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In this study we explore the application of the novel Fractional Calculus in Fractal Continuum (FCFC), together with the Finite Element
Method (FEM), in order to analize explicitly how these differential operators act in the process of discretizing the generalized fractional
pressure diffusion equation for a three-dimensional anisotropic continuous fractal flow. The Master Finite Element Equation (MFEE) for
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1. Introduction sion wave processes. Authors like Herrmann [14] and West
et al. [15] had focussed the FOC to some engineering appli-
cations. On the other hand, many researchers have reported
findings based on Mandelbrot's ideas for fractal characteri-
zation of natural systems [16]; for example, from biological
systems [17, 18], computer simulation [19], geological sci-
ences [20-22], folded and crumpled of thin matter [23—25] to
lead to a paradox, from this apparent paradox, one day usefﬂ id flow [27,34], but from the point of view of physics, there

' ’ as not a proposal on fractality and fractional calculus in the

consequences will be drawn” [1]. This was the point in time : : : : :
o X . ~continuum until continuum-type equations for fractal media
line in which seed of FOC had been planted. Due to the Liou- ype &9

. . ) dby T 26], that tially links the frac-
ville’s works together with those of Riemann, the currentdef—Were proposed by Tarasov [26], that essentially links the frac
initions of the differential and integral fractional operators of
Riemann-Liouville were published in the 1800’s, in the same, L :

’ | 4] th I | of the FCF .
period the definition of the fractional integral of @rdwald- n [33, 34] the explicit proposal of the FCFC is done

Letnikov also emerges. In the twentieth century, the defini- In the present work, we used the results published in

tions of the fractional operators of Weyl, Riesz and Caputo[33, 34] about the fractional calculus operators in the fractal

. . continuum in order to discretize the pressure diffusion equa-
arise. The operators mentioned above are among many moje . : . I
ion. Section 2 is devoted to resume important definitions of

definitions of fractional operators, the ones that are currentl)lgCFC together with the pressure transient equation for frac-
used or common the most [2, 3]. In the last fifty years, ManY a1 continuum flow, also derivation of master finite element

works based on this fractional calculus operators have beeg uation is included in this section. Section 3 includes the
published, to name; Kilbast al. [3], Miller and Ross [4], q '

Oldham and Spanier [5] and Samkb al. [6] in the rigor- discussion of our results and potential uses. We wrote our

. . . onclusions in Sec. 4 and finally, details of calculations are
ous mathematical context and some others like Strichartz [7@ y

and Kigami [8] have been started to solve partial differen- hown in Appendix.

tial equations on mathematical fractal sets. Recently, impor-

tant studies related to the application of FOC have beenrez  Basic Theory and Formula Derivation

ported, for example; @Gmezet al [9] in the modeling of

electrical circuits; Coronett al. [13] stuying fractional be- 2.1. Fractional calculus in fractal continuum

havior of BFT and CK oscillators; Atangana an@i@ez in

the study of the fundamental differences between power lawThe FCFC of authors of [33,34], is built on the basis of Tara-
exponential decay, Mittag-Leffler law and their possible ap-zov's aproximation to the continuum physics and mechan-
plications to real problems [10]; Atangana [11] in the ap-ics [26, 27], and it basically consist in the transformation of
plication of the semigroup principle to the analysis of frac-a problem of a intrinsically discontinuous medium (fractal)
tional derivatives of evolutions equations; Moraggsl.[12] onto a problem in a continuous space (Euclidean) in which
in the discussion of generalized Cauchy problems in diffuthis fractal is embedded [30], dealing in the process with

Origins of Fractional Order Calculus (FOC) back in time to
the end of XVII century in the famous question of L'Hospital
to Leibnitz; “What if n be 1/2?” (question obviously in-
spired in the very known notation invented by Leibnitz for
derivatives), Leibnitz's response to L'Hospital was; “It will

tal dimension of a fractal set with the order of the derivative
(or integral). The works in the same line are [26—33, 35, 37].
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linear, superficial and volume fractional infinitesimal coeffi- the generalized Darcy equation:
cients, this coefficients are written in terms of fractal dimen-

