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1. Introduction

The Non Relativistic Schrödinger equation (SE) is one of
the central equations in quantum physics which still attracts
strong interest of both physicists and mathematicians. How-
ever, solving this equation is often very difficult, also obtain-
ing exact analytic solutions may be found only for few cases
[1]. Many advanced mathematical methods have been used
to solve it. Among the most popular methods are Nikiforov-
Uvarov method (NU) [2-10], asymptotic iteration method
(AIM) [11-16], supersymmetric shape invariance approach
(SUSY QM) [17-22], factorization method [23], exact/proper
quantization rule [24-26], 1/N shifted expansion method [27]
and Modified Factorisation Method [28-29] which could help
to obtain approximate solutions of these wave equations in
the presence of a suitable approximation scheme.

Hulthen potential is one of the crucial molecular poten-
tials used in different areas of Physics such as nuclear and
particle, atomic and condensed matter Physics and chemical
Physics to describe the interaction between two atoms [30].
Theq deformed Hulthen potential is of the form [35]

V (r) = − V0e
−2αr

1− qe−2αr
. (1)

[29] noted that there are no differences between the behavior
of the modified Yukawa potential and the inversely quadratic
Yukawa potential [31] or the Yukawa potential [32]. Its ap-
plication to diverse areas of physics has been of great interest
and concern in recent times [33,34].

The generalized inverse quadratic Yukawa potential
(GIQYP) is a superposition of the inverse quadratic Yukawa
(IQY) and the Yukawa potential. It is asymptotic to a finite
value asr → ∞ and becomes infinite atr = 0 [36]. The

Generalized inverse quadratic Yukawa potential model is of
the form [36]

V (r) = −V1

(
1 +

e−αr

r

)2

,

V (r) = −C − Be−αr

r
− Ae−αr

r2
, (2)

A = C = V1 and B = 2V1.

The Generalized inverse quadratic Yukawa potential re-
duces to a constant potential whenA = B = 0.

The study of dimensions plays an important role in many
areas of physics and the extension of physical problems to
higher dimensional space is of great interest. [37] noted that
the exact solutions of both the relativistic and nonrelativistic
wave equation with certain physical potential in higher di-
mensions are remarkably important not only in physics and
chemistry, but also in pure and applied mathematics.

Recently, there has been great interest in combining of
two or more potentials in both the relativistic and non-
relativistic regime. The essence of combining two or more
physical potential models is to have a wider range of applica-
tions [38]. For example, Hellmann [39], studied Schrödinger
equation with a superposition of Coulomb potential and
Yukawa potential, this potential is named Hellmann poten-
tial. His result is applicable in the area where both Coulomb
potential and Yukawa potential respectively find applications.
Bearing this in mind, we attempt to study the D-dimensional
Schr̈odinger equation with a newly proposed potential ob-
tained from a combination ofq-deformed Hulthen potential
(1) and Generalized inverse quadratic Yukawa potential (2).
The proposed potential is of the form;

V (r) = − V0e
−2αr

1− qe−2αr
− V1

(
1 +

e−αr

r

)2

, (3)
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whereV1 is the coupling strength of the potential,α is the
screening parameter andV0 is strength of the potential.

The organization of the work is as follows: In the next
section, review the Nikiforov-Uvarov method. In Sec. 3, this
method is applied to obtain the bound state solutions. In Sec.
4, we obtain numerical results while in Sec. 5 we discuss
some special cases and in Sec. 6, we give the concluding
remark.

2. Review of Nikiforov-Uvarov method

The Nikiforov-Uvarov (NU) method is based on solving the
hypergeometric-type second-order differential equations by
means of the special orthogonal functions [2]. The main
equation which is closely associated with the method is given
in the following form [40-41]

ψ′′(s) +
(

τ̃(s)
σ(s)

ψ′(s) +
σ̃(s)
σ2(s)

ψ(s) = 0.

)
(4)

Whereσ(s) and σ̃(s) are polynomials at most second-
degree,̃τ(s) is a first-degree polynomial andψ(s) is a func-
tion of the hypergeometric-type.

