that the pores structure of the sand-
stone is the key to understand the measure of the RTGS, be-

cause at molecular level, the pores size distribution affects
the displacement of methane molecules trapped into the in-
tergranular pores or micropores [5, 6]. Thus, dynamic prop-
erties (for example, the time dependent self-diffusion coef-
ficient of methane molecules) must tell us something about
the molecular confinement. In the literature, few manuscripts
are focused on the self-diffusion coefficient [7–10] where the
diameter of the pores is in the range of100 − 500 Å. In this
work, the self-diffusion coefficient is analyzed in the case of
a confined gas in intergranular pores where their diameter is
less or around of 20̊A. This is the goal of the present work.

The paper is divided into three main sections. Section 1
is focused on the construction of the model of the porous ma-
terial and its characterization through the intergranular pores
size distribution. Section 2 is focused on the analysis of the
self-diffusion coefficient of the methane molecule confined
into the intergranular pores of the porous material of previ-
ous section. Finally, conclusions are in the last section.

2. Model of a porous material

In this work, we focused only on intergranular porosity of a
material. A micropore size definition, as the pore whose di-
ameter is less than20Å, was emitted by the commission on
colloid and surface chemistry including catalysis of the Inter-
national Union of Pure and Applied Chemistry (IUPAC) [11].
On the other hand, the diameter of a methane molecule is
around ofσm ≈ 3.73 Å [12–14] and this value is 18.65 % of
the diameter of a micropore in the IUPAC’s definition. In this
work, the diameterσ0 = 18.65 Å of a hypothetical microp-
ore (nears to the value in the IUPAC’s definition) is only used
as a unit length along of the rest of the manuscript. Thus, a
unit length is5× the diameter of a methane molecule.

A porous material is modeled as a mixture of hard
spheres. In particular, the pore size distribution is analyzed.
All models have the same value for the volume fraction oc-
cupied by spheres, namely,η = 0.6. In this point, the pores
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TABLE I. Configuration of a binary mixture of hard spheres for the
model of a porous material. The value ofσ0 = 18.65 Å is used as
a unit length.

Specie1 Specie2

Model σ1/σ0 N1 σ2/σ0 N2

A 1.000 500 0.100 1000

B 0.780 500 0.320 1000

C 0.550 500 0.550 1000

D 0.278 500 0.822 1000

TABLE II. Configuration of a ternary mixture of hard spheres for
the model of a porous material. The value ofσ0 = 18.65 Å is used
as a unit length.

Specie 1 Specie 2 Specie 3

Model σ1/σ0 N1 σ2/σ0 N2 σ3/σ0 N3

E 1.000 100 0.500 900 0.250 0

F 1.000 100 0.500 900 0.250 500

G 1.000 100 0.500 900 0.250 1500

H 1.000 100 0.500 900 0.250 2500

structure is related to the number and the concentration of
species of hard spheres in spite of the same volume frac-
tion occupied by spheres. In this work, the models emulate a
sandstone with high porosity [15,16].

Four models are constructed from a binary mixture of
hard spheres and their configuration of species are in Table
I. In the same way, another four models are constructed from
a ternary mixture of hard spheres, and their specifications are
in Table II. The pore size distribution is a function of the con-
figuration of species in the mixture of hard spheres, but we
can not speak about it without a previous definition of a pore,
i.e. what is a pore? Moreover, if a reasonable definition of a
pore is established, then what is its volume? The answer for
both questions are in the following section.

2.1. Volume of a pore

The definition of a pore is illustrated in Fig. 1. In this case,
the tetrahedron is formed by the centers of four neighbor
spheres. Thus, the shape of the pore corresponds to tetrahe-
dron volume without the partial volume of each sphere. The
algorithm to calculate the pore size is now described:

1. A sphere in the matrix of hard spheres is selected (and
is labeled as the sphere 1). Other three spheres, which
are more close to sphere 1, are selected too. The cen-
ters of the four spheres are the corners of the tetrahe-
dron (see the Fig. 1), and the tetrahedron volume is
calculated with equation

V0 =
1
6

∣∣∣∣r21 ·
(
r31 × r41

)∣∣∣∣, (1)

where the vectorsr21, r31, andr41 are defined in the
Fig. 1.

FIGURE 1. Tetrahedron formed by3 of the more close spheres to
the sphere1.

