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A charged perfect fluid model with high compactness
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A relativistic, static and spherically symmetrical stellar model is presented, constituted by a perfect charged fluid. This represents a general-
ization to the case of a perfect neutral fluid, whose construction is made through the solution to the Einstein-Maxwell equations proposing

a form for the gravitational potentigk: and the electric field. The choice of electric field implies that this model supports values of com-
pactness; = GM/c®*R < 0.5337972212, wich are higher than the case without electric charge(0.3581350065), being this feature

of relevance to represent compact stars. In addition, density and pressure are positive functions, bounded and decreasing monotones while
the electric field is a monotonously increasing function as well as satisfying the condition of causality, so the model is physically acceptable.
Additionally, the internal behavior of the hydrostatic functions and their values are obtained taking as data the corresponding to asstar of 1 M

for different values of the charge parameter, obtaining an interval for the central density7.9545, 2.7279)10'° Kg/m® characteristic of

compact stars.
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1. Introduction responds to 1.44 solar masses [3, 4], while the degenerating

pressure of the neutrons implies that the mass of the neutron
The compact objects: neutron stars, pulsars, strange staggars is approximately M. Stellar objects even more dense
have been approached from different perspectives, mainlghan these are constituted by quarks, although in reality these
through particle physics and gravitation, which have allowedstars are hybrid, constituted predominantly by some of these
us to describe their behavior at the microscopic and macroparticles. In the astrophysical aspect when we consider the
scopic levels respectively [1,2]. A consequence of the invesmicroscopic behavior, particle interaction, we can introduce
tigations carried out since the last century leads us to the fagiome equation of state associated to MIT bag model for the
that compact stars are constituted by electrons, neutrons an@iark mattet” = (1/3)(c?p — B,) [5] or a polytropic state
possibly quarks and that their equilibrium is in part due toequationP = pp'*1/" [6] if we refer to a neutron star or a
the degeneration pressure among the particles. In the casewhite dwarf. Of course, there is a possibility that the interior
white dwarf stars this pressure of degeneration is due to thef a star is decried by some other state equattos P(p)
electrons and this consideration led to determine the so-calledepending on density orders [7-9] even if the state equation
Chandrasekhar limit for the mass of this type of stars that cor-
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is not expressed implicitly, that ig'(P, p, S) = 0, where 2. The system
S represents some parameters or, in the case of electrically ] ) o
charged objects, include an electric charge relation. This mafzinstein-Maxwell field equations of gravitation for a perfect

be the approach, although it is not indicated, present in somiuid charged are given fa%,,, = TP + 1% having the
research reports in which solutions are found to Einstein’sontribution of two parts, where [23]

equations with some source of matter that allows modeling (o) )

compact stellar objects. Sometimes it is possible to deter- Tl =k [(C p+ Pluyu, + Pgw] ’

mine a state equation, in the static and spherically symmetric 1 1

case, since the pressure = P(r) and densityp = p(r) T = o |Frady ¢ - ZFQﬁFaﬁguu ; (1)

could get to express one in function of the otlier= P(p)

by inversion of the radial coordinate [10], although in generalwith P representing the pressure distributipnthe density

this does not happen due to the complexity of the solution. distribution measured by an observer with velocity vector
u”, F,, the Maxwell tensor ané = 87G/c*. We consider
the static and spherically symmetric metric of the interior in

However, the construction of stellar models, although itSchwartzschild coordinates [24]

does not allow us to obtain any equation of state, guides us

. . . . d7'2

in a better understanding of the inner behavior of the stars ds?=—y(r)2dt® + —— +r2(d6? + sin® 0ds?).  (2)

through the use of gravitational theories such as the theory B(r)

of Einstein's General Relativity. For this theory, the vast M&\ve consider that the contribution of the Maxwell tensor is

jority of models or analyzes proposed near the interior of thedue to an electric field, so the non-zero components of the
star consider that it is described by a perfect fluid [11’12]’electric part are: '

a perfect fluid charged [13,14], an anisotropic fluid [13,14]

or a charged anisotropic charged perfect fluid [13,18]. The TE®, —E)r _ _pE)Y
class of solutions presented in each case attends to the type
of objects that one wishes to describe or understand. The _ 7B  _ EFQ = B(r)?
perfect fluid models are used for less compact stars, while O g2t ’
the anisotropic or charged models allow to represent more
) . ._Where
compact stellar objects. Regarding the last case, there is a v
minimum value [19] for the ratio of mass and radius which E(r) = a(r) _dr [or dr, ©)
generalizes to Buchdal [20]. Through a graphical analysis it R ) VB

has been shown that the compactness is even greater than the o _
upper limit for a perfect fluid [21]. In this work we present a With ¢(r) the total charged inside a sphere of radiusThe
charged perfect fluid interior solution in the context of the field equations are write as [25]:

Einstein- Maxwell theory, which is physically acceptable, B 1—-RB
i.e., satisfied with this feature. kc?p+ E*(r)=—— = (4)
/
| | | B (o ©)
The construction of a static and symmetrically spheri- Ty r
cal space-time is proposed from the assumption of a spe- 5 (ry” +y)B  (ry +y)B’
cific form of gravitational potential,, [22] and the mag- kP + E*(r)= ry - 27y (6)

nitude of the electric field. The solution satisfies condi-

tions that make it physically acceptable and allows this towhere’ denotes the derivative with respect to the coordinate
represent astrophysical compact stars with a compactness This is the system of equations that we must solve for
u < 0.5337972212. In the Sec. 2. we present the Einstein the construction of a stellar model given by a perfect charged
- Maxwell field equations for a charged perfect fluid chargedfluid. The system has three Egs. (4)-(6) for five functions
fluid and the conditions are given for the solution to be phys<{p, P, E,y, B) so two restrictions are required, in our case
ically acceptable. In the Sec. 3. the solution of the fieldthese are the shape of the gravitational potemtial= —y?
equations is presented and the validation intervals of the paand the function of the magnitude of the fidif, the choice
rameters are determined considering the physical conditionsf the first of these functions is motivated by previous work
that must be satisfied, while in the Sec. 4. we determine than which a perfect fluid neutral model has been developed,
type of astrophysical objects that can be modeled and shownhile the magnitude of the electric field is proposed so that
by graphical representations of the internal behavior, as wellve can represent objects with greater compactness than in the
as an analysis of the possible values of density and pressuneutral case and with greater diversity of behavior. The so-
inside according to a stellar object with a solar mass. We finlution to the Egs. (4)-(6) requires to satisfy conditions that
ished the research work by presenting some conclusions imake it physically acceptable, which will be described in the
Sec. 5. next section.
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2.1. Physicals conditions

For an inner solution of the Einstein-Maxwell equations with
perfect fluid associated with compact objects to describe a
physically acceptable model, the following conditions must
be fulfilled [12]:

e The solution must not have singularities, geometric or
physical variablesj.e, for 0 < r < R the curva-
ture scalars must be regular and the metric functions
(y?, B), the density and pressure must be bounded.

The pressure and density must be positive and mono-
tonically decreasing functions as a function of radial
distance, with its maximum value in the center, in, par-
ticular in the origin:

dp d2P
P(0) >0 — =0 - 0
(0) >0, el e T:O< :
dp d?p
0) >0 LI =0 -£ 0
p(0)>0, - AL =)

while forr #£ 0 p’ < 0andP’ < 0.

The energy conditions must be [26]
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e On the boundaryr R the interior solution
should match continuously with an exterior Reissner-
Nordstrom solution

2GM Q2
ds? = — {1G2+2}dt2

cr T
oGM Q2171
G2 +Q2} dr?
c°r T

+ {1—

+ r2(d6* + sin® 0dp?), r>R.  (7)
This requires the continuity gf?(r), B(r) andg(r) =
@ across the region = R, whereM and (@ repre-
sent the total mass and charge inside the fluid sphere

respectively.

e Electric field intensityE is such thatE(0) = 0 and
taken to be monotonically increasing., dE/dr > 0
for0 <r <R.

These basic requirements allow to determine which interior
solution can be useful as a model for the description of some
compact object.
above it is known that one characteristic of these models

As a result of the conditions mentioned

is that the radio mass ratio, as a generalization to the limit

NEC null energy conditiop + P > 0

of Buchdahl [20]GM/c2R < 4/9, has a maximum value

[19, 28]

WEC weak energy condition> 0 andp + P >0
SEC strong energy conditior+-3P > 0andp+P > 0

DEC dominant energy conditign> 0 andp+ P > 0

\/f

ZR 2R2
3+L&

9 3R’

VGM < (8)

this expression implies the possibility of having solutions

] ] } with a greater compactness value thai2 due to the effect
From the previous requirement for density and pres-f the charge(, property that is relevant to our model. In
sure we have that the only additional restriction corre-aqgition to this inequality there is also a lower bound for the

sponds to the DEC.

The causation condition must not be violated, the

magnitude of the speed of sound must be less than the

speed of light

0

_dP
dp N

dr

@<2

0§112: dr_c,

P(p)

/

radio mass ratio

2
3% (1+ %2 ) _2GM
2B (14 %) — R

both relations have a good limit for the neutral cgse- 0.

