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1. Introduction

Origins of Fractional Order Calculus (FOC) back in time to
the end of XVII century in the famous question of L’Hospital
to Leibnitz; “What if n be 1/2?” (question obviously in-
spired in the very known notation invented by Leibnitz for
derivatives), Leibnitz’s response to L’Hospital was; “It will
lead to a paradox, from this apparent paradox, one day useful
consequences will be drawn” [1]. This was the point in time
line in which seed of FOC had been planted. Due to the Liou-
ville’s works together with those of Riemann, the current def-
initions of the differential and integral fractional operators of
Riemann-Liouville were published in the 1800’s, in the same
period the definition of the fractional integral of Gründwald-
Letnikov also emerges. In the twentieth century, the defini-
tions of the fractional operators of Weyl, Riesz and Caputo
arise. The operators mentioned above are among many more
definitions of fractional operators, the ones that are currently
used or common the most [2, 3]. In the last fifty years, many
works based on this fractional calculus operators have been
published, to name; Kilbaset al. [3], Miller and Ross [4],
Oldham and Spanier [5] and Samkoet al. [6] in the rigor-
ous mathematical context and some others like Strichartz [7]
and Kigami [8] have been started to solve partial differen-
tial equations on mathematical fractal sets. Recently, impor-
tant studies related to the application of FOC have been re-
ported, for example; Ǵomezet al. [9] in the modeling of
electrical circuits; Coronelet al. [13] stuying fractional be-
havior of BFT and CK oscillators; Atangana and Gómez in
the study of the fundamental differences between power law,
exponential decay, Mittag-Leffler law and their possible ap-
plications to real problems [10]; Atangana [11] in the ap-
plication of the semigroup principle to the analysis of frac-
tional derivatives of evolutions equations; Moraleset al. [12]
in the discussion of generalized Cauchy problems in diffu-

sion wave processes. Authors like Herrmann [14] and West
et al. [15] had focussed the FOC to some engineering appli-
cations. On the other hand, many researchers have reported
findings based on Mandelbrot’s ideas for fractal characteri-
zation of natural systems [16]; for example, from biological
systems [17, 18], computer simulation [19], geological sci-
ences [20–22], folded and crumpled of thin matter [23–25] to
fluid flow [27,34], but from the point of view of physics, there
was not a proposal on fractality and fractional calculus in the
continuum until continuum-type equations for fractal media
were proposed by Tarasov [26], that essentially links the frac-
tal dimension of a fractal set with the order of the derivative
(or integral). The works in the same line are [26–33, 35, 37].
In [33,34] the explicit proposal of the FCFC is done.

In the present work, we used the results published in
[33, 34] about the fractional calculus operators in the fractal
continuum in order to discretize the pressure diffusion equa-
tion. Section 2 is devoted to resume important definitions of
FCFC together with the pressure transient equation for frac-
tal continuum flow, also derivation of master finite element
equation is included in this section. Section 3 includes the
discussion of our results and potential uses. We wrote our
conclusions in Sec. 4 and finally, details of calculations are
shown in Appendix.

2. Basic Theory and Formula Derivation

2.1. Fractional calculus in fractal continuum

The FCFC of authors of [33,34], is built on the basis of Tara-
zov’s aproximation to the continuum physics and mechan-
ics [26, 27], and it basically consist in the transformation of
a problem of a intrinsically discontinuous medium (fractal)
onto a problem in a continuous space (Euclidean) in which
this fractal is embedded [30], dealing in the process with
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linear, superficial and volume fractional infinitesimal coeffi-
cients, this coefficients are written in terms of fractal dimen-
sionalities proper of the medium and are supported by a spe-
cific metric well defined as we can see in [34] and its function
is to vinculate the Euclidean differential elements with frac-
tals ones, they rewrite the concept of Hausdorff derivative
given in [32] in terms of an ordinary derivative multiplied by
a power law function of the variablex as:

dH

dxζ
f =

(
x

l0
+ 1

)1−ζ
d

dx
f =

l0
ζ−1

c1

d

dx
f =

d

dζx
f

where the functionc1 = c1 (x, ζ) is defined as the Density Of
States (DOS) in the fractal continuum alongR1 [33,34]. The
DOS describes in this case, how permitted states of particles
are closely packed in thex axis. The expressiondxD = c1dx
represents the number of states (permitted places) betweenx
andx + dx [34]. Now, Hausdorff’s partial derivative is de-
fined as:

∇H
k =

(
xk

lk
+ 1

)1−ζk ∂

∂xk
where ζk = D − dk (1)

and definition of fractional Laplacian is:

∇H
i ∇H

i ψ =
3∑

i

(
χ(i)

)2
[
∂2ψ

∂x2
i

+
1− ζi

xi + li

(
∂ψ
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)]
(2)

where:

χ(i) =
lζi−1
i

c
(i)
1 (xi)

=
(

xi

li
+ 1

)1−ζi

(3)

this Hausdorff Laplacian turns to ordinary Laplacian when
ζi = αi = 1. Other vector operators with significant rel-
evance for this work are

−→∇H ,
−→∇Hψ and

−→∇H · −→Ψ where−→
Ψ = (ψ1, ψ2, ψ3) represents any vector field in the fractal
flow, which are defined as:

−→∇H = −→e 1χ
(1) ∂

∂x1
+−→e 2χ

(2) ∂

∂x2
+−→e 3χ

(3) ∂

∂x3
(4)

−→∇Hψ =
(∇H

1 ψ
)−→e 1 +

(∇H
2 ψ

)−→e 2 +
(∇H

3 ψ
)−→e 3 (5)

−→∇H · −→Ψ =
3∑

i

∇H
i ψi (6)

respectively, where−→e i are the base vectors,ψ (xi) scalar
function and symbol “·” is the usual scalar product. Accord-
ingly with [34] in the 3D case, the DOS, is defined analogous
to dxD for one-dimension by the expression:

dVD = c3 (xi, D) dV = c3 (xi, D) dxdydz (7)

wherec3 is part of the fractal metric defined in [34]. A useful
and clarifying definition ofc3 is done in [30]. More defini-
tions of operators of FCFC can be consulted in [33, 34], we
have included just those ones we are going to employ in the
next sections.

2.2. Pressure transient equation for fractal continuum
flow

In order to get the transient pressure equation for fractal con-
tinuum flow, as in the classical case, it is necessary to relate

the generalized Darcy equation:

ui = −K
(c)
ij

µc
∇H

i (p− hg) (8)

with equation for slightly compressible liquids:

∂ρc

∂t
= cρc

∂p

∂t
(9)

and continuity equation:

∂ρc

∂t
= −−→∇H · ρc

−→u (10)

then, susbtituing (8) and (9) into (10) the result reads:

cµc
∂p

∂t
=
−→∇H ·

(
K

(c)
ii

−→∇H (p− hg)
)

(11)

where is assume that characteristic tensor property of the
fractal continuum flowK

(c)
ij = 0 for i 6= j [34]. Equa-

tion (11) is the well known pressure diffusion equation for
the case of an anisotropic three-dimensional fractal contin-
uum flow as is referred in [34],hg from expression (11) rep-
resents the gravitational head defined as:

hg = p0 − gζzρ0l3

(
x3

l3
+ 1

)ζz

(12)

and c is the coefficient of fractal continuum compressibil-
ity [34].

2.3. Formula derivation

Using Eqs. (5) and (6) to rewrite (11) we obtain the partial
differential equation:

cµc
∂φ

∂t
=χ(x) ∂

∂x

(
K

(c)
11 χ(x) ∂φ

∂x

)
+χ(y) ∂

∂y

(
K

(c)
22 χ(y) ∂φ

∂y

)

+ χ(z) ∂

∂z

(
K

(c)
33 χ(z) ∂φ

∂z

)
(13)

where:

φ = p(xi, t)− hg(xi) (14)

with p (xi, t) = NT d andhg given by (12) [35], multiplying
(13) by A = cµc

(
χ(x)χ(y)χ(z)

)−1
and rearranging terms,

we get:

∂φ

∂t
− 1

A

{
∂
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(
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(c)
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)
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+
∂
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(
K

(c)
33 Az

∂φ
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) }
= 0

whereAi = (χi/χjχk). In order to use Galerkin’s method,
we first develop an appropriate weak form, as is usual in
FEM [35]. We can assume thatV is the volume of an arbi-
trary finite element then, multiplying by the weighting func-
tionsNi, integrating over all the volume and taking into ac-
count (7), the Galerkin weighted residual is:
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∫∫∫