2. In this step a system of coordinate axes is chosen so
that the center of the sphere1 is at the origin, mean-
while the unit vector̂r21 is on the axisz, the unit vector
r̂31 is on the planexz, and the unit vector̂r41 together
with r̂21 define a second plane that forms the angleφ
with the planexz. The system of coordinate axes is
illustrated in Fig. 2 where the anglesθ1, θ2 andφ are
determined from the following vector operations

r̂21 · r̂31 = cos(θ1); (2a)

r̂21 · r̂41 = cos(θ2); (2b)

r̂21 ·
(
r̂31 × r̂41

)
= sin(θ1) sin(θ2) sin(φ). (2c)

The size of the partial volume of sphere1 is calculated
with the formula

∆V1 ≈ σ3
1

24

[
(
1− cos(θ2)

)
φ

+
(
cos(θ2)− cos(θ1)

)

× arctan
(

sin(θ2) sin(φ)
sin(θ2) cos(φ) + sin(θ1)

)]
, (3)

whereσ1 is diameter of the sphere1. For some geome-
tries, equation (3) provides us the exact formula for the
partial volume of a sphere, but in other cases the ex-
pression can be used to calculate the value of∆V1 in
an approximately way. Of course, equation (3) can be
also used to compute the partial volume of the other
spheres in the tetrahedron by considering, for exam-
ple, that sphere2 now plays de role of sphere1 and so
on for spheres3 and4.
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FIGURE 2. Partial volume of a sphere. The center of the sphere1

is located at the origin.

3. In this final step the size of the pore is calculated with
V = V0 −

∑
i ∆Vi.

This algorithm is applied on each sphere in the mixture
of hard spheres (sandstone model) and the set of values of
V will be used to construct the pore size distribution as it is
described in the next section.

2.2. Pore size distribution

In order to explore different regions of the sandstone model,
a set composed byN = 10000 configurations is constructed
for any of the models in Tables I and II by using the Monte
Carlo algorithm [17]. The volumeV of the pore is calculated
by using the procedure of Sec. 2 for each site in the matrix
of the model and for all configurations. Thenth element of
the histogram (hn) is increased by1 if the pore volume ful-
fills with Vn−1 < V ≤ Vn, whereVn = n × 10−5Vbox for
n = 1, 2, . . . , NV with NV = 1000 andVbox is the volume
of the simulation box. This is the method to construct the
histogram with the pore size distribution.

Once the construction of histogramh(V ) is ended, in the
next step, the histogram is normalized by using the next for-
mula

f(σ) =
h(V )

A
, (4)

whereσ is the diameter of a sphere with the same volume of
the pore (V ), thus the “pore diameter” is related to the pore
volume throughV = πσ3/6, meanwhile, the denominator
(A) is the normalization factor which is defined by

A =

∞∫

0

h(V )dσ = 3

√
2
9π

∞∫

0

h(V )
V 2/3

dV. (5)

In Fig. 3 the pore size distribution as a function of the
pore diameter is plotted for the modelsA, B, C, andD re-
ported in Table I. ModelC is composed by a single specie

FIGURE 3.Pore size distribution as a function of the diameterσ of
a sphere with the same pore volume. The curves correspond to the
modelsA, B, C, andD reported in Table I.

FIGURE 4. Pore size distribution as a function of the diameterσ of
a sphere with the same pore volume. The curves correspond to the
modelsE, F , G, andH reported in Table II.

of spheres and, in Fig. 3, its curve shows a single maximum
with a narrow distribution around it. This fact tells us that
the modelC is characterized by a pore set of similar sizes.
On the other hand, pore size distribution of modelsA andB
show two maximums which are related to two different main
sets of pores but in a narrow distribution as modelC. Fur-
thermore, the pore size distributions of modelsA, B, andC
have a similar range of the pore size, namely,σ/σ0 ∈ (0, 1).
In contrast, the pore size distribution of modelD exhibits a
maximum in a range where a pore diameter is bigger than the
pore diameter in the other modelsA, B, andC.

The pore size distribution for the modelsE, F , G, and
H (see Table II) are in Fig. 4. In these models, the number
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of small spheres of the third class increase from modelE to
modelH, meanwhile the configuration of other two species
does not change. Thus, the pore size decreases with the num-
ber of spheres of the third class and this fact can be to see
in Fig. 4 with the shift to the left of the pore size distribu-
tion. On the other hand, modelE is a binary mixture of hard
spheres because the third specie is not present. In this case,
the pore size distribution exhibits two maximums related to
two main set of pores in the system. ModelsF , G, andH are
ternary mixtures of hard spheres and, in particular, the pore
size distribution of modelsG andH is like a bell but with a
soft ripple. This fact tells us that these pore size distributions
have a more complex structure where, for example, modelH
clearly exhibits three peaks which are related to three main
sets of small pores (if these pores are compared with the pore
size in other models, namely,E, F , andG).