The exact solution of Eq. (2) can be obtained by using
the transformation

ψ(s) = φ(s)y(s). (5)

This transformation reduces Eq. (2) into a hypergeomet-
ric-type equation of the form

σ(s)y′′(s) + τ(s)y′(s) + λy(s) = 0. (6)

The functionφ(s) can be defined as the logarithm deriva-
tive

φ′(s)
φ(s)

=
π(s)
σ(s)

(7)

where

π(s) =
1
2
[τ(s)− τ̃(s)] (8)

with π(s) being at most a first-degree polynomial. The sec-
ondψ(s), beingyn(n) in Eq. (3), is the hypergeometric func-
tion with its polynomial solution given by Rodrigues relation

y(n)(s) =
Bn

ρ(s)
dn

dsn
[σnρ(s)]. (9)

Here, Bn is the normalization constant andρ(s) is the
weight function which must satisfy the condition

(σ(s)ρ(s))′ = σ(s)τ(s) (10)

τ(s) = σ̃(s) + 2π(s). (11)

It should be noted that the derivative ofτ(s) with respect
to s must be negative. The eigenfunctions and eigenvalues

can be obtained using the definition of the following function
π(s) and parameterλ, respectively:

π(s) =
σ′(s)− τ̃(s)

2

±
√(

σ′(s)− τ̃(s)
2

)2

− σ̃(s) + kσ(s), (12)

where

k = λ− π′(s). (13)

The value ofk can be obtained by setting the discriminant
of the square root in Eq. (9) equal to zero. As such, the new
eigenvalue equation can be given as

λn = −nτ ′(s)− n(n− 1
2

σ′′(s), n = 0, 1, 2, . . . (14)

3. Bound state solution with q deformed
Hulthen and generalized inverse quadratic
Yukawa potential in D dimension

The radial Schr̈odinger equation inD dimension can be writ-
ten as [42]:

[
d2Rnl

dr2
− 2µV (r)

~2

(D + 2`− 1)(D + 2`− 3)
4r2

+
2µEnl

~2

]
Rnl(r) = 0, (15)

whereµ is the reduced mass,Enl is the energy spectrum,~ is
the reduced Planck’s constant andn andl are the radial and
orbital angular momentum quantum numbers respectively (or
vibration-rotation quantum number in quantum chemistry).
Substituting Eq. (1) into Eq. (15) gives:

[
d2Rnl

dr2
− 2µ

~2

(
− V0e

−2αr

1− qe−2αr
− V1

(
1 +

e−αr

r

)2
)

− (D+2`−1)(D+2`−3)
4r2

+
2µEnl

~2

]
Rnl(r)=0. (16)

Simplifying further Eq. (16) becomes;
[

d2

dr2
− 2µ

~2

(
− V0e

−2αr

1− qe−2αr
− C − Be−αr

r
− Ae−2αr

r2

)

− (D+2`−1)(D+2`−3)
4r2

+
2µEnl

~2

]
Rnl = 0. (17)

Employing the Pekeris type approximation scheme [43],
which is given by

1
r2

=
4α2e−2αr

(1− qe−2αr)2
and

1
r

=
2αe−2αr

(1− qe−2αr)
, (18)
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Eq. (18) becomes;

d2Rnl(r)
dr2

+
1

(1− qe−2αr)2

[
2µ(Enl + C)

~2

× (1− qe−2αr)2 +
2µV0e

−2αr

~2
(1− qe−2αr)

+
4µBαe−2αr

~2
(1− qe−2αr) +

8µAα2e−4αr

~2

− (D + 2`− 1)(D + 2`− 3)4α2e−2αr

4

]
Rn`(r), (19)

Eq. (19) can be simplified introducing the following dimen-
sionless abbreviations




−εn = µ(Enl+C)
2~2α2

δ = µV0
2~2α2

χ = µB
~2α

η = 2µA
~2α

γ = (D+2`−1)(D+2`−3)
4





. (20)

And using the transformations = e−2αr so as to enable
us apply the NU method as a solution of the hypergeometric
type

d2Rnl(r)
dr2

= 4α2s2 d2Rnl(s)
ds2

+ 4α2s
dRnl(s)

ds
(21)

d2Rnl(s)
ds2

+
1− qs

s(1− qs)
d2Rnl(s)

ds
+

1
s2(1− qs)2

× [−s2(εnq2 + δq + χq − η)

+ s(2εnq + δ + χ− γ)− εn]Rn`(s) = 0. (22)

Comparing Eq. (19) and Eq. (2), we have the following
parameters




τ̃(s) = 1− qs

σ(s) = s(1− qs)

σ̃(s) = −s2(εnq2 + δq + χq − η)

+s(2εnq2 + δq + χq − η)− εn





. (23)

Substituting these polynomials into Eq. (9), we getπ(s) to
be

π(s) = −qs

2
±

√
(a− k)s2 + (b + k)s + c (24)

where 



a = q2

4 + εnq2 + δq + χq − η

b = −(2εnq + δ + χ− γ)

c = εn





. (25)

To find the constantk the discriminant of the expression
under the square root of Eq. (21) must be equal to zero. As
such, we have that

k± = (χ + δ − γ)± 2q

√
εn

(
1
4
− η

q2
+

γ

q

)
. (26)