V
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writing γ = (c3/A) and carrying out an integration by parts process, leads to:

∫∫∫
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applying the surface natural boundary condition:

k
∂φ

∂n
≡

(
kx

∂φ

∂x
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∂y
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∂φ
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)
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with ki = KiiAi, α andβ are known parameters along the boundary [35]. Taking into account that general solution over an
element has the form:

φ (x, y, z, t) = (N1 (x, y, z)N2 (x, y, z) · · ·Nn (x, y, z))


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we get:
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Taking into consideration expression (12) and arranging terms, (15) turns to:
∫∫∫

V
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the three terms inside the second integral of volume of (16), can be expressed in matrix form as follows:
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therefore, the finite element equations are:
∫∫∫
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254 H.D. SÁNCHEZ-CHÁVEZ, C.A. LÓPEZ-ORTIZ AND L. FLORES-CANO

that has the typical form:

M ḋ + (Kk + Kα)d = rq + rβ + rα (17)

where:

M =
∫∫∫

V

NNT dVD Kk =
∫∫∫

V

BCBT dV Kα =
∫∫
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αNNT γdS2

rq =
∫∫∫
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q
∂N
∂x3

dV rβ =
∫∫
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βNγdS2 and rα =
∫∫

Sn

αhgNγdS2 (18)

(17) represents a system of first order ordinary differential equations, also is the MFEE of (11) for general weighting functions
Ni in R3 [37, 38]. In the case thatN is conformed by the conventional interpolation functions for arbitrary linear tetrahedron
in R3 as is referred in [36, 37], it would be simple to see that (18) includes information of the tetrahedral coordinatesNi (or
(r, s, t, 1− r − s− t)), such expression would be written as:

M =
∫∫∫

V

NNT dVD =
∫∫∫

V

NNT c3dxdydz =

1∫

0

1−r∫

0

1−r−s∫

0

NNT c3Jdrdsdt (19)

whereJ represents the Jacobian transformation matrix between both reference frames [38] and explicit value ofc3 is given by:

c3 (r, s, t) =

[
lx

(∑4
i=1 Nixi
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+ 1

)]ζx−1 [
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(∑4
i=1 Niyi
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+ 1
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(∑4
i=1 Nizi

lz
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according with [33]. Analog expressions can be arise for the remaining terms of (18). TermM is the coefficient of time
derivatives of the nodal variables. From equation (17),ith-equation is written as

(M)ij ḋj +
(
(Kk)ij + (Kα)ij

)
dj = (rq)i + (rβ)i + (rα)i (21)

which, in this work, we solved analitically for the spatial variables of the particular case of a canonical tetrahedron in the
Euclidean reference frame (vertices(−`x,−`y,−`z), (1− `x,−`y,−`z), (−`x, 1− `y,−`z) and (−`x,−`y, 1− `z)). For
this case, master finite element equation is:
(
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details of calculations that we made can be read in Appendix.

3. Discussion

Actually, problems dealing with transport phenomena are
very important in science and engineering, particularly, in
the study of porous media there is a great research activity
both theoretical and experimental [27, 33, 34, 40–43, 45–54].
On the other hand, since researchers began to apply frac-
tional calculus in order to solve diverse engineering prob-
lems, many authors have made important contributions as
we have referred before because of that, importance of mod-
elling this type of systems lies in the successful forecast of
the behavior that have quantities like flows, speeds, amounts
of matter, pressure drops, etc. In real systems, the difficulty is
that big because the medium in question is characterized by
very complex geometric shapes, turning the modelling in a
strong mathematical challenge, for that reason, the FCFC has
special significance [34]. In that sense, we can notice that dif-
ferential equation (22) contains the geometry information as-
sociated with the fractal medium under study through the cor-
responding fractal dimensions,ζi, D, di, cut off lower limits
`i and transformation functionc3, [33, 34]. In the present
case, we have employed the FCFC in the discretization pro-
cess of the three-dimensional pressure diffusion equation for
the anisotropic continuum fractal flow published in [34], it
can be written in computer codes in any programming lan-
guage and be of great interest in the field of computer simu-
lation.