(c)
sionalities proper of the medium and are supported by a spe- W= — Kij vH (p — hy) 8)
cific metric well defined as we can see in [34] and its function ‘ pe " g

is to vinculate the chlidean differential elements With fr"".c'with equation for slightly compressible liquids:
tals ones, they rewrite the concept of Hausdorff derivative

given in [32] in terms of an ordinary derivative multiplied by Ipe - op
. : e ©)
a power law function of the variableas: ot ot
qH . 1-¢ g 161 g d and continuity equation:
/= \otY) e anl tw! o =
dzx lo dx ¢y dz dSx Pe _ _VH. 0 T4 (10)
where the functiom; = ¢; (z, ¢) is defined as the Density Of ot

States (DOS) in the fractal continuum aloR¢ [33,34]. The  then, susbtituing (8) and (9) into (10) the result reads:

DOS describes in this case, how permitteq states of particles W =y =

are closely packed in theaxis. The expressiotp = ¢;dz Cpemgr = V7 - (K”- VZ(p— hg)) (11)
represents the number of states (permitted places) between , .

andz + dz [34]. Now, Hausdorff's partial derivative is de- where is assume that characteristic tensor property of the
fined as: ’ fractal continuum rowKi(;) = 0 fori # j [34]. Equa-

-G g tion (11) is the well known pressure diffusion equation for
VkH = (xk + 1) A where ¢, =D —d; (1) the case of an anisotropic three-dimensional fractal contin-
Tk

i uum flow as is referred in [34h, from expression (11) rep-

and definition of fractional Laplacian is: resents the gravitational head defined as:
> 2702  1—¢ [ .
HwH,, _ (2) e v X
ViilViy = Z (x ) [ax% Ry (ax)] ) hg = po — 9C:pols (zj + 1) (12)
where: and ¢ is the coefficient of fractal continuum compressibil-
) Ci—1 X =G ity [34].
0=~ <}” + 1) @ B
ey’ (z:) i

. i ; ) 2.3. Formula derivation
this Hausdorff Laplacian turns to ordinary Laplacian when

¢; = a; = 1. Other vector operators with significant rel- Using Eqgs. (5) and (6) to rewrite (11) we obtain the partial
evance for this work ar&/ !, V¢ and V¥ . & where differential equation:

U = (1, 19,%s) represents any vector field in the fractal 06 (1 0 @ () 99 W 0 @ () 99
- | Ko x o X o | Koo x Y o

ﬂowiv:ch are <(jle)f|naed as: . ) . CNCE:X O dy By
_ v — v — v 4
Vis e g T e g, Y e gy, ¥ +X<z>82 (K§§)><<Z’g¢> (13)

s z A

Vi = (Vilg) €1+ (Va'y) €+ (Vie) €5 (5

P ( 1¢)€1 ( 21/1)62 ( 3¢)€3 () where:
3
VAU =3 vy, 6) ¢ = p(wi, t) — hy(z;) (14)

with p (z;,t) = NTd andh,, given by (12) [35], multiplying

ivel herée’; h ; I - .
respectively, wherée’; are the base vectors; (x;) sca ard_ (13) by A = cpio (X&) " and rearranging terms,

function and symbol-” is the usual scalar product. Accor

ingly with [34] in the 3D case, the DOS, is defined analogousWe get
to dxp for one-dimension by the expression:
90 1) 0 ([, 99) 0 (g, 99
dVp = c3 (x;, D) dV = ¢3 (x;, D) dedydz @) ot A ox Ox Oy Oy
wherecs is part of the fractal metric defined in [34]. A useful P 96
and clarifying definition ofc3 is done in [30]. More defini- 4+ — (K?Eg)AZ) } =0
tions of operators of FCFC can be consulted in [33, 34], we 9z 9z

have included just those ones we are going to employ in th

Where4, = (x'/x7x*). In order t lerkin's meth
next sections. ereA; = (x*/x?x"). In order to use Galerkin's method,

we first develop an appropriate weak form, as is usual in
FEM [35]. We can assume that is the volume of an arbi-
trary finite element then, multiplying by the weighting func-
tions NV;, integrating over all the volume and taking into ac-
In order to get the transient pressure equation for fractal corcount (7), the Galerkin weighted residual is:

tinuum flow, as in the classical case, it is necessary to relate
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2.2. Pressure transient equation for fractal continuum
flow
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[l v ] () (05 (s505) v -

writing v = (¢3/A) and carrying out an integration by parts process, leads to:

c 0 06 ON:
// NdVD—Z// K§]a Nnj'deQ—i-Z/// JEL aj 5z, Y4Va = 0.