Another relevant effort to characterize the porous mate-
rial is by using a tracer for which its molecular displacement
is affected by the temperature, the density of the fluid, and the
properties of the sandstone,i.e., the pores size distribution
(among other properties like the porous connectivity which
is not analyzed in this work). In the next section, the model
of a methane gas confined into the micropores of the sand-
stone is analyzed and, in particular, a dynamic property of
the methane molecules will be used to characterize the sys-
tem, namely, the time dependent self-diffusion coefficient of
methane.

3. Sandstone and methane gas model

The construction of a sandstone model was discussed in the
previous Sec. 2 and the pore size distribution was used to
characterize it. At this point, the hard sphere condition for the
sites of the sandstone model was only used to construct the
porous material. In this section, and for the rest of the work,
the hard sphere condition is removed and is substituted by a
Lennard-Jones site (where its diameter is the same of previ-
uos hard sphere). From a static matrix of sites the methane
molecules (modeled with spheres) are initially placed in it
in a random way. In the next step, all overlaping spheres
are moved until all overlaps are completely removed. In this
way, the model of a sandstone and confined gas is initially
constructed. In this section, the time dependent self-diffusion
coefficient of methane molecule of the gas, which is confined
into the micropores of the sandstone, is discussed. The full
model is illustrated in Fig. 5 whereNm andNs are the num-
ber of methane molecules and the number of sites of the rock
model (where, in the way, the sites are static over the time),
respectively. All spheres in Fig. 5 are in a cubic simulation
box. The sandstone models are reported in Tables I and II,
and all of them shared the same valueη = 0.6 for the fraction
of occupied volume, and therefore, the free volume which is
available for methane gas isVf = (1− η)Vbox whereVbox is
the total volume of the system and corresponds to the size of
the simulation box. On the other hand, as was mentioned in
Sec. 1, the range of values of the RTGS measure is from 5 %
to 85 % of the free volume (Vf ) and in this analysisx = 0.05

FIGURE 5. Illustration of the simulation box with the sandstone
model (gray spheres) and the methane gas (blue spheres).

(5 %) is considered for the RTGS value. Thus, the configura-
tion of all sandstone and methane gas models are in Table III
whereσm/σ0 = 0.2 is the methane diameter.

The gas molecules interact between them and with the
sites of the sandstone. In particular, the total potential energy
(U ) is calculated and approached with the sum of the pair
interactions,i.e.,

U(r1, . . . , rNm) =
Nm∑

i=1

[
1
2

Nm∑

j=1
j 6=i

ϕ(|ri − rj |)

+
Ns∑

j=1

ψ(|ri −Rj |)
]
, (6)

whereri andRj are the center of theith methane molecule
and thejth sphere in the sandstone, respectively. Moreover,
the energy between a pair of molecules is approximately cal-
culated with the Lennard-Jones potential

ϕ(r) = 4εm

[(
σm

r

)12

−
(

σm

r

)6
]
, (7)

where the parameters areεm/kB ≈ 147.9K and σm ≈
3.73Å [12–14]. In the same way, the pair interaction between
a gas molecule and a site of the rock is also calculated with
the Lennard-Jones potential

ψ(r) = 4εR

[(
σR

r

)12

−
(

σR

r

)6
]
, (8)

where the parameters areεR = 0.5εm and σR = (σs +
σm)/2. For the complete system (see Fig. 5) periodic bound-
aries are considered and cut-off radius is used to compute the
Lennard-Jones potential [18,19],i.e., ϕ(r) = 0 if r > 2.5σm

andψ(r) = 0 if r > 2.5σR. Finally, the total force in theith
methane molecule is computed withfi = −∇iU .
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TABLE III. Configuration of the sandstone and methane gas models.Ns is the number of sites in the sandstone (where, in the way, the sites
are static over the time);Nm is the number of methane molecules;Vbox is the volume of the cubic simulation box;Vs = ηVbox is the volume
occupied by the sites of the sandstone;Vm = xVf is the volume occupied by the methane molecules; andVf = Vbox−Vs is the free volume
available for the gas.