The discretization process of the parabolic equation (11)
was written in (18) for general form functionsNi, rewritten
for arbitrary linear tetrahedron in (19) and solved analytically
for spatial variables over the canonical tetrahedron in (22).
We have shown explicitly the process to be followed with
other types of finite elements. We also mention that the in-
tegral formulas that have been obtained analytically for the
spatial case are general in the sense that they were solved for
non-particular fractional parameter values, such parameters
will depend on the geometry of the system to be simulated.

The fractional transient-pressure equation for flow in a
porous medium has been solved analytically in [34], its solu-
tion corresponds to the specific case of radial contribution
in a cylindrical symmetry domain with isotropic porosity.
This type of results are helpful, for example, in the oil in-
dustry (well production analysis) or in the characterization of
aquifers. From the point of view of software tools, it is use-
ful to have numerical procedures for the solution of this type
of equations moreover, in the computational field, one can

aspire to solve more complex cases like anisotropic one. In
the present work, we have focused on the application of FEM
for the most generic resolution of such pressure equation.

The results, by themselves, are already of significance for
the computational implementation and allow the more accu-
rate calculation of the integrals that appear in the matrix el-
ements of the formulation, reducing computational complex-
ity and also clarifies the panorama of the applicability of such
method in this case of relative novelty.

4. Conclusions

We employ the FCFC defined by means of fractional op-
erators (1), (2) and (6) of [33, 34] that relate a discontin-
uous system with a continuous one through the transfor-
mation function defined by (7) in order to get the MFEE
for the transient-pressure equation in a three-dimensional
continuum fractal flow. Explicit form of coefficientc3 for
the geometry of a linear tetrahedron is given in (20). We
have solved analitically the integral formulas for the spa-
tial variables of (17) for the case of a canonical tetrahedron
anchored in vertices(−`x,−`y,−`z), (1− `x,−`y,−`z),
(−`x, 1− `y,−`z) and(−`x,−`y, 1− `z) using a very sim-
ilar process to the one carried out in the literature of math-
ematical methods to obtain the Dirichlet’s integral formula
[55,56]. We also mention that the results we obtained in this
work can be linked to real field data that allow the develop-
ment of adequate computer simulations. As a continuity of
the present work, in a future publication, we will report a
robust implementation that allows to see graphically the con-
trast that has the inclusion of the intrinsic geometry of the
medium in the modeling of real application pressure diffu-
sion problems, in contrast with the usual Euclideans aprox-
imations implemented in commercial simulations softwares
that not include fractional and fractal features.

Appendix

A.

In this section, we include the details of calculations done in
order to solve each volume term of (17). Let’s start with:

M =
∫∫∫

V

NNT dVD

where:

NNT =




N1

N2

N3

N4




(
N1 N2 N3 N4

)
=




N1N1 N1N2 N1N3 N1N4

N2N1 N2N2 N2N3 N2N4

N3N1 N3N2 N3N3 N3N4

N4N1 N4N2 N4N3 N4N4


 (A.1)
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and termMij is:

Mij =
(

1
6V

)2 ∫

W

[6V0i6V0j + (6V0iaj + 6V0jai)x + (6V0ibj + 6V0jbi)y + (6V0icj + 6V0jci)z

+(aibj + ajbi)xy + (aicj + ajci)xz + (bicj + bjci)yz + aiajx
2 + bibjy

2 + cicjz
2
]
c3(xi, D)dV3 (A.2)

lettingux = (x+`x), uy = (y+`y) y uz = (z+`z) the transformation functionc3(ui, D)dV3 turns intouζx−1
x u

ζy−1
y uζz−1

z duzduydux,
working with the tetrahedron mentioned in previous sections, we get the next ten integrals whose procedure solution and solu-
tions are shown:

1. 6V0i6V0j

1∫

0

1−ux∫

0

1−ux−uy∫

0

uζx−1
x uζy−1

y uζz−1
z duzduydux,

2. (6V0iaj + 6V0jai)

1∫

0

1−ux∫

0

∫ 1−ux−uy

0

(ux − `x)uζx−1
x uζy−1

y uζz−1
z duzduydux,

3. (6V0iabj + 6V0jbi)

1∫

0

1−ux∫

0

∫ 1−ux−uy

0

(uy − `y)uζx−1
x uζy−1

y uζz−1
z duzduydux,

4. (6V0icj + 6V0jci)