Another important quantity in the stellar models that is

and additionally we willimpose that the speed of soundassociated with the mass and the radius is the gravitational

is a monotonous function decreasing towards the su
face.

For the stability of the solution, in the relativist case, it
is required that the adiabatic index [1, 27]

2p+ PdP _ c2p+ P2 -
2P dp P

c2

4
3

'Fedshift on the surface, = g;,*/?
charged solutions also involves t
of the metric on the surface implies

— 1 that in the case of
R -
he charged. The continuity

—1 -
2

_2GM 1

2R

QZ
i

Zp = |:1

that, in the case of objects without charge= 0, its max-

where the pressure is zef( R) = 0.

There must be a region= R, the surface of the star, imum valuez, = 2, corresponds to the maximum value of
compactness = 4/9.
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3. The solution and their analysis In our case this form of the electric field was chosen so
that the class of objects that can be represented can have a
The system of equations described in the previous sectiogreater compactness, and this will be shown in the next sec-
supports a solution with tion. Replacing this form of electric field and potentigin
9N 3/2 the Egs. (5) y (6), after subtracting them, we come to the
Hm‘”) 7 (9) differential equation:

v =5

1+ar?
2 2.4 3,.6 4,.8
in the case that the perfect fluid is neutral. In most previous g/ — 2+ 22‘”; + 6a’r +21300“ ; 4+ 100a"r ZB
investigations the form of this function has been proposed as (14 10ar2) (1 + 38ar? + 10a?r) r (1 + ar?)
y(r) = (1 + ar?)™ [12,29] which has allowed the construc- 2 [27a2r* Hy(r)v — (1 4 ar?)2(1 + 10ar?)?]
tion of physically acceptable interior solutions. Nowadays it ~ — (1 + 10ar2) (1 + 38ar2 + 10a2r ) (1 + ar?) =

is known that this form guarantees the regularity of the ge-
ometry in the vicinity of the center, since for this it is only here we have definefly(r) = 1 + 16ar? — 30a2r*. The

required that [30] solution to this equation implies:
y(r) = p+vr? +0(r"), ¢ (r) =or +0(r%), Br) = 1+a(v+2)r? + (1 + 10v)a®rt
and "= 1+ 10ar?

(1+ ar2)5H,§/T\/%_2

f )
(1+ 10ar2)H+?/71%+2

B(r)=1+ar’ +0(r"), B'(r)=pr+0(). +100Car? (11)

So other functions can be proposed with these properties. The
proposed form for the functiop(r) and other similar func-  where( is the constant of integration and
tions have allowed to show the relevance of the existence of
anisotropic pressures to be able to have physically acceptable Hy(r)=19+ 3v/39 + 10ar?.
models [31] besides that they have been applied for the de-
scription of physically acceptable stellar models [30, 32, 33],This determines the solutiong., the geometry and the hy-
some of which are characterized because the speed of soudtbstatic functions, so that when replacing (9), (10) y (11) in
is a decreasing monotonic function as a function of the radialhe Egs. (4) and (5) we obtain
coordinate [34].

The construction of interior solutions is useful to have a 1.2 ) — (1+3lar® + 81)(1 + ar®)*

4 ) ; p(r) = 3000Ca N

better clarity of the inner behavior of the stars [12], some so- Hﬁ*ﬁ;ﬁﬁ%(l + 10ar2)?
lutions with perfect fluid sources without charge [29, 35, 36]
these became generalized to charged case [37-39] to repre- _ 3(2 + 53ar’® + 426a%r* + 170a°r° + 200a*r®)av
sent compact stars. 2(1 + 10ar?)2(1 + ar2)?

The proposal of this section is to obtain a charged model 3a(8 + 25ar? — 10a2r*)

that generalizes to the previously constructed case [22]. + (1 + 10ar2)2 ) (12)
Some of the advantages presented by charged models is that

their compactness ratio becomes greater than their counter-kp(r) — 100Ca (1 + 65ar? + 10ar*)(1 + ar?)*

part without charge as a result of the non-neutrality of the H 2—%11 2+3¢*§(1 + 10ar2)?

fluid. The behavior of the electric charge or equivalently of

the electric fieldE = ¢(r)/r? as already mentioned in the (2 +179ar? + 1902a%*r* + 710a3r5 + 200a*r®)av
previous section, it must be zero in the center and it must be 2(1410ar?)2(1 + ar?)?

a growing monotonous function, so in our case we choose the

elgctric figeld in the form (46 — 25ar? + 10a%r%)a (13)

(1 + 10ar?)? ’
~27(1 + 16ar? — 30a%r*)a’vr?