Substituting Eq. (26) into Eq. (24) yields

π(s) = −qs

2
±

[(
q

√(
1
4
− η

q2
+

γ

q

)
+ q

√
εn

)
s

−√εn

]
. (27)

From the knowledge of NU method, we choose the ex-
pressionπ(s) whose functionτ(s) has a negative derivative.
This is given by

k = (χ + δ − γ)− 2q

√
εn

(
1
4
− η

q2
+

γ

q

)
(28)

with τ(s) being obtained as

τ(s) = 1− 2qs− 2

[(
q

√(
1
4
− η

q2
+

γ

q

)

+ q
√

εn

)
s−√εn

]
. (29)

Referring to Eq. (10), we define the constantλ as

λ = −q

2
−

(
q

√(
1
4
− η

q2
+

γ

q

)
+ q

√
εn

)

+ (χ + δ − γ)− 2q

√
εn

(
1
4
− η

q2
+

γ

q

)
(30)

Substituting Eq. (27) into Eq. (11) and carrying out sim-
ple algebra, where

τ ′(s) = −2

(
q +

[(
q

√(
1
4
− η

q2
+

γ

q

)

+ q
√

εn

)
s

])
< 0, (31)

and

σ′′(s) = −2q, (32)

we have

εn =
1
4




(
n+ 1

2+
√(

1
4− η

q2 +γ
q

))2

+ η
q2− δ

q−χ
q

(
n+ 1

2+
√

1
4− η

q2 +γ
q

)




2

. (33)

Substituting Eqs. (17) into Eq. (30) yields the energy
eigenvalue equation of theq-deformed Hulthen potential and
Generalized Inverse Quadratic Yukawa Potential inD dimen-
sion in the form
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En` = −C − ~
2α2

2µ




(
n + 1

2 +
√

1
4 − 2µA

~2q2 + (D+2`−1)(D+2`−3)
4q

)2

+ 2µA
~2q2 − µV0

2~2qα2 − µB
~2qα

(
n + 1

2 +
√

1
4 − 2µA

~2q2 + (D+2`−1)(D+2`−3)
4q

)




2

. (34)

The corresponding wave functions can be evaluated by
substitutingπ(s) andσ(s) from Eq. (27) and Eq. (23) re-
spectively into Eq. (7) and solving the first order differential
equation. This gives

φ(s) = s
√

εn(1− qs)1/2+
√

1/4−η/q2+γ/q. (35)

The weight functionρ(s) from Eq. (7) can be obtained as

ρ(s) = s2
√

εn(1− S)2
√

1/4−η/q2+γ/q. (36)

From the Rodrigues relation of Eq. (6), we obtain

yn(s) ≡ Nn,lP
(2
√

εn,2
√

1/4−η/q2+γ/q)
n (1− 2qs) (37)

whereP
(θ,ϑ)
n is the Jacobi Polynomial.

SubstitutingΦ(s) andyn(s) from Eq. (32) and Eq. (34)
respectively into Eq. (3), we obtain

ψn(s) = Nn,lS
√

εn(1− qs)1/2+
√

1/4−η/q2+γ/q

× P
(2
√

εn,2
√

1/4−η/q2+γ/q)
n (1− 2qs). (38)

4. Deductions from Eq. (34)

In this section, we take some adjustments of constants in Eq.
(1) and (2) to have the following cases:

Coulomb plus inverse-square potential

If we set C = 0, α → 0, q = 1 Eq. (3) reduces to the
Coulomb plus Inverse-Square Potential [44,58]:

V (r) = −B

r
+

A

r2
(39)

A = C = −V1 and B = 2V1

En` =
−2µB2

~2

(
2n + 1 +

√
8µA
~2 + (D + 2`− 2)2

)2 . (40)

Eq. (36) is also known as the Kratzer-Feus potential, this po-
tential was studied by Ref. [58] in arbitrary dimensions. If
we set~ = µ = 1, Eq. (36) fully agrees with the result re-
ported in Eq. (28) of Ref. [58]. Eq. (37) is also consistent
with the result obtained in Eq. (15) of Ref [44].

Generalized inverse quadratic Yukawa potential

If V0 = 0, q = 1 Eq. (3) reduces to the Generalized Inverse
Quadratic Yukawa potential

V (r) = −V1

(
1 +

e−αr

r

)2

(41)

and the energy Eq. (34) becomes

En` = −C − ~
2α2

2µ




(
n + 1

2 +
√

1
4 − 2µA

~2 + (D+2`−1)(D+2`−3)
4

)2

+ 2µA
~2 − µB

2~2α

(
n + 1

2 +
√

1
4 − 2µA

~2 + (D+2`−1)(D+2`−3)
4

)




2

. (42)

Equation (42) is the Energy Eigenvalue Equation for Generalised Inverse Quadratic Yukawa potential inD dimension.
WhenD = 3, Eq. (42) is in full agreement with the results in Eq. (27) of Refs. [36].

