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A charged perfect fluid model with high compactness
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A relativistic, static and spherically symmetrical stellar model is presented, constituted by a perfect charged fluid. This represents a general-
ization to the case of a perfect neutral fluid, whose construction is made through the solution to the Einstein-Maxwell equations proposing
a form for the gravitational potentialgtt and the electric field. The choice of electric field implies that this model supports values of com-
pactnessu = GM/c2R ≤ 0.5337972212, wich are higher than the case without electric charge (u ≤ 0.3581350065), being this feature
of relevance to represent compact stars. In addition, density and pressure are positive functions, bounded and decreasing monotones while
the electric field is a monotonously increasing function as well as satisfying the condition of causality, so the model is physically acceptable.
Additionally, the internal behavior of the hydrostatic functions and their values are obtained taking as data the corresponding to a star of 1 M¯
for different values of the charge parameter, obtaining an interval for the central densityρc ≈ (7.9545, 2.7279)1019 Kg/m3 characteristic of
compact stars.
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1. Introduction

The compact objects: neutron stars, pulsars, strange stars
have been approached from different perspectives, mainly
through particle physics and gravitation, which have allowed
us to describe their behavior at the microscopic and macro-
scopic levels respectively [1,2]. A consequence of the inves-
tigations carried out since the last century leads us to the fact
that compact stars are constituted by electrons, neutrons and
possibly quarks and that their equilibrium is in part due to
the degeneration pressure among the particles. In the case of
white dwarf stars this pressure of degeneration is due to the
electrons and this consideration led to determine the so-called
Chandrasekhar limit for the mass of this type of stars that cor-

responds to 1.44 solar masses [3, 4], while the degenerating
pressure of the neutrons implies that the mass of the neutron
stars is approximately M̄. Stellar objects even more dense
than these are constituted by quarks, although in reality these
stars are hybrid, constituted predominantly by some of these
particles. In the astrophysical aspect when we consider the
microscopic behavior, particle interaction, we can introduce
some equation of state associated to MIT bag model for the
quark matterP = (1/3)(c2ρ − Bg) [5] or a polytropic state
equationP = µρ1+1/n [6] if we refer to a neutron star or a
white dwarf. Of course, there is a possibility that the interior
of a star is decried by some other state equationP = P (ρ)
depending on density orders [7–9] even if the state equation
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is not expressed implicitly, that is,F (P, ρ, S) = 0, where
S represents some parameters or, in the case of electrically
charged objects, include an electric charge relation. This may
be the approach, although it is not indicated, present in some
research reports in which solutions are found to Einstein’s
equations with some source of matter that allows modeling
compact stellar objects. Sometimes it is possible to deter-
mine a state equation, in the static and spherically symmetric
case, since the pressureP = P (r) and densityρ = ρ(r)
could get to express one in function of the otherP = P (ρ)
by inversion of the radial coordinate [10], although in general
this does not happen due to the complexity of the solution.

However, the construction of stellar models, although it
does not allow us to obtain any equation of state, guides us
in a better understanding of the inner behavior of the stars
through the use of gravitational theories such as the theory
of Einstein’s General Relativity. For this theory, the vast ma-
jority of models or analyzes proposed near the interior of the
star consider that it is described by a perfect fluid [11,12],
a perfect fluid charged [13,14], an anisotropic fluid [13,14]
or a charged anisotropic charged perfect fluid [13,18]. The
class of solutions presented in each case attends to the type
of objects that one wishes to describe or understand. The
perfect fluid models are used for less compact stars, while
the anisotropic or charged models allow to represent more
compact stellar objects. Regarding the last case, there is a
minimum value [19] for the ratio of mass and radius which
generalizes to Buchdal [20]. Through a graphical analysis it
has been shown that the compactness is even greater than the
upper limit for a perfect fluid [21]. In this work we present a
charged perfect fluid interior solution in the context of the
Einstein- Maxwell theory, which is physically acceptable,
i.e., satisfied with this feature.