1∫

0

1−ux∫

0

1−ux−uy∫

0

(uz − `z)uζx−1
x uζy−1

y uζz−1
z duzduydux,

5. (aibj + ajbi)

1∫

0

1−ux∫

0

1−ux−uy∫

0

(ux − `x)(uy − `y)uζx−1
x uζy−1

y uζz−1
z duzduydux,

6. (aicj + ajci)

1∫

0

1−ux∫

0

1−ux−uy∫

0

(ux − `x)(uz − `z)uζx−1
x uζy−1

y uζz−1
z duzduydux,

7. (bicj + bjci)

1∫

0

1−ux∫

0

1−ux−uy∫

0

(uy − `y)(uz − `z)uζx−1
x uζy−1

y uζz−1
z duzduydux,

8. (aiaj)

1∫

0

1−ux∫

0

1−ux−uy∫

0

(ux − `x)2uζx−1
x uζy−1

y uζz−1
z duzduydux,

9. (bibj)

1∫

0

1−ux∫

0

1−ux−uy∫

0

(uy − `y)2uζx−1
x uζy−1

y uζz−1
z duzduydux,

10. (cicj)

1∫

0

1−ux∫

0

1−ux−uy∫

0

(uz − `z)2uζx−1
x uζy−1

y uζz−1
z duzduydux.

Solution of integral 1.

1.

1∫

0

1−ux∫

0

1−ux−uy∫

0

uζx−1
x uζy−1

y uζz−1
z duzduydux =

1∫

0

1−ux∫

0

uζx−1
x uζy−1

y

(
uζz

z

ζz

)1−ux−uy

0

duydux

=
1
ζz

1∫

0

1−ux∫

0

uζx−1
x uζy−1

y (1− ux − uy)ζzduydux
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settinguy = (1− ux)t → duy = (1− ux)dt, changing the integration limits tot(uy = 0) = 0 andt(uy = 1− ux) = 1, and
rearranging integrals we get:

=
1
ζz




1∫

0

uζx−1
x (1− ux)ζy+ζzdux







1∫

0

tζy−1(1− t)ζzdt




using definition of Beta Function:

1
ζz

Γ(ζx)Γ(ζy + ζz + 1)
Γ(ζx + ζy + ζz + 1)

Γ(ζy)Γ(ζz + 1)
Γ(ζy + ζz + 1)

=
1
ζz

Γ(ζx)Γ(ζy)Γ(ζz + 1)
Γ(ζx + ζy + ζz + 1)

from propertiesΓ(β + 1) = βΓ(β) of Gamma function we have:

1∫

0

1−ux∫

0

1−ux−uy∫

0

uζx−1
x uζy−1

y uζz−1
z duzduydux =

Γ(ζx)Γ(ζy)Γ(ζz)
Γ(ζx + ζy + ζz + 1)

= θ (A.3)

carrying out same procedures for the remaining integrals:

2.

1∫

0

1−ux∫

0

1−ux−uy∫

0

(ux − `x)uζx−1
x uζy−1

y uζz−1
z duzduydux =

(
ζx

ζx + ζy + ζz + 1
− `x

)
θ

3.

1∫

0

1−ux∫

0

1−ux−uy∫

0

(uy − `y)uζx−1
x uζy−1

y uζz−1
z duzduydux =

(
ζy

ζx + ζy + ζz + 1
− `y

)
θ

4.

1∫

0

1−ux∫

0

1−ux−uy∫

0

(uy − `y)uζx−1
x uζy−1

y uζz−1
z duzduydux =

(
ζz

ζx + ζy + ζz + 1
− `z

)
θ

5.

1∫

0

1−ux∫

0

1−ux−uy∫

0

(ux − `x)(uy − `y)uζx−1
x uζy−1

y uζz−1
z duzduydux

=
(

ζxζy

(ζx + ζy + ζz + 2)(ζx + ζy + ζz + 1)
− `y

ζx

ζx + ζy + ζz + 1
− `x

ζy

ζx + ζy + ζz + 1
+ `x`y

)
θ

6.

1∫

0

1−ux∫

0

1−ux−uy∫

0

(ux − `x)(uz − `z)uζx−1
x uζy−1

y uζz−1
z duzduydux

=
(

ζxζz

(ζx + ζy + ζz + 2)(ζx + ζy + ζz + 1)
− `z

ζx

ζx + ζy + ζz + 1
− `x

ζz

ζx + ζy + ζz + 1
+ `x`z

)
θ

7.