Hulthen potential

If V1 = 0, andV0 = Ze2α Eq. (3) reduces to theq deformed Hulthen potential

V (r) =
Ze2αe−2αr

1− qe−2αr
(43)

and the energy equation Eq. (31) becomes
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En` = −~
2α2

2µ




(
n + 1

2 +
√

1
4 + (D+2`−1)(D+2`−3)

4q

)2

− µV0
2~2qα2

(
n + 1

2 +
√

1
4 + (D+2`−1)(D+2`−3)

4q

)




2

. (44)

Equation (44) is the energy equation for theq deformed
Hulthen potential inD Dimensions. If we setq = 1,
α → α/2, it reduces to the energy equation for the Hulthen
potential inD dimension

En` = −~
2α2

2µ

[
2µV0

~2α2(2n + 1 + (D + 2`− 2))

− (2n + 1 + (D + 2`− 2))
4

]2

. (45)

Equation (44) is identical with the energy eigenvalue
equation given in Eq. (33) of Ref. [53]. Mores so, if we
setD = 3, we arrive at the energy eigenvalue equation for
the Hulthen potential in3D.

En` = −~
2α2

2µ

[
µV0

~2α2(n + ` + 1))

− (n + ` + 1)
2

]2

. (46)

Equation (46) is identical to the energy eigenvalues for-
mula given in Eq. (34) of Ref. [53], Eq. (35) of Ref. [54],
Eq. (27) of Ref. [55] and, Eq. (31) of Ref. [56] and Eq. (39)
of Ref. [57].

Kratzer potential

If α → 0 andV0 = 0, q = 1 and settingA = −V1, B = 2V1

andC = −V1, Eq. (3) reduces to

V (r) = C − B

r
+

A

r2
. (47)

Equation (31) becomes

En`=C

− µB2

2~2

(
n+ 1

2+
√

1
4− 2µA

~2 + (D+2`−1)(D+2`−3)
4

) (48)

Equation (48) is the Energy eigenvalue equation for the
Kratzer potential inD dimensions. IfD = 3 reduces to
energy equation for Kratzer potential in 3D, which is very
consistent with the result obtained in Eq. (28) of Ref. [45]

Inversely quadratic Yukawa potential

If V0 = 0, q = 0 andB = C = 0 the potential Eq. (3)
reduces to the Inverse Quadratic Yukawa Potential [33]:

V (r) = −Ae−2αr

r2
. (49)

Eq. (34) becomes

En` = −~
2α2

2µ




(
n + 1

2 +
√

1
4 + 2µA

~2 + (D+2`−1)(D+2`−3)
4

)2

− 2µA
~2

(
n + 1

2 +
√

1
4 − 2µA

~2 + (D+2`−1)(D+2`−3)
4

)




2

. (50)

Equation (50) is the energy equation for the Inverse Quadratic Yukawa Potential inD Dimensions. IfD = 3, Eq. (50)
reduces to the energy equation in 3D, which is identical to the results in Eq. (40) of Ref. [46], Eq. (21) of Ref. [45] and
Eq. (50) of Ref. [47].

Yukawa potential

If V0 = 0, andA = C = 0 the potential Eq. (3) reduces to the Yukawa Potential

V (r) = −Be−αr

r
(51)
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En` = −~
2α2

2µ




(
n + 1

2 +
√

1
4 + (D+2`−1)(D+2`−3)

4

)2

− µB
~2α

(
n + 1

2 +
√

1
4 + (D+2`−1)(D+2`−3)

4

)




2

. (52)

Equation (52) is the energy eigenvalue equation for the Yukawa potential inD dimensions. IfD = 3, Eq. (52) becomes
identical with Eqs. (50) and (17) reported in Ref. [48] and [49], respectively.

q Deformed Hulthen potential plus inversely quadratic Yukawa potential

If B = C = 0 the potential Eq. (3) reduces to theq Deformed Hulthen Potential plus Inversely Quadratic Yukawa Potential

V (r) = − V0e
−2αr

1− qe−2αr
− Ae−2αr

r2
(53)

En` = −~
2α2

2µ




(
n + 1

2 +
√

1
4 − 2µA

~2q2 + (D+2`−1)(D+2`−3)
4q

)2

+ 2µA
~2q2 − µV0

2~2qα2

(
n + 1

2 +
√

1
4 − 2µA

~2q2 + (D+2`−1)(D+2`−3)
4q

)




2

. (54)

Equation (51) is the energy equation for qDHPIQYP inD Dimensions. IfD = 3, Eq. (51) reduces to the energy equation
for qDHPIQYP in 3D. Hence, this is in agreement with the result reported in Eq. (21) of Ref. [50].