applying the surface natural boundary condition:

6‘(1) ol 09 0¢ _
an (k””ax rJrky@ynerkzaznZ) —ap+p

with k; = K;; A;, a and g are known parameters along the boundary [35]. Taking into account that general solution over an
element has the form:

uy (1)
U9 (ﬁ) T
¢(m7yvzat):(Nl(-T7/yaz)N2<x7yaz>"'Nn<x7y7'z)) : =N-"d
Unp, (1)
we get:
/ / N,NTavp, d— / / aN;NT~dS, d+ / / ahyN;ydSy — / BN,;~dS,
\% S S S,
8N 8NT Ohg 8N
I o [[f ka0

Taking into consideration expression (12) and arranging terms, (15) turns to:

/ / N;NTavp, d - / / aN;NT~vdS, d+ / / ahgN;ydSs — / / BN;vdS,
14 Sn Sn Shn

N, ONT g
5 % 1dVs d ///K 920 (x4 01 Py — (16)
T O3

the three terms inside the second integral of volume of (16), can be expressed in matrix form as follows:

g1 0 0 Bg
91B,B! + ¢.B,B] + ¢;B.B] =( B, B, B. ) ( 0 ¢go O ) (BT =BCB”

0 0 gs B%
where:
B = a%l 302 aaj\f 29074 ; €= 0 A2K227 0
le 622 823 624 0 0 A3KZ§LC’>)’Y
and:

q = K5 g¢2 1P

therefore, the finite element equations are:

/ / NN7dv, d+ / / BCBTdv d - / / oNNT~dS, d
/ / —dVJr / / BN~dS, — / / ahyNvdS,
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that has the typical form:
Md+ (Ky + Ko)d =7, +75 + 74 17)

M = ///NNTdVD Kk—// BCB"dV K, —//aNN ~vdS,
/ / / ajng = Z / AN~dS, and 7, / / ah,NydS, (18)

(17) represents a system of first order ordinary differential equations, also is the MFEE of (11) for general weighting functions
N; in R? [37,38]. In the case tha¥ is conformed by the conventional interpolation functions for arbitrary linear tetrahedron

in R3 as is referred in [36, 37], it would be simple to see that (18) includes information of the tetrahedral coordiinéies
(r,s,t,1 —r — s —t)), such expression would be written as:

where:

1 1-rl—r—s

M = / / / NNTav, = / / NN ¢gdzdydz = / / / NN ¢gJdrdsdt (19)
\% 174 0 0 0

wherelJ represents the Jacobian transformation matrix between both reference frames [38] and explicitoakigioén by:

4 Cm_l 4 41;_1 4 Cz_l
c(EREm )] (B[ (B )
T Yy z

according with [33]. Analog expressions can be arise for the remaining terms of (18). Meisrthe coefficient of time
derivatives of the nodal variables. From equation (1f/);equation is written as

(M);d; + ((Kk)ij + (Koé)ij) dj = (rq)i + (rg); + (Ta); (21)

which, in this work, we solved analitically for the spatial variables of the particular case of a canonical tetrahedron in the
Euclidean reference frame (verticest,, —¢,,—(,), (1 — by, —ly, —L,), (=3, 1 — £, —L,) and (—C,, —C,, 1 — £,)). For
this case, master finite element equation is:

c3 (rys,t) = (20)