1∫

0

1−ux∫

0

1−ux−uy∫

0

(uy − `y)(uz − `z)uζx−1
x uζy−1

y uζz−1
z duzduydux

=
(

ζyζz

(ζx + ζy + ζz + 2)(ζx + ζy + ζz + 1)
− `z

ζy

ζx + ζy + ζz + 1
− `y

ζz

ζx + ζy + ζz + 1
+ `y`z

)
θ

8.

1∫

0

1−ux∫

0

1−ux−uy∫

0

(ux − `x)2uζx−1
x uζy−1

y uζz−1
z duzduydux

=
(

ζx(ζx + 1)
(ζx + ζy + ζz + 2)(ζx + ζy + ζz + 1)

− 2`x
ζx

ζx + ζy + ζz + 1
+ `2x

)
θ
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9.

1∫

0

1−ux∫

0

1−ux−uy∫

0

(uy − `y)2uζx−1
x uζy−1

y uζz−1
z duzduydux

=
(

ζy(ζy + 1)
(ζx + ζy + ζz + 2)(ζx + ζy + ζz + 1)

− 2`y
ζy

ζx + ζy + ζz + 1
+ `2y

)
θ

10.

1∫

0

1−ux∫

0

1−ux−uy∫

0

(uz − `z)2uζx−1
x uζy−1

y uζz−1
z duzduydux

=
(

ζz(ζz + 1)
(ζx + ζy + ζz + 2)(ζx + ζy + ζz + 1)

− 2`z
ζz

ζx + ζy + ζz + 1
+ `2z

)
θ

For the term:

Kk =
∫

W

BCBT dV3

where:

BCBT =




a1 b1 c1

a2 b2 c2

a3 b3 c3

a4 b4 c4







g1 0 0
0 g2 0
0 0 g3







a1 a2 a3 a4

b1 b2 b3 b4

c1 c2 c3 c4




with general form:

(Kk)ij =
∫

W

(aiajg1 + bibjg2 + cicjg3) dV3 (A.4)

gives the next three follow integrals, whose solutions can be obtained in the analog manner we showed before:

1. aiaj

1∫

0

1−ux∫

0

1−ux−uy∫

0

`2(ζx−1)
x u1−ζx

x uζy−1
y uζz−1

z duzduydux =
Γ(2− ζx)Γ(ζy)Γ(ζz)
Γ(3− ζx + ζy + ζz)

`2(ζx−1)
x

2. bibj

1∫

0

1−ux∫

0

1−ux−uy∫

0

`2(ζy−1)
y uζx−1

x u1−ζy
y uζz−1

z duzduydux =
Γ(ζx)Γ(2− ζy)Γ(ζz)
Γ(3 + ζx − ζy + ζz)

`2(ζy−1)
y

3. cicj

1∫

0

1−ux∫

0

1−ux−uy∫

0

`2(ζz−1)
z uζx−1

x uζy−1
y u1−ζz

z duzduydux =
Γ(ζx)Γ(ζy)Γ(2− ζz)
Γ(3 + ζx + ζy − ζz)

`2(ζz−1)
z .

the general term remains as:

(Kk)ij = aiaj
Γ(2− ζx)Γ(ζy)Γ(ζz)
Γ(3− ζx + ζy + ζz)

`2(ζx−1)
x + bibj

Γ(ζx)Γ(2− ζy)Γ(ζz)
Γ(3 + ζx − ζy + ζz)

`2(ζy−1)
y

+ cicj
Γ(ζx)Γ(ζy)Γ(2− ζz)
Γ(3 + ζx + ζy − ζz)

`2(ζz−1)
z . (A.5)

finally for the integral:

rq =
∫

W

q
∂Ni

∂x3
dV3 (A.6)

where:

q
∂Ni

∂x3
= K

(c)
33 gζ2

z `ζz−1
z c

(x)
1 c

(y)
1




c1

c2

c3

c4


 ⇒ rq = 2K

(c)
33 gζ2

z `ζz−1
z

Γ(ζx)Γ(ζy)
Γ(ζx + ζy + 2)




c1

c2

c3

c4


 (A.7)
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