Wood saxon

If V1 = 0, q → −1, the potential Eq. (3) reduces to the Wood-Saxon Potential [51]

V (r) = − V0e
−2αr

1 + e−2αr
(55)

En` = −~
2α2

2µ




(
n + 1

2 +
√

1
4 − (D+2`−1)(D+2`−3)

4

)2

+ µV0
2~2α2

(
n + 1

2 +
√

1
4 − (D+2`−1)(D+2`−3)

4

)




2

. (56)

Equation (56) is the energy equation for Woood saxon
potential in D Dimensions. IfD = 3, Eq. (56) reduces to
energy equation for Wood Saxon potential in 3D which is in
agreement with Eq. (33) of Ref. [51,52].

Coulomb potential

If V0 = 0, A = C = 0, α → 0 the potential Eq. (3) reduces
to the Coulomb Potential [53]

V (r) = −B

r
(57)

En`=− µB2

2~2

(
n+ 1

2+
√

1
4+ (D+2`−1)(D+2`−3)

4

)2 . (58)

Equation (58) is the energy equation for Coulomb poten-
tial in D Dimensions. This result is consistent with the result
obtained in Eq. (7.14) of Ref. [37]. Also, comparing our
work with the result gotten in Eq. (32) of Ref. [38], it is
worthy to note here that the authors in Ref. [38] failed to
set the screening parameter (i.e. δ in Eq. (32) of Ref. [38])
equal to zero. If that is done, then there would be a clear con-
sistency in the energy eigenvalue equation gotten in our Eq.
(58) and Eq. (32) of Ref. [38]. More so, whenD = 3, Eq.
(58) reduces to the energy equation for Coulomb potential in
3D. This result is in agreement with the result obtained in
Eq. (101) of Ref. [41].

5. Discussion

In Table I, we present the numerical results forq-deformed
HPGIQYP in natural units for undisturbed systemq = 1 and
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TABLE I. The bound state energy levels (in units of fm-1) of theq deformed HPGIQYP for various values ofn, l and for~ = µ = 1,
V1 = 0.05, V0 = 0.06, α = 0.1 andq = 1.

D l E0 E1 E2 E3 E4 E5

1 0 -0.111532657 -0.050160469 -0.061805001 -0.091588170 -0.133612341 -0.186495563

1 -0.111532657 -0.050160469 -0.061805001 -0.091588170 -0.133612341 -0.186495563

2 -0.050001470 -0.063637479 -0.094491464 -0.137403514 -0.191119393 -0.255212929

3 -0.063963864 -0.095000000 -0.138064566 -0.191923889 -0.256157355 -0.330589834

2 0 - - - - - -

1 -0.057730423 -0.053663600 -0.076861376 -0.113796613 -0.162002377 -0.220756343

2 -0.054040856 -0.077671011 -0.114918947 -0.163406670 -0.222431895 -0.291727413

3 -0.077934315 -0.115282910 -0.163861568 -0.222974330 -0.292355951 -0.371887520

3 0 -0.111532657 -0.050160469 -0.061805001 -0.091588170 -0.133612341 -0.186495563

1 -0.050001470 -0.063637479 -0.094491464 -0.137403514 -0.191119393 -0.255212929

2 -0.063963864 -0.095000000 -0.138064566 -0.191923889 -0.256157355 -0.330589834

3 -0.095215754 -0.138344769 -0.192264742 -0.256557384 -0.331048371 -0.415654558

4 0 -0.057730423 -0.053663600 -0.076861376 -0.113796613 -0.162002377 -0.220756343

1 -0.054040856 -0.077671011 -0.114918947 -0.163406670 -0.222431895 -0.291727413

2 -0.077934315 -0.115282910 -0.163861568 -0.222974330 -0.292355951 -0.371887520

3 -0.115463942 -0.164087740 -0.223243964 -0.292668339 -0.372242321 -0.461906307

5 0 -0.050001470 -0.063637479 -0.094491464 -0.137403514 -0.191119393 -0.255212929

1 -0.063963864 -0.095000000 -0.138064566 -0.191923889 -0.256157355 -0.330589834

2 -0.095215754 -0.138344769 -0.192264742 -0.256557384 -0.331048371 -0.415654558

3 -0.138499958 -0.192453483 -0.256778864 -0.331302223 -0.415940595 -0.510650327

low potential strength,V0 = 0.05 eV and coupling strength
eV. It is observed that the energy decreases as the orbital an-
gular momentum increases for any given value of the princi-
pal quantum numbern in all dimensions. Physically, a parti-
cle in this potential is highly bound and becomes more attrac-
tive as increases. Interestingly, the above observation is the
same with and without the presence of the deformation pa-
rameter in the system as shown in Table II for whichq = 2.