E*(r) =
") = 0 T w2 T a7

(10)  here inthe expression of density, Eq. (12),= 150a%r* 4

1030a37% + 100a*r8. Given the conditions that must be sat-

v IZI ()”repreS(tants the ch?f:ge pi';lr?metgtrhtha: ml th;a.nashe) isfied the solution to be physically acceptable, it is necessary
will allow us to recover the solution without electric charge ; | 4 otarmine the speed of sound

[22]. The shape of the electric field magnitude is not unique,
there are a variety of possible acceptable functions for the ) dP(p)  dp(r) / dp(r)
same functiory(r) [37-39], the choice of this serves partic- vi(r) = dp -~ T ar / dr

ular interests of the approach of the model to be proposed or

of the research proposed, even this can be given through tltkie to its extension it is not written in the text, although it will
charge density [40] or through a relationship with the statebe considered in the analysis of the conditions. The metric
equation [41]. functions as well as the density, pressing and electric field are

Rev. Mex. 5. 65(2019) 382-391
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regular in the center, however, the explicit form of these is re-determined by the condition that the speed of sound must be

quired in order to obtain the intervals of the system constantpositive. The behavior of this function, for the solution we

(a,C,v) as a result of the physical conditions described inare analyzing, requires that the speed of sound at the border

the previous section. Then, from equations (12) and (13) abe positive and this happensif< v,,., where

well as how the speed of sound is, we have:

P 18 (1 4 10w) (3 + 65w — 10w?) (1 + w)”

VUm = )

VB H,(0)” V5 Ca+3(8 — v)a, (14) T 14 127w + 5416w2 + 60130 w3 — Sy

oy andS; = 129600w*68420w° + 16200wb + 1000w”. So the
+(0) viECa+ (46 +v)a,  (15)  maximum value of depends om. The minimum value of
B _3y3 3v3 also depends on the specific valuewoind is determined by
v=(0) _2C—-5H_(0) Vs H,(0)v© (14 —v) (16)  the condition that the speed of sound is smaller than the speed
c? 100 — H_(O)’%HJF(O)% (30 + l,)' of light, the value ofr where this happens changes depend-
ing on the value ofw. In particular for the maximum value
According to the required conditions, each of these relationgf ., — (0.13828732 the speed of sound matches the speed of
ships must be positive, in addition to the speed of sound thq;ght for v = 0.274043033 in r = 0.5721564648R, so the
must be smaller than the speed of light. On the other hand aange of € (0.27404 3033, 2.84837494). In general, the
p'(0) = 0, P'(0) = 0, density and pressure are decreasinginterval for v € (vmin, Vmax) and the value of,;, are not
monotone functions with their maximum in the center, so itbeing determined so that the speed of sound is smaller than

B

3v3

kc?p(0) = —3H_(0)
kP(0) = H_(0)V5s

A

is required that their second derivatives the speed of light.
k2" (0) = 27[10H_ (0) V5 H., (0) V& C . .
4. Graphic analysis
— (30+v)]a®, 17) o . o
The continuity of the metric and electric field allows us to
kP"(0) = 27[2H _ (0)%]{40)‘%@0 determine the relationship which determines the compaction
) of the stellar objects that can be represented with the solution
—5(14 —v)]a”, (18)  construed. The external geometry is given by the Reisner-

: : I . N luti
be negative, while the electric field satisfi@g0) = 0, ordstrom solution

E'(0) = 0y E?"(0) = 27va?; thenv > 0 as had been  ds? = —f(r)dt® + f(r)"'dr® + r2(d6? + sin® 0d¢?),
assumed in the Eq. (10). To the set of inequalities generated
from the conditions required in the center for the solutionto  f(;) =1 — —+ 5, E(r)= %, r>R, (21)

be physically acceptable expressed by (14)-(18), it is conve- cr r r

nient to complement them with the relation obtained from thewhere M and @ are the mass and the electric charge of the
existence of the surface of the star, identified/yR) = 0. star respectively. Evaluating the interior metricsrin= R
Considering (13) i = R we can get the constat and matching terms we get the reason for compactness [21]

_GM 27 (1+ 16w — 30w?) (1 + 38w + 10w?) w?v
AR 2(14 10w)? (14 w)* (1 + 65w + 10w?)