((;/) i [6\/(”6%]-9 + (6Vosa; + 6Viyaz) (<+<f+<+1 - ex) 0
+ (6Viib; + 6Vi;b:) (M@C_@’W ¢ ) 0 + (6Voicj + 6Vojc;) (Cx+<y<+4“+1 - 122> 9
+ laibs o agbi) <(<x GG +g)§2 TS T +<ﬁ Gl _é“"cfo—yFCz 1 Mxe‘”) ’
* o +age) ((Cz TG TG +g(c< I R +<ﬁ cr1 g +¢fi G t1 M””EZ) f
* (e + b <(<m +C+ G +%(CZI +C G+ €Z<x+<fi 1 g +<ﬁ C:+1 *WZ} ’
T ((cx TGt cfi(g;(:l FETAE e o cyci S @) ’
+ by <<<x T Ji(%éfi LAGED G gfi Crit ei) ’
e ((cl. TG+ 42%3(52 Lrern L cﬁ 1’ @> 9} &
G e AN oo A
+cicg F((C;Zr gyi gi, CC,:)) 2D 4 K )d = 2K55) g%@l“fjr)zﬁg) ¢i + 75 + Ta. (22)
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details of calculations that we made can be read in Appendixaspire to solve more complex cases like anisotropic one. In
the present work, we have focused on the application of FEM

3. Discussion for the most generic resolution of such pressure equation.
. ) The results, by themselves, are already of significance for
Actua}lly, problems Qeallng with transport phenqmena a'%he computational implementation and allow the more accu-
very important in science and engineering, particularly, in e caiculation of the integrals that appear in the matrix el-
the study of porous media there is a great research activity o nig of the formulation, reducing computational complex-

both theoretical and e>.<perimental [27,33,34,40-43, 45_54}13/ and also clarifies the panorama of the applicability of such
On the other hand, since researchers began to apply fraﬁiethod in this case of relative novelty

tional calculus in order to solve diverse engineering prob-
lems, many authors have made important contributions as
we have referred before because of that, importance of modt. Conclusions
elling this type of systems lies in the successful forecast of
the behavior that have quantities like flows, speeds, amounté/e employ the FCFC defined by means of fractional op-
of matter, pressure drops, etc. In real systems, the difficulty isrators (1), (2) and (6) of [33, 34] that relate a discontin-
that big because the medium in question is characterized byous system with a continuous one through the transfor-
very complex geometric shapes, turning the modelling in anation function defined by (7) in order to get the MFEE
strong mathematical challenge, for that reason, the FCFC hder the transient-pressure equation in a three-dimensional
special significance [34]. In that sense, we can notice that difcontinuum fractal flow. Explicit form of coefficient; for
ferential equation (22) contains the geometry information asthe geometry of a linear tetrahedron is given in (20). We
sociated with the fractal medium under study through the corhave solved analitically the integral formulas for the spa-
responding fractal dimensiong, D, d;, cut off lower limits  tial variables of (17) for the case of a canonical tetrahedron
¢; and transformation functions, [33, 34]. In the present anchored in vertice§—¢,, —¢,, —¢.), (1 — ¢y, —C,,—L,),
case, we have employed the FCFC in the discretization pra—¥¢,,1 — ¢,,, —¢,) and(—{,, —¢,, 1 — £,) using a very sim-
cess of the three-dimensional pressure diffusion equation fdtar process to the one carried out in the literature of math-
the anisotropic continuum fractal flow published in [34], it ematical methods to obtain the Dirichlet’s integral formula
can be written in computer codes in any programming lan{55, 56]. We also mention that the results we obtained in this
guage and be of great interest in the field of computer simuwork can be linked to real field data that allow the develop-
lation. ment of adequate computer simulations. As a continuity of
The discretization process of the parabolic equation (11}he present work, in a future publication, we will report a
was written in (18) for general form function¥;, rewritten  robust implementation that allows to see graphically the con-
for arbitrary linear tetrahedron in (19) and solved analyticallytrast that has the inclusion of the intrinsic geometry of the
for spatial variables over the canonical tetrahedron in (22)medium in the modeling of real application pressure diffu-
We have shown explicitly the process to be followed withsion problems, in contrast with the usual Euclideans aprox-
other types of finite elements. We also mention that the inimations implemented in commercial simulations softwares
tegral formulas that have been obtained analytically for thehat not include fractional and fractal features.
spatial case are general in the sense that they were solved for
non-particular fractional parameter values, such parametes& di
will depend on the geometry of the system to be simulated. ppendix
The fractional transient-pressure equation for flow in a
porous medium has been solved analytically in [34], its solu™

tion corresponds to the specific case of radial contribution , ) . , .
in a cylindrical symmetry domain with isotropic porosity. In this section, we include the details of calculations done in