FIGURE 1. The variation of the q deformed Hulthen potential plus
Generalized inverse quadratic Yukawa potential for various values
of the deformation parameter (q+) as a functionr. We choose
V1 = 0.5, V0 = 0.6 andα = 0.1.

FIGURE 2. The variation of theq deformed Hulthen potential plus
Generalized inverse quadratic Yukawa potential for various values
of the deformation parameter (q−) as a functionr. We choose
V1 = 0.5, V0 = 0.6 andα = 0.1.

Figure 1-5 show the variations of potential versusr for
different values ofq, considering three potentials and four
orbital angular momentums. In Figs. 6 and 7, we show the
3D variations of the energy withq for s-wave andp-state for
differentn. We repeat the same for the screening parameter
α in Fig. 8 and 9. The energy increases when the poten-
tial strengthV0 increases, but behaves the other way round
for coupling strengthV1 as shown in Fig. 10-13. Finally,
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TABLE II. The bound state energy levels (in units of fm-1) of theq deformed HPGIQYP for various values ofn, l and for~ = µ = 1,
V1 = 0.05, V0 = 0.06, α = 0.1 andq = 2

D l E0 E1 E2 E3 E4 E5

1 0 -0.055540550 -0.054743460 -0.076688104 -0.110461693 -0.154758568 -0.209260208

1 -0.055540550 -0.054743460 -0.076688104 -0.110461693 -0.154758568 -0.209260208

2 -0.050713075 -0.067097009 -0.096794134 -0.137281881 -0.188051277 -0.248945654

3 -0.060304344 -0.086357884 -0.123577555 -0.171174400 -0.228929320 -0.296761967

2 0 -0.062855099 -0.052655813 -0.072364751 -0.104407142 -0.147071045 -0.199969056

1 -0.050377886 -0.059888551 -0.085683732 -0.122678251 -0.170057863 -0.227598190

2 -0.054379255 -0.075979470 -0.109478988 -0.153516061 -0.207762252 -0.272106443

3 -0.068012053 -0.098139551 -0.139023045 -0.190178724 -0.251455966 -0.322795574

3 0 -0.055540550 -0.054743460 -0.076688104 -0.110461693 -0.154758568 -0.209260208

1 -0.050713075 -0.067097009 -0.096794134 -0.137281881 -0.188051277 -0.248945654

2 -0.060304344 -0.086357884 -0.123577555 -0.171174400 -0.228929320 -0.296761967

3 -0.077274238 -0.111271926 -0.155781564 -0.210492483 -0.275298367 -0.350154842

4 0 -0.050377886 -0.059888551 -0.085683732 -0.122678251 -0.170057863 -0.227598190

1 -0.054379255 -0.075979470 -0.109478988 -0.153516061 -0.207762252 -0.272106443

2 -0.068012053 -0.098139551 -0.139023045 -0.190178724 -0.251455966 -0.322795574

3 -0.087972214 -0.125723307 -0.173833646 -0.232096027 -0.300433652 -0.378812734

5 0 -0.050713075 -0.067097009 -0.096794134 -0.137281881 -0.188051277 -0.248945654

1 -0.060304344 -0.086357884 -0.123577555 -0.171174400 -0.228929320 -0.296761967

2 -0.077274238 -0.111271926 -0.155781564 -0.210492483 -0.275298367 -0.350154842

3 -0.100039710 -0.141473606 -0.193167160 -0.254977708 -0.326848638 -0.408753857

FIGURE 3. The variation of theq deformed Hulthen potential,
Generalized inverse quadratic Yukawa potential and q deformed
Hulthen potential plus Generalized inverse quadratic Yukawa po-
tential as a functionr. We chooseV1 = 0.5, V0 = 0.6, q = 2 and
α = 0.1.

Figs. 14-17 shows the variation of energy level for various di-
mensionD for the s-wave and p-state. The energy decreases
when the dimensionD increases in both cases and peaks at
D = 2.

6. Conclusion

In this work, we have studied the bound state solutions of the
Schrodinger equation with q deformed Hulthen plus gener-
alized inverse quadratic Yukawa potential using NU method.