The construction of a static and symmetrically spheri-
cal space-time is proposed from the assumption of a spe-
cific form of gravitational potentialgtt [22] and the mag-
nitude of the electric field. The solution satisfies condi-
tions that make it physically acceptable and allows this to
represent astrophysical compact stars with a compactness
u ≤ 0.5337972212. In the Sec. 2. we present the Einstein
- Maxwell field equations for a charged perfect fluid charged
fluid and the conditions are given for the solution to be phys-
ically acceptable. In the Sec. 3. the solution of the field
equations is presented and the validation intervals of the pa-
rameters are determined considering the physical conditions
that must be satisfied, while in the Sec. 4. we determine the
type of astrophysical objects that can be modeled and shown
by graphical representations of the internal behavior, as well
as an analysis of the possible values of density and pressure
inside according to a stellar object with a solar mass. We fin-
ished the research work by presenting some conclusions in
Sec. 5.

2. The system

Einstein-Maxwell field equations of gravitation for a perfect
fluid charged are given forGµν = T

(fp)
µν + T

(E)
µν having the

contribution of two parts, where [23]

T (fp)
µν = k

[
(c2ρ + P)uµuν + Pgµν

]
,

T (E)
µν =

1
4π

[
FµαFν

α − 1
4
FαβFαβgµν

]
, (1)

with P representing the pressure distribution,ρ the density
distribution measured by an observer with velocity vector
uµ, Fµν the Maxwell tensor andk = 8πG/c4. We consider
the static and spherically symmetric metric of the interior in
Schwartzschild coordinates [24]

ds2 =−y(r)2dt2 +
dr2

B(r)
+r2(dθ2 + sin2 θdφ2). (2)

We consider that the contribution of the Maxwell tensor is
due to an electric field, so the non-zero components of the
electric part are:

T (E)t
t = T (E)r

r = −T (E)θ
θ

= T (E)φ
φ =

B

2y2
F 2

tr = E(r)2,

where

E(r) =
q(r)
r2

=
4π

r2

r∫

0

σr2

√
B

dr, (3)

with q(r) the total charged inside a sphere of radiusr. The
field equations are write as [25]:

kc2ρ + E2(r)=−B′

r
+

1−B

r2
, (4)

kP − E2(r)=
2By′

ry
− 1−B

r2
, (5)

kP + E2(r)=
(ry′′ + y′)B

ry
− (ry′ + y)B′

2ry
, (6)

where′ denotes the derivative with respect to the coordinate
r. This is the system of equations that we must solve for
the construction of a stellar model given by a perfect charged
fluid. The system has three Eqs. (4)-(6) for five functions
(ρ, P,E, y,B) so two restrictions are required, in our case
these are the shape of the gravitational potentialgtt = −y2

and the function of the magnitude of the fieldE2, the choice
of the first of these functions is motivated by previous work
in which a perfect fluid neutral model has been developed,
while the magnitude of the electric field is proposed so that
we can represent objects with greater compactness than in the
neutral case and with greater diversity of behavior. The so-
lution to the Eqs. (4)-(6) requires to satisfy conditions that
make it physically acceptable, which will be described in the
next section.
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2.1. Physicals conditions

For an inner solution of the Einstein-Maxwell equations with
perfect fluid associated with compact objects to describe a
physically acceptable model, the following conditions must
be fulfilled [12]:

• The solution must not have singularities, geometric or
physical variables,i.e., for 0 ≤ r ≤ R the curva-
ture scalars must be regular and the metric functions
(y2, B), the density and pressure must be bounded.

• The pressure and density must be positive and mono-
tonically decreasing functions as a function of radial
distance, with its maximum value in the center, in, par-
ticular in the origin:

P (0) > 0,
dP

dr

∣∣∣∣
r=0

= 0,
d2P

dr2

∣∣∣∣
r=0

< 0,

ρ(0) > 0,
dρ

dr

∣∣∣∣
r=0

= 0,
d2ρ

dr2

∣∣∣∣
r=0

< 0,

while for r 6= 0 ρ′ < 0 andP ′ < 0.