This type of results are helpful, for example, in the oil in- order to solve each volume term of (17). Let's start with:

dustry (well production analysis) or in the characterization of
aquifers. From the point of view of software tools, it is use- M = /// NNTavp
14

ful to have numerical procedures for the solution of this type
of equations moreover, in the computational field, one can

|  where:
Ny NiN1 NiNy NiN3 NiN4
N- NoN7 NyNy NoNs  NoN,
T _ 2 _ 24V1 24V2 241V3 24V4
NN"=1 N, (Vi N Ng Na) = N3N N3No N3N N3Ny A1)
Ny NyNi NgNy NygNs NyNy
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and termM;; is:

2

1

Mij = (W) / [6%16‘/})] + (G%iaj + 6V()ja7;)1' + (G%lb] + 6V0Jbz)y + (G%Z‘Cj + 6V()jCi)Z
w

+(a;bj + a;b)zy + (aicj + aje;)xz + (bic; + bjci)yz + aza]x + b; bjy +ciciz } cs(zi, D)dV3 (A.2)

lettingu, = (z4€,), uy = (y+£,)y u. = (2+¢,) the transformation functioss (u;, D)dV5 turns intou$e ~Lug? ™' us> ! du, duy, du,,
working with the tetrahedron mentioned in previous sections, we get the next ten integrals whose procedure solution and solu-
tions are shown:

1 1—uy 1—us—uy

1. 6V0i6V0j// / ugc;”71uz§y*1u§z71duzduydum7
0 0 0

1 1—u,

1—ug—uy
2 (6Voia, + 6Vosay) / / / (s — £~ S e~ du duy s,
0

1 1—u,

1—ug—uy
3. (6Voab; + 6Vob; / / / (uy — Ly)us  usy ™ us ~ duduy dug,
0

1 1—uy l—uz—uy

4. (6V0iCj + 6%jci) / / / — fz)ugz—lugy—lugz—1duzduydu$,
0 0

1

Uy L= Uz —Uy

(ug — £y)(uy — Ey)u%rlugy71u§271duzduydum,

5. (aibj + Cljbi)

o _
o

0
1

Uy 1= Uz —Uy

/ fEz)ug’”71ugy71u2271duzduydux,
0

6. (CLiCj + CLjCl

1
7. bc]—i—bcl/
0

1—uy, L—uz—uy

1
8. azaj / /
0

1

O\H
o\

1—uy 1—ug—uy

(uy — £y)(uy — Ez)ugm_1u§y_1u§z_1duzduydum,

o\
o\

- Zm)ngw_lugy_1u§z_1du2duydu$,

o\

Uy L= Uz —Uy

(uy — €)% us ™ uSr ™ ul  du,duy dug,

9. (biby)

o — _
o
S

—
|

Ug 1= Uz —Uy

10. (cicj) (u, — EZ)QU%71u§y71u§271duzduydum.

o _
o
o

Solution of integral 1.

1
Lo
0

1—uy 1—Uz—uy

[
-+

1—uy

1 u(z 1—uz—uy
Cﬂ”flugy*lugz*lduzduydum :/ / -1 Cy*l (2) duydu,
O O CZ O

u$ M (1 =y — )% duydu,

o\é
8
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settingu, = (1 — uy,)t — du, = (1 — u,)dt, changing the integration limits t¢u, = 0) = 0 and¢(u, = 1 — u,) = 1, and
rearranging integrals we get:

1 1
_1 Coml(1 _ 2 \CytCs )( C—1(1 _ 1\ )
= ug® (1 — ug )% T2 duy, o7 (1 —t)%=dt
) j

0

using definition of Beta Function:

I RGIN(G+ G+ DTN +1) 1 D(G)(G)I(E +1)
GG +¢G+G+HD) D¢ +¢+1)  GCT(G+HEG+G+1)

from propertied’ (5 + 1) = GI'(3) of Gamma function we have:

| R () (NS
0/ / ug® T ug T uyt T duyduydu, = ot tGrD) 0 (A.3)

0

carrying out same procedures for the remaining integrals:
1—u, 1—uz—uy

1
w—1, Cy—1, C.—1 . Co
2. / / / (U — Lo )us ug u$du,duy,du, = (W_&E)g
0 0 0

1—uy 1—uz—uy

E - z7 C
(uy — Ey)ug 1Ugy 1Ug 1duzduydu$ = (W — gy 0

w
o—__
o

0

-
|

Uy L= Uz —Uy

- - - Cz
(uy — Ey)ugf 1u§y 1u§z 1duszyduw = (W —0,)6

=~
o — _
o

0

—
|

Uy 1= Uz —Uy

(ug — ly)(uy — éy)unglugy71u§zflduzduydum

ot
o _
o

- Gty . G . G
‘Q@+@+@+m@+@+@+m beTe et &@+@+@+JMJQ9
1 1—ug 1—ug—uy

6. (g — €y)(uy — Ez)uff_1u§y_1u§z_1duzduydum
I
_ CCe _ Ca _ (¢
‘Q@+@+@+m@+@+@+n berg ot &@+@+@+JMJJ9
1 1—ug 1—ux—uy

7. (uy — £y)(uy — €Z)u§f_1ugy_1u§2_1duzduydum
I
- e ) G ) G
_Q@+@+@+m@+g+@+n S| %@+@+@+f”ﬂ09

1

Uy L= Uz —Uy
/ (uy — éx)2u§f71ugyflu§flduzduydum
0

GG+ 1) Co 2>
= — 2y )6
((Cﬁcyﬂ‘z+2)(Cm+<y+<z+1) 2 Cz+Cy+Cz+1+

®
o—__
S
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[

©
O\H
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x

— L) Pus T Sy s  du duy dug

GGy +1) _ Sy

1—uy 1_um_uy

]

((cw+<y+<z+2)(<m+<y+<z+1)

(uy — (Z)QU%”_lugy_lugz_lduzduydum

G(¢:+1) P (s

- ((<m+Cy+<z+2)(Cm+<y+<z+1)

For the term:

where:
ax
BCB” = | 2
as
a4
with general form:
(Kk)ij

K = / BCB”dV;,

b
bl 21 a1 0 0 ay a2 a3 a4
o o0 e 0 by b by
b3 3 0 0 gs C1 Co C3 Cy
4

= /(%‘%‘91 +b;bjga + cicigs) dVa
W

20, —2=
Yt +C+1

by——
Cot+Gy+C+1

2
g)o

+£§>9

(A.4)

gives the next three follow integrals, whose solutions can be obtained in the analog manner we showed before:

2 1= Uy —Uy

o
[T
0 0
11
bibj/
0

1 1—ug 1—ug—uy

Uy L= Uz —Uy

szl) 1 Ca Cy 1 CZ 1duzduydux: (
/ / A 1)uCL 1 1 Suqu$e~ 1duzduydu$*
0

DS~y =l du duy du, =

CT) (Cy) (C7) 2(4‘171)

FB—Ce+¢y+¢)

D(G)I(2 = ¢)I (Cz)gz(c —1)

I3+ ¢ —

G+¢)

(S AINCETS P

PB4+ +¢G—¢C) °
0 0 0
the general term remains as:
(2 C»L) (Cy) (gz) 2(Cz—1 (CL) ( Cy) (Cz) 2(¢y—1)
Koy =aeipGg—c o) PTG G o)
4 e, LETGITR =G ey
PG+ + ¢ — Cz)
finally for the integral:
B ON;
o /q3333
w
where:
C1 C1
IN; ¢ (@ ¢ c 1 T(G)(G) | e
qaw& — K33) <2£<z ) (U) o = Ty = 2K3(,3)g 3€§z 1F(Cm +Cyi2) .
C4 C4
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