Model Ns Nm Vbox/σ3
0 Vs/σ3

0 Vm/σ3
0 Vf/σ3

0

A 1500 2088 437.2 262.3 8.7 174.9

B 1500 1125 235.7 141.4 4.7 94.3

C 1500 1040 217.8 130.7 4.4 87.1

D 1500 2359 494.1 296.4 9.9 197.6

E 1000 885 185.4 111.3 3.7 74.2

F 1500 918 192.3 115.4 3.8 76.9

G 2500 983 205.9 123.5 4.1 82.4

H 3500 1048 219.5 131.7 4.4 87.8

3.1. Molecular dynamics algorithm

Molecular dynamics simulation of confined gas into the
porous material is performed by using the reversible in time
algorithm which was proposed by Martyna [20–23]. In this
case, procedure to do the numerical integration of movement
equations is described with the following set of equations

v∗i = vi(t0) +
∆t

2m
fi(t0); (9a)

ri(t1) = ri(t0) + ∆t v∗i ; (9b)

vi(t1) = v∗i +
∆t

2m
fi(t1), (9c)

whereri(t0), vi(t0), andfi(t0) are the position, the velocity,
and the force on the gas particle at timet0. m is the mass of
the particlei (wherei = 1, 2, . . . , Nm) and is proportional
to the molecular weight of methane:16.0426 g/mol. At the
time t1 = t0 +∆t, Eqs. (9a) and (9b) enable us to update the
position of all molecules fromri(t0) to ri(t1). Once the new
configuration is established then the forcefi(t1) is computed
from the force field mentioned in Sec. 3.1 and the resulting
force is used to update the velocity of the gas particles with
Eq. (9c). In this way, movement equations are integrated
over the time and∆t = 0.001ps is the time step which is
used in this work. Furthermore, the Nosé-Hoover thermostat
is coupled to the above numerical integrator to preserve the
thermal equilibrium [24,25].

After the system is constructed with an initial valid con-
figuration, then the molecular dynamics simulation is per-
formed by generating at least2000 steps over time starting
from its initial configuration to those configurations which
correspond to a system in thermal equilibrium at the tempera-
ture ofT = 433.15K (which is a typical temperature of a gas
reservoir). Once the system reaches the thermal equilibrium

then, in the next step, a dynamic property of the confined
gas is calculated trough a second process of its molecular dy-
namics simulation. The details of the method are in the next
section.

3.2. Self-diffusion coefficient

In this step a new molecular dynamics simulation is per-
formed by generating a sequence of10000 consecutive steps
by using the algorithm discussed in previous Sec.3. How-
ever, the information of the dynamic state of the system is
saved in a external file every5 steps over time,i.e., the output
file containsNc = 2000 configurations of the system.

After the output file has been constructed, in the next
step, the time dependent self-diffusion coefficient is calcu-
lated (from configurations which are in the output file) by
using its formal definition, namely,

D(t) =
〈|r(t)− r(0)|2〉

6t
, (10)

whereD(t) is the mean squared displacement divided by
the time and it is a measure of the deviation of the posi-
tion of a particle with respect to a reference position over
time [26–28]. Here,〈. . .〉 is the average in theNV T ensem-
ble. Equation (10) is equivalent to

D(tn) =
1

Nm

Nm∑

i=1

1
Nc − n

×
Nc−n∑

j=1

|ri(tj + tn)− ri(tj)|2
6tn

, (11)

wheretn = 5n∆t andn = 1, 2, . . . , Nc−1. In this way, time
dependent self-diffusion coefficient can be used as a measure
of the portion of the porous material which is “explored” by
the gas particles.

Self-diffusion coefficient of confined gas into the pores of
a binary mixture of spheres (sandstone model) are in Fig. 6.
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FIGURE 6. Self-diffusion coefficient of confined methane
molecules into the porous material. The sandstone model corre-
sponds to a binary mixture of spheres which its configuration is in
Table I.