• The energy conditions must be [26]

• NEC null energy conditionρ + P ≥ 0

• WEC weak energy conditionρ ≥ 0 andρ + P ≥ 0

• SEC strong energy conditionρ+3P ≥ 0 andρ+P ≥ 0

• DEC dominant energy conditionρ ≥ 0 andρ± P ≥ 0

From the previous requirement for density and pres-
sure we have that the only additional restriction corre-
sponds to the DEC.

• The causation condition must not be violated,i.e. the
magnitude of the speed of sound must be less than the
speed of light

0 ≤ v2 =
∂

∂ρ
P (ρ) =

dP

dr

/
dρ

dr
≤ c2,

and additionally we will impose that the speed of sound
is a monotonous function decreasing towards the sur-
face.

• For the stability of the solution, in the relativist case, it
is required that the adiabatic index [1,27]

γ =
c2ρ + P

c2P

dP

dρ
=

c2ρ + P

P

v2

c2
>

4
3
.

• There must be a regionr = R, the surface of the star,
where the pressure is zeroP (R) = 0.

• On the boundaryr = R the interior solution
should match continuously with an exterior Reissner-
Nordstrom solution

ds2 = −
[
1− 2GM

c2r
+

Q2

r2

]
dt2

+
[
1− 2GM

c2r
+

Q2

r2

]−1

dr2

+ r2(dθ2 + sin2 θdφ2), r ≥ R. (7)

This requires the continuity ofy2(r), B(r) andq(r) =
Q across the regionr = R, whereM andQ repre-
sent the total mass and charge inside the fluid sphere
respectively.

• Electric field intensityE is such thatE(0) = 0 and
taken to be monotonically increasing,i.e., dE/dr > 0
for 0 < r ≤ R.

These basic requirements allow to determine which interior
solution can be useful as a model for the description of some
compact object. As a result of the conditions mentioned
above it is known that one characteristic of these models
is that the radio mass ratio, as a generalization to the limit
of Buchdahl [20]GM/c2R ≤ 4/9, has a maximum value
[19,28]

√
GM ≤

√
c2R

3
+

√
c2R

9
+

Q2

3R
, (8)

this expression implies the possibility of having solutions
with a greater compactness value than1/2 due to the effect
of the chargeQ, property that is relevant to our model. In
addition to this inequality there is also a lower bound for the
radio mass ratio

3Q2
(
1 + Q2

18R2

)

2R2
(
1 + Q2

12R2

) ≤ 2GM

c2R
,

both relations have a good limit for the neutral caseQ = 0.

Another important quantity in the stellar models that is
associated with the mass and the radius is the gravitational
redshift on the surfacezb = g

−(1/2)
tt

∣∣∣
R
− 1 that in the case of

charged solutions also involves the charged. The continuity
of the metric on the surface implies

zb =
[
1− 2GM

c2R
+

Q2

R2

]− 1
2

−1=
[
1− 2u +

Q2

R2

]− 1
2

−1,

that, in the case of objects without chargeQ = 0, its max-
imum valuezb = 2, corresponds to the maximum value of
compactnessu = 4/9.
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3. The solution and their analysis

The system of equations described in the previous section
supports a solution with

y (r) = S

(
1 + 10 ar2

1 + ar2

)3/2

, (9)

in the case that the perfect fluid is neutral. In most previous
investigations the form of this function has been proposed as
y(r) = (1 + ar2)n [12, 29] which has allowed the construc-
tion of physically acceptable interior solutions. Nowadays it
is known that this form guarantees the regularity of the ge-
ometry in the vicinity of the center, since for this it is only
required that [30]

y(r) ≈ µ + νr2 + O(r4), y′(r) = σr + O(r3),

and

B(r) ≈ 1 + αr2 + O(r4), B′(r) = βr + O(r3).

So other functions can be proposed with these properties. The
proposed form for the functiony(r) and other similar func-
tions have allowed to show the relevance of the existence of
anisotropic pressures to be able to have physically acceptable
models [31] besides that they have been applied for the de-
scription of physically acceptable stellar models [30, 32, 33],
some of which are characterized because the speed of sound
is a decreasing monotonic function as a function of the radial
coordinate [34].