By making appropriate approximation to deal with the cen-
trifugal term, we obtain the energy eigenvalues and the cor-
responding eigenfunctions and also discussed some special
cases of the potential. We have calculated numerical energy
eigenvalues and presented plots for various values of the po-
tential parameters and found that the energy decreases as di-
mension increases. The results are in excellent agreement
with literature.

FIGURE 4. The variation of the effectiveq deformed Hulthen po-
tential plus Generalized inverse quadratic Yukawa potential for var-
ious values ofl as a functionr. We chooseV1 = 0.5, V0 = 0.6,
q = 2 andα = 0.1 in 3D.
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FIGURE 5. The variation of the effectiveq deformed Hulthen po-
tential plus Generalized inverse quadratic Yukawa potential for var-
ious values ofl as a functionr. We chooseV1 = 0.5, V0 = 0.6,
q = −2 andα = 0.1 in 3D.

FIGURE 6. The variation of the s state (l = 0) energy level for
variousn as a function of the deformation parameter. We choose
V1 = 0.05, V0 = 0.06, andα = 0.1 in 3D.

FIGURE 7. The variation of thep state (l = 1) energy level for
variousn as a function of the deformation parameter. We choose
V1 = 0.05, V0 = 0.06, andα = 0.1 in 3D.

FIGURE 8. The variation of the s state (l = 0) energy level for
variousn as a function of the screening parameter (α). We choose
V1 = 0.05, V0 = 0.06, andq = 2 in 3D.

FIGURE 9. The variation of thep state (l = 1) energy level for
variousn as a function of the screening parameter (α). We choose
V1 = 0.05, V0 = 0.06, andq = 2 in 3D.

FIGURE 10. The variation of thep state (l = 1) energy level for
variousn as a function of the coupling strengthV0. We choose
V1 = 0.05, α = 0.1, andq = 2 in 3D.
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FIGURE 11. The variation of thes state (l = 0) energy level for
variousn as a function of the coupling strengthV0. We choose
V1 = 0.05, α = 0.1, andq = 2 in 3D.

FIGURE 12. The variation of the s state (l = 0) energy level for
variousn as a function of the coupling strengthV1. We choose
V0 = 0.06, α = 0.1, andq = 2 in 3D.

FIGURE 13. The variation of thep state (l = 1) energy level for
variousn as a function of the coupling strengthV1. We choose
V0 = 0.06, α = 0.1, andq = 2 in 3D.

FIGURE 14. The variation of thep state (l = 0) energy level for
variousD as a function of the coupling strengthV1. We choose
V0 = 0.06, V1 = 0.05, α = 0.1, andq = 1.

FIGURE 15. The variation of thep state (l = 1) energy level for
variousD as a function of the coupling strengthV1. We choose
V0 = 0.06, V1 = 0.05, α = 0.1, andq = 1.

FIGURE 16. The variation of thes state (l = 0) energy level for
variousD as a function of the coupling strengthV1. We choose
V0 = 0.06, V1 = 0.05, α = 0.1, andq = 2.
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FIGURE 17. The variation of thep state (l = 1) energy level for
variousD as a function of the coupling strengthV1. We choose
V0 = 0.06, V1 = 0.05, α = 0.1, andq = 2.
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14. E. Ateser, H. Ciftci, M. Ǔgurlu, Chin. J. Phys. 45 (2007) 346-
351