Curves plotted in Fig. 6 correspond to the casesA, B, C,
andD which are reported in Tables I and III. Clearly, self-
diffusion coefficient depends on the structure of pores as it is
seen in Fig. 6. Furthermore, the sandstone modelsA andD
have the mayor size of free volume which is available to the
gas particles (see Table III), thus, self-diffusion coefficient in-
creases apparently with the free volume. The exception is the
caseD. The size distribution of pores in modelD (see Fig. 3)
exhibits a main set of pores, meanwhile the size distribution
of pores in modelA exhibits two set of pores. In modelA, the
pores are small with respect to the pores in modelD but the
two set of pores in modelA have a clear overlapping where,
perhaps, its effect is that the molecular displacement has the
best performance with respect to the other models. The most
relevant feature of the self-diffusion coefficient curves, which
are plotted in Fig. 6, is a notorious peak at intermediate times.
If a particle trapped in a pore cannot escape from it immedi-
ately then its displacement is around of the geometrical cen-
ter of the pore and the time in it increases until the particle
finally scape. With this picture in mind, a narrow peak, but
a high peak with respect to the long-time value of the self-
diffusion coefficient, is correlated with a methane molecule
confined into the pore over the time. Thus, the self-diffusion
coefficient of modelC corresponds to a typical case of a gas
trapped in an efficiently way by the sandstone. In contrast,
model A corresponds to a sandstone where the two set of
main pores facilitate the methane molecules displacement in
the pores structure. Other feature is the position of the peak
on the time. In this case, if the pores are small in the pores
structure then the position of the peak is found quickly at the

FIGURE 7. Self-diffusion coefficient of confined methane
molecules into the porous material. The sandstone model corre-
sponds to a ternary mixture of spheres which its configuration is in
Table II.

early-times,i.e., the gas particles “detect” the confinement
more quickly if they are into small pores.

The scenario in the other sandstones, which are modeled
with a ternary mixture of spheres, is also similar to the binary
cases and the self-diffusion coefficient curves of the methane
molecule, are plotted in Fig. 7. All the features discussed
previously for the binary models of a sandstone are present in
the ternary models. However, the curves in the ternary mod-
els are in general below with respect to the binary mixture
cases, thus the size of pore in the ternary mixture of spheres
are small with respect of the a binary mixture of spheres. Fur-
thermore, the self-diffusion coefficient of modelsE, F , G,
andH exhibits a high narrow peak in all curves which are
plotted in Fig. 7, thus the sandstone (which is modeled with
a ternary mixture of spheres) traps the gas more efficiently
than the binary mixture of spheres.

On the other hand, the initial slop of self-diffusion coef-
ficient in all cases reported in Fig. 6 and also in Fig. 7 have
the same value. To clarify this point, short-time regime [8]
is defined byξ ≡ D0t/σ2

0 ¿ 1 whereD0 is the molecular
self-diffusion coefficient at short-time regime and bulk con-
dition, i.e., D0 corresponds to molecular self-diffusion of an
un-confined gas. Thus,ξ ¿ 1 means that molecular displace-
ment is extremely less than the pore size and, in this regime
and from Eq. (10), self-diffusion coefficient is approached
with

D(t) ≈ kBT

2m
t, (12)

wherekB is the Boltzmann constant,T is the temperature of
reservoir, andm is the mass of methane molecule. Clearly,
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initial slope is a function of temperature which is constant in
this analysis.

4. Conclusions

The concentration of methane molecules isNm/Vf =
6x/πσ3

m and, therefore, it is constant in all models in Ta-
ble III. Moreover, temperature is another constant in the anal-
ysis of self-diffusion coefficient in Sec. 3.2. Thus, the re-
sulting time dependent self-diffusion coefficients, which are
plotted in Figs. 6 and 7, are functions of the pore structure
of sandstone. In particular, the sandstones with small pores
traps the gas more efficiently than other pores structure. On
the other hand, self-diffusion curves in all cases exhibit a
maximum and the shape of the peak is correlated to the ef-
fect of the molecular confinement into a pore. In fact, if peak
is high and narrow then it means that the particle can not to
scape from the pore immediately. Thus, the molecular dis-

placement is around of the geometrical center of the pore and
the time in it increases until the particle finally scape. At the
long-time regime (ξ À 1) the self-diffusion coefficient ap-
proaches to a plateau defined byD(t) → DL if t → ∞.
In this case, the value ofDL increases with the size of free
volume available to gas. Finally, in this work, the value of
RTGS is5% and it is found that the self-diffusion coefficient
depends on the pores structure. However, the inverse sen-
tence could be not valid,i.e., for two sandstones where the
self-diffusion coefficients are similar then the RTGS measure
depends on the pores structure. This question is still in the air
and requires to be analyzed in a future work.
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