The construction of interior solutions is useful to have a
better clarity of the inner behavior of the stars [12], some so-
lutions with perfect fluid sources without charge [29, 35, 36]
these became generalized to charged case [37–39] to repre-
sent compact stars.

The proposal of this section is to obtain a charged model
that generalizes to the previously constructed case [22].
Some of the advantages presented by charged models is that
their compactness ratio becomes greater than their counter-
part without charge as a result of the non-neutrality of the
fluid. The behavior of the electric charge or equivalently of
the electric fieldE = q(r)/r2 as already mentioned in the
previous section, it must be zero in the center and it must be
a growing monotonous function, so in our case we choose the
electric field in the form

E2 (r) =
27(1 + 16ar2 − 30a2r4)a2νr2

2(1 + 10ar2)2(1 + ar2)2
, (10)

ν ≥ 0 represents the charge parameter that in the caseν = 0
will allow us to recover the solution without electric charge
[22]. The shape of the electric field magnitude is not unique,
there are a variety of possible acceptable functions for the
same functiony(r) [37–39], the choice of this serves partic-
ular interests of the approach of the model to be proposed or
of the research proposed, even this can be given through the
charge density [40] or through a relationship with the state
equation [41].

In our case this form of the electric field was chosen so
that the class of objects that can be represented can have a
greater compactness, and this will be shown in the next sec-
tion. Replacing this form of electric field and potentialy in
the Eqs. (5) y (6), after subtracting them, we come to the
differential equation:

B′ − 2(1 + 22ar2 + 6a2r4 + 1300a3r6 + 100a4r8)B
(1 + 10ar2) (1 + 38ar2 + 10a2r4) r (1 + ar2)

− 2
[
27a2r4H0(r)ν − (1 + ar2)2(1 + 10ar2)2

]

(1 + 10ar2)(1 + 38ar2 + 10a2r4)r(1 + ar2)
= 0,

here we have definedH0(r) = 1 + 16ar2 − 30a2r4. The
solution to this equation implies:

B(r) =
1 + a(ν + 2)r2 + (1 + 10ν)a2r4

1 + 10ar2

+ 100Car2 (1 + ar2)5H−
3
√

3√
13
−2

(1 + 10ar2)H+

3
√

3√
13

+2
, (11)

whereC is the constant of integration and

H± (r) = 19± 3
√

39 + 10ar2.

This determines the solution,i.e., the geometry and the hy-
drostatic functions, so that when replacing (9), (10) y (11) in
the Eqs. (4) and (5) we obtain

kc2ρ(r) = 3000Ca
(1 + 31ar2 + S1)(1 + ar2)4

H−
3− 3

√
3√

13 H+

3
√

3√
13

+3(1 + 10ar2)2

− 3(2 + 53ar2 + 426a2r4 + 170a3r6 + 200a4r8)aν

2(1 + 10ar2)2(1 + ar2)2

+
3a(8 + 25ar2 − 10a2r4)

(1 + 10ar2)2
, (12)

kP (r) = 100Ca
(1 + 65ar2 + 10a2r4)(1 + ar2)4

H−
2− 3

√
3√

13 H+
2+ 3

√
3√

13 (1 + 10ar2)2

+
(2 + 179ar2 + 1902a2r4 + 710a3r6 + 200a4r8)aν

2(1 + 10ar2)2(1 + ar2)2

+
(46− 25ar2 + 10a2r4)a

(1 + 10ar2)2
, (13)

where in the expression of density, Eq. (12),S1 = 150a2r4+
1030a3r6 + 100a4r8. Given the conditions that must be sat-
isfied the solution to be physically acceptable, it is necessary
to determine the speed of sound

v2(r) =
dP (ρ)

dρ
=

dρ(r)
dr

/
dρ(r)
dr

,

due to its extension it is not written in the text, although it will
be considered in the analysis of the conditions. The metric
functions as well as the density, pressing and electric field are
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regular in the center, however, the explicit form of these is re-
quired in order to obtain the intervals of the system constants
(a,C, ν) as a result of the physical conditions described in
the previous section. Then, from equations (12) and (13) as
well as how the speed of sound is, we have:

kc2ρ(0) = −3H−(0)
3
√

3√
13 H+(0)−

3
√

3√
13 Ca + 3(8− ν)a, (14)

kP (0) = H−(0)
3
√

3√
13 H+(0)−

3
√

3√
13 Ca + (46 + ν)a, (15)

v2 (0)
c2

=
2C − 5H−(0)−

3
√

3√
13 H+(0)