15. O. Bayrak, I. Boztosun, H. Ciftci,Int. J. Quant. Chem. 107
(2007) 540-544

16. M. Aygun, O. Bayrak, I. Boztosun,J. Phys. B: Mol. Opt. Phys.
40 (2007) 537-544

17. H. Hassanabadi, S. Zarrinkamar, B.H. Yazarloo,Chin. J. Phys.
50 (2012) 788-794

18. A.N. Ikot, Hassanabadi, E. Maghsoodi, S. Zarrinkamar,Com-
mun. Theor. Phys. 61 (2014) 436

19. C.N. Isonguyo, I.B. Okon, A.N. Ikot, H. Hassanabadi,Bull. Ko-
rean Chem. Soc. 35 (2014) 3443

20. A. N. Ikot, H.P. Obong, H. Hassanabadi,Few-Body Syst. 56
(2015) 185

21. C.A. Onate and J.O. Ojonubah.Int. J. Mod. Phys. E24 (2015)
1550020-1

22. A.N. Ikot, S. Zarreinkamar, S. Zare, H. Hassanabadi,Chin. J.
Phys. 54 (2016) 968-977

23. S.H. Dong. Factorization Method in Quantum Mechanics.
(Springer, 2007).

24. S.H. Dong, A. Gonzalez-Cisneros,Ann. Phys. 323 (2008)
1136-1149.

25. X.Y. Gu, S.H. Dong, Z.Q. Ma,J. Phys. A: Math. Theor. 42
(2009) 035303

26. S.M. Ikhdair, J. Abu-Hasna,Phys. Scr. 83 (2011) 025002

27. R.H. Hammed,J. Bosrah Researches. 38 (2012) 51-59

28. Uduakobong S. Okorie Akpan N. Ikot, Michael C. Onyeaju and
Ephraim O. Chukwuocha,J. of Mol. Mod. 24 (2018) 289.

https://doi.org/10.1007/s00894-018-3811-8

29. U. S. Okorie and E. E. Ibekwe, A. N. Ikot, M. C. Onyeaju and
E. O. Chukwuocha,Journal of the Korean Physical Society, 73
(2018) 1211-1218.

30. C. A. Onate,SOP Trans on Theoretical Physics, 1 (2014) 2.

31. M. Hamzavi, S. M. Ikhdair and B. I. Ita,Phys. Scr. 85 (2012)
045009.

32. S. M Ikhdair,Cent. Eur. J. Phys. 10 (2012) 361.

33. S. Hassanabadi, M. Ghominejad, S. Zarrinkamar and H. Has-
sanabadi,Chin. Phys. B22060303 (2013).

34. H. Taseli,Int. J. Quant. Chem. 63 (1997) 949.

35. Ituen B. Okon, Oyebola Popoola, and Cecilia N. Isonguyo,Adv.
in High Energy Physics, (2017). https://doi.org/10.1155/2017/

9671816

Rev. Mex. Fis.65 (2019) 333-344



344 C.O. EDET AND P.O. OKOI

36. Oluwatimilehin Oluwadare, Kayode Oyewumi,Chin. Phys.
Lett. 34 (2017) 110301.

37. S.H. Dong Wave Equation in Higher Dimensions(Berlin:
Springer 2011).

38. C.A. Onate, O. Ebomwonyi, K.O. Dopamu, J.O. Okoro,
M.O. Oluwayemi, Chinese Journal of Physics(2018).
doi:10.1016/j.cjph.2018.03.013

39. H. Hellmann,J. Chem. Phys.3 (1935) 61.

40. G. Sezgo,Orthogonal Polynomials. American Mathematical
Society, New York (1939).

41. C. Birkdemir,Application of the Nikiforov-Uvarov Method in
Quantum Mechanics, Chapter 11 in Theoretical Concept of
Quantum Mechanics, Ed. M. R. Pahlavani (2012).

42. Jie Gao, Min-Cang Zhang,Chin. Phys. Lett.33 (2016) 010303.

43. C. I. Pekeris,Phys. Rev. 45 (1934) 98.

44. Shi-Hai Dong and Guo-Hua Sun,Physica Scripta70 (2004)
94-97.

45. C. A. Onate,Afr. Rev. of Phys. 8 (2013) 325.

46. C.A. Onate and J.O. Ojonubah,J Theor Appl Phys.DOI
10.1007/s40094-015-0196-2

47. Sameer M. Ikhdair, Majid Hamzavi,Few-Body Syst53 (2012)
487-498. DOI 10.1007/s00601-012-0475-2

48. Ituen B. Okon, Oyebola Popoola, Cecilia N. Isonguyo and
Akaninyene D. Antia,Physical Science International Journal
19 (2018) 1-27.

49. C.N. Isonguyo, K.J. Oyewumi and O.S. Oyun,Int J Quantum
Chem. (2018); e25620. https://doi.org/10.1002/qua.25620

50. A. Berkdemir, C. Berkdemir and R. Sever,Modern Phys. Lett.
A 21 (2006) 2087.

51. Akaninyene D. Antia and Ita O. Akpan,Adv. in Physics Theo-
ries and Applications46 (2015). www.iiste.org.

52. O.A. Awoga, A.N. Ikot and J.B. Emah,Rev. Mex. Fis.59
(2013) 229-235.

53. D. Agboola,Phys. Scr. 80 (2009) 065304. doi:10.1088/0031-
8949/80/06/065304

54. O. Bayrak, G. Kocak, I. Boztosun,J. Phys. A: Math. Gen. 39
(2006) 11521.

55. C.-S. Jia, J.-Y. Liu, P.-Q. Wang,Phys. Lett.372(2008) 4779.

56. S.M. Ikhdair, R. Sever,J. Math. Chem. 42 (2007) 461.

57. S.M. Ikhdair,Eur. Phys. J. A39 (2009) 307-314.

58. K. J. Oyewummi,Foundations of Physics Letters(2005) DOI:
10.1007/s10702-005-2481-9

Rev. Mex. Fis.65 (2019) 333-344