3
√

3√
13 (14− ν)

10C −H−(0)−
3
√

3√
13 H+(0)

3
√

3√
13 (30 + ν)

. (16)

According to the required conditions, each of these relation-
ships must be positive, in addition to the speed of sound that
must be smaller than the speed of light. On the other hand as
ρ′(0) = 0, P ′(0) = 0, density and pressure are decreasing
monotone functions with their maximum in the center, so it
is required that their second derivatives

kc2ρ′′(0) = 27[10H−(0)
3
√

3√
13 H+(0)−

3
√

3√
13 C

− (30+ ν)]a2, (17)

kP ′′(0) = 27[2H−(0)
3
√

3√
13 H+(0)−

3
√

3√
13 C

− 5(14− ν)]a2, (18)

be negative, while the electric field satisfiesE(0) = 0,
E′(0) = 0 y E2′′(0) = 27νa2; then ν ≥ 0 as had been
assumed in the Eq. (10). To the set of inequalities generated
from the conditions required in the center for the solution to
be physically acceptable expressed by (14)-(18), it is conve-
nient to complement them with the relation obtained from the
existence of the surface of the star, identified byP (R) = 0.
Considering (13) inr = R we can get the constantC:

C=
−S3(w)ν − 2(46−25w+10w2)(1 + w)2

[H−(0)+10w]
3
√

3√
13
−2[H+(0)+10w]−

3
√

3√
13
−2

S2(w)
, (19)

wherew = aR2 with S2(w) = 200(1+65w+10w2)(1+w)6

andS3(w) = 2 + 179w + 1902w2 + 710w3 + 200w4. The
set of inequalities is expressed only in terms of the dimen-
sionless parameters(ν, w). However, these conditions are
only the content of the behavior in the object center. The pa-
rameterw is restricted by the condition that the electric field
must be a growing monotonous function for allr ∈ [0, R].
This happens if inside the electric field has no maximum and
the limit case occurs when at the border the electric field has
a maximum, this isE2(R)′ = 0 which implies that

1 + 21w − 120w2 − 650w3 + 300w4 = 0, (20)

sincew > 0 thenw is constrained by the smallest positive
root of this equation, which isw = 0.13828732, this value
of w is greater than the maximum value allowed when you
have the perfect fluid without load whose value isw(q=0) =
0.1073273425. The maximum value of the parameterν it is

determined by the condition that the speed of sound must be
positive. The behavior of this function, for the solution we
are analyzing, requires that the speed of sound at the border
be positive and this happens ifν ≤ νmax where

νmax =
18 (1 + 10w)

(
3 + 65w − 10w2

)
(1 + w)2

1 + 127w + 5416w2 + 60130 w3 − S4
,

andS4 = 129600w468420w5 + 16200w6 + 1000w7. So the
maximum value ofν depends onw. The minimum value ofν
also depends on the specific value ofw and is determined by
the condition that the speed of sound is smaller than the speed
of light, the value ofr where this happens changes depend-
ing on the value ofw. In particular for the maximum value
of w = 0.13828732 the speed of sound matches the speed of
light for ν = 0.274043033 in r = 0.5721564648R, so the
range ofν ∈ (0.27404 3033, 2.84837494). In general, the
interval forν ∈ (νmin, νmax) and the value ofνmin are not
being determined so that the speed of sound is smaller than
the speed of light.

4. Graphic analysis

The continuity of the metric and electric field allows us to
determine the relationship which determines the compaction
of the stellar objects that can be represented with the solution
construed. The external geometry is given by the Reisner-
Nordstrom solution

ds2 = −f(r)dt2 + f(r)−1dr2 + r2(dθ2 + sin2 θdφ2),

f(r) = 1− 2GM

c2r
+

Q2

r2
, E(r) =

Q

r2
, r ≥ R, (21)

whereM andQ are the mass and the electric charge of the
star respectively. Evaluating the interior metrics inr = R
and matching terms we get the reason for compactness [21]

u=
GM

c2R
=

27
(
1 + 16w − 30w2

) (
1 + 38w + 10w2

)
w2ν

2 (1 + 10w)2 (1 + w)2 (1 + 65w + 10w2)

+
27w

1 + 65w + 10w2
. (22)

The value of compactnessu = u(w, ν) is a monotonically
increasing function of both variables so the maximum value
of compactness occurs for the maximum value ofν andw.
Evaluating this relation for the maximum value ofν = νmax

we obtain

u=
27(1+ 99w + 2284w2 + 12216w3− 32520w4 − S5)w
(1 + 10w)(1 + 127 w + 5416 w2 + 60130 w3 − S4)

,

whereS5 = 7100w5 +1000w6, while evaluating this expres-
sion for the maximum permitted value ofw w = 0.13 828732
we obtain that the maximum value of possible compactness is
umax = 0.5337972212, which compared to the neutral case
that has a compactness value ofu = 0.3581350065, the ef-
fect of charge allows the representation of more compact ob-
jects compared to the case without charge. Models not elec-
trically charged allow a compactness value accepted by the
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limit of Buchdahl, however for the charged case the radius
of the star could be smaller than the radius of Schwarzschild
u > 1/2 as it happens in our model, the reason is associated
with the effect of the charge. In the neutral caseu = 1/2
indicates that the radius of the star coincides with the radius
of Schwarzschildrs = 2GM/c2 which would imply the ex-
istence of a black hole. However when the Einstein-Maxwell
equations are considered in a static space-time, spherically
symmetric and asymmetrically flat, the respective black hole
is given by the geometry of Reissner - Nordstrom represented
by the metric (7) and in this case the external event hori-
zon r+ = GM/c2 +

√
G2M2/c4 −Q2. In particular for

Q = GM/c2 is obtainedr+ = GM/c2, so the event horizon
happens foru = 1, value that is greater than the neutral case,
although not necessarily the maximum compactness value of
charged case occurs foru = 1. Its maximum value of com-
pactness is limited by inequality (8), from which it can be
observed thatu could be greater than1/2 since in this the ef-
fect of the charge appears adding up as a quadratic quantity.
Now we will present the results graphically for the maximum
value ofw = 0.13828732 with different values ofν which
generate the respective compactness values. From the Ta-
ble I is observed that the maximum value of compactness is
greater than 0.5 and it happens when the charge parameter
ν is maximum in conjunction withw maximum. As it hap-
pens for this maximum value ofw in which the compactness
decreases with the electric charge parameter, this behavior is
shown for other values ofw < wmax. Figure 1 correspond-
ing to the speed of sound shows that forw = wmax there are
regions of increasing monotony behavior near the center and
decreasing monotony near the surface. The maximum value

FIGURE 1. Behavior of the speed of sound for different values of
compactness.

FIGURE 2. Density behavior withw = 0.13828732 for different
values of compactness.

TABLE I. Values of the compactness for different values of the
charged parameter withw = 0.13828732.

ν 2.8483749 2.2047924 1.5612094 0.9176260 0.2740430

u 0.5337971 0.4960593 0.4583215 0.4205838 0.3828460

FIGURE 3. Pressure for different values of compactnessu with a
fixed value ofw = 0.13828732.

of compactness is determined because the speed of sound is
zero at the border (blue solid line), while the minimum value
(black solid line) is obtained because inside the speed the
sound is equal to the speed of the light inx = 0.5721564648.
In general, the behavior of this function allows to determine
the ranges of the parameterν and consequently the value of
compactness for a fixed value ofw.

To graphically represent the behavior of density we de-
fine the dimensionless variableρ → kc2R2ρ as a function of
x = r/R. On graph 2 its regular behavior is shown, bounded
and monotone decreasing for different values of the parame-
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FIGURE 4. Graphical representation of the magnitude of the elec-
tric field for wmax.

ter ν with w = wmax. The central density is greater for the
larger values of the charge parameterν while on the surface
the opposite occurs. The graphic representation, Fig. 3, of the
dimensionless function associated with pressureP → kR2P
in terms of the function ofx = r/R shows its monotoni-
cally decreasing behavior as well as bounded and positive.
By the effect of the electric charge manifested through the
parameterν the pressure associated with the perfect fluid is
lower for higher values of this which allows denser objects.
As can be seen from the comparison of Figs. 2 and 3 for
greater compactness the density is greater and the pressure is
lower. Figure 4 shows that the solution satisfies the condition
required for the adiabatic index ,γ > 4/3, which guarantees
its stability.

From Fig. 5 an increase of the electric field strenght is
observed as the electric charge increases

Another condition imposed for a model to be physically
acceptable is that the energy conditions are satisfied since the
density and the positive pressure are the same as the magni-
tude of the electric fieldE2. The only one that requires a ver-
ification is the dominate energy condition and this is shown

FIGURE 5. Adiabatic index.

graphically in the Fig. 6 where it is observed that this is sat-
isfied.

The graphical representation of the hydrostatic functions
presented in terms of dimensionless functions, is helpful to
observe their behavior, however to obtain the ranges of the
possible physical values of these functions, it is necessary to
introduce the units to see that the values which the model are
consistent with orders of magnitude associated with this type
of objects. To determine the orders of magnitude of the den-
sity and the pressure below we consider a star with a mass
equal to the mass of the sun and we obtain the values of the
radius, pressure and central density as well as its density at
the surface for the values of the compactness used for the
graphics.

From the Table II, it is observed that the ranges of values
of the central densityρc and the density on the surfaceρb, are
of the order of magnitude associated with compact stars. So
also the central pressurePc is consistent with the expected
values. The values of the speed of sound in the centervc and
on the surfacevb are smaller than the speed of light,i.e., these

TABLE II. Values of the hydrostatic variables in the center and on the surface for different values of the compactness as well asM = M¯.

u 0.533797 0.496059 0.458322 0.420584 0.382846

R(m) 2765.976 2976.398 3221.473 3510.524 3856.563

ρc(1019 Kg/m3) 7.954465 5.769167 3.909380 1.658865 2.727820

ρb(1018Kg/m3) 5.369969 5.425123 5.303410 5.032169 4.638761

Pc(1036P ) 2.421304 2.298425 2.080038 1.875830 1.667535

v2
c (c2) 0.402442 0.447095 0.506627 0.589964 0.714951

v2
b (c2) 0 0.163272 0.351349 0.570351 0.828586

γ 1.929431 1.443294 1.441248 1.498013 1.643794

Q(1020C) 1.648824 1.560997 1.421715 1.187770 0.713078

zb 1.257805 1.171623 1.094611 1.025251 0.962353
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TABLE III. Values of the hydrostatic variables in the center and on the surface SS1.

w 0.040500 0.038309 0.035478 0.032117 0.030456

ν 0 1.475197 3.952775 8.085688 10.79803

Pc(1035P ) 2.207465 1.936262 1.526330 1.059583 .8073013

ρc(1018 kg
m3 ) 9.491643 7.652449 8.927432 8.523171 7.748338

ρb(1018 kg
m3 ) 2.908835 2.767600 2.572201 2.318696 2.183865

vc(c
2)2 .5000328 .4219832 .3371526 .2531569 .2166285

vb(c
2)2 0.652298 0.465718 0.264912 0.076179 0.000004

Q(1020C) 0. 1.223631 1.875167 2.459075 2.711817

γ 1.908003 2.109820 1.911706 2.236546 1.455289

FIGURE 6. Pressure for different values of the parametery.

do not violate the condition of causality and even in the case
of greater compactness the speed of sound at the surface is
zero. From the graphic behavior and the value of the adia-
batic indexγ in the center given in the table is obtained that
the solution is stable, becauseγ > 4/3. Two other quan-
tities given for the different values of compactness are the
net charge and the value of gravitational redshift on the sur-
face, both values are within the expected ranges [40].

Finally we apply our model for the data of SAX J1808.4-
3658 (SS1) star of massM = 1.435 M¯ and radioR =
7.07 km [42], its compactness value isu = 0.2996795, so
the value ofν is determined from the Eq. (22)

ν = 0.14799
(0.1+w)(1+w)(0.0405− w)(2.469124− w)

(0.056512 + w)(0.589845− w)w2
.

From the analysis of the restrictions for the model to be
physically acceptable, we obtain that the validity interval
of w ∈ [0.030456, 0.040500]. The only difference in the
behavior of the functions for this data and the data for
greater compactness is that there is now a subinterval of
w ∈ [0.030456, 0.032117] in which the speed of sound is
a decreasing monotone function. The Fig. 7 shows the be-
havior of the speed when there is no charge,w = 0.0405,

FIGURE 7. Behavior of the speed of sound for different values of
compactness.

being this a monotonously increasing function. In the
charged case there are different behaviors for0.032117 <
w < 0.0405. The function of the speed of sound
presents a region where it is monotonously increasing and
another where it is growing monotonous. Forw ∈
[0.030456, 0.032117] the speed of sound is monotonically
decreasing as a result of the effect of the charge.

In the Table III, the values are shown with the magnitudes
of the hydrostatic variables as well as the charge for the same
parameter valuesw, in this it is observed that for the maxi-
mum value of the charge, the speed of sound on the surface
approaches zero. In addition, the orders of magnitude of the
densities are similar to the values reported with other mod-
els [40].

5. Conclusions

Here we have obtained a charged perfect fluid solution that
generalized a perfect fluid uncharged solution in a spacetime
static and spherically symmetric. The solution depends of
two parametersw and ν the latter related to charge. The
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built solution considers a new form of gravitational potential
gtt = (1 + 10 ar2)3/(1 + ar2)3 [22] and a particular form
of the increasing monotonous charge, this is the one that gen-
erates different profiles of behavior of the speed of sound,
differing from the case without charge where the speed is
only monotone increasing. Another point in which the elec-
tric charge generates changes with respect to the case without
electric charge is that the maximumumax = 0.5337972212
is much higher than at the maximum possible value for a per-
fect neutral fluidu < 4/9.

This remarkable characteristics of the model, as far as we
know, have not been reported previously analytic solutions
with such large compactness values, although in previous re-
ports mention has been made of the possibility of having elec-
trically charged models with greater compactness than4/9,
upper bound for the case of a perfect fluid neutral [21].

As a result of the analysis of the solution we have that the
density and pressure, as radial functions, are monotonous,
decrescent, bounded and regular. Additionally, considering
the data of a star with mass M̄, we have it has that the or-
ders of magnitude that the model generates with respect to
density and pressure are consistent with those expected for
neutron stars or quarks, with the advantage of having a range
of possible values of the density, which, as expected, stars
with the same radius and mass data may have different inter-
nal behavior. In our case what determines in a specific way
the internal structure of the stars is the charge. On the other
hand, the adiabatic index is a growing monotonous function
andγ > 4/3 which guarantees stability. We also show that

the model for smaller values of compactness, in particular
for u = 0.2996795 can be associated with the data of the
star J1808.4-3658(SS1). There is a parameter rangew in
which the speed of sound is a decreasing monotonous func-
tion, characteristic that some authors consider as desirable for
some models.

Finally, it is worth mentioning that although the graphi-
cal analysis and physical hydrostatic values were presented
for specific parameters, the behavior for other values of the
parameters, is similar so it is concluded that the model can be
used for other compact starsu < 0.5337972212. This work
gives rise to some questions that could be developed in the fu-
ture, such as what are the characteristics that the electric field
function must have that allows to represent compact objects
with a wide spectrum of possibilities in the representation of
highly compact objects. Another question is the construction
and analysis of an anisotropic charged model which general-
izes the one presented here and the determination of the effect
of the anisotropy and the electric charge and their comparison
between both of them.
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