. 27w

wherew = aR? with Sy (w) = 200(1+65w+10w?)(1+w)° T 1T 65w 1 1002

andSs(w) = 2 + 179w + 1902w? + T10w® + 200w?. The _ _
set of inequalities is expressed only in terms of the dimend N€ value of compactness = u(w, v) is a monotonically
sionless parameters, w). However, these conditions are increasing function of both variables so the maximum value

only the content of the behavior in the object center. The pa®’ compactness occurs for the maximum value@ndw.

rametenw is restricted by the condition that the electric field Evaluating this relation for the maximum valueot= viax
must be a growing monotonous function for alie [0, R]. W€ obtain

This happens if inside the electric field has no maximum and ~ 27(1+ 99w + 2284w? + 12216w? — 32520w* — S5 )w
the limit case occurs when at the border the electric field has' ™~ (14 10w)(1 + 127 w + 5416 w? + 60130 w3 — S4)
a maximum, this i22(R)" = 0 which implies that

—S3(w)v — 2(46—25w+10w?) (1 + w)?
[H_(0)+10w] V5 "2[H, (0)+10w] v5 285 (w)

C=

, (19w

(22)

b

whereSs = 7100w® + 1000w®, while evaluating this expres-

1+ 21w — 120w? — 650w® + 300w* =0,  (20)  sionforthe maximum permitted value@fw = 0.13 828732

we obtain that the maximum value of possible compactness is

sincew > 0 thenw is constrained by the smallest positive w,,,, = 0.5337972212, which compared to the neutral case
root of this equation, which im = 0.13828732, this value that has a compactness valueuwt= 0.3581350065, the ef-
of w is greater than the maximum value allowed when youfect of charge allows the representation of more compact ob-
have the perfect fluid without load whose valueig_,) =  jects compared to the case without charge. Models not elec-
0.1073273425. The maximum value of the parameteitis  trically charged allow a compactness value accepted by the
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limit of Buchdahl, however for the charged case the radius 7
of the star could be smaller than the radius of Schwarzschild
u > 1/2 as it happens in our model, the reason is associated
with the effect of the charge. In the neutral case= 1/2
indicates that the radius of the star coincides with the radius _ >
of Schwarzschild-, = 2G'M /c? which would imply the ex- '
istence of a black hole. However when the Einstein-Maxwell
equations are considered in a static space-time, spherically
symmetric and asymmetrically flat, the respective black hole
is given by the geometry of Reissner - Nordstrom represented
by the metric (7) and in this case the external event hori-
zonr, = GM/c® + \/G2M?2/c* — Q2. In particular for i
Q = GM/c?* is obtained , = GM/c?, so the event horizon

6

4

plx) — Plx

. 0 0.2 0.4 0.6
happens for, = 1, value that is greater than the neutral case, "
although not necessarily the maximum compactness value of U =0.5337971 U= 0.4960593 U= 04583215
charged case occurs far= 1. Its maximum value of com- [ u=0.4205838 u=0.3828460

pactness is mited by inequality (8), from which it 6an be L . pensity benavior wit = 0.13525752 for diferent
opserve cou e greater ah/ since In tnis the er- values of compactness.

fect of the charge appears adding up as a quadratic quantity.
Now we will present the results graphically for the maximum
value ofw = 0'13828732 with different values of, which TABLE |. Values of the compactness for different values of the
gene_rate the respective compactness values. From the T&iarged parameter with — 0.13828732.

ble | is observed that the maximum value of compactness is
greater than 0.5 and it happens when the charge parametef 2-8483749 22047924 1.5612094 0.9176260 0.2740430
v is maximum in conjunction withv maximum. As it hap-  » 0.5337971 0.4960593 0.4583215 0.4205838 0.3828460
pens for this maximum value af in which the compactness
decreases with the electric charge parameter, this behavior i
shown for other values af) < wy,.«. Figure 1 correspond-
ing to the speed of sound shows that foe= wy, ., there are
regions of increasing monotony behavior near the center anc
decreasing monotony near the surface. The maximum value

5 ..

4

0.8

0.2

0.4 0.6 0.8 1

X
u=0.4960593

u=0.5337971 -

0.6 u=0.4583215
o ; - u=0.4205838 u=0.3828460
x = i 5 S
# il = E T FIGURE 3. Pressure for different values of compactnessith a
~ fixed value ofw = 0.13828732.
i
0.2

of compactness is determined because the speed of sound is
zero at the border (blue solid line), while the minimum value
(black solid line) is obtained because inside the speed the

0 0.2 D " 0.6 0.8 1 sound is equal to the speed of the lightria= 0.5721564648.
In general, the behavior of this function allows to determine
u=0.5337971 u=0.4960593 u=0.4583215
..... U= 04205338 U= 03328460 the ranges of the parameterand consequently the value of

FIGURE 1. Behavior of the speed of sound for different values of
compactness.

compactness for a fixed value of

To graphically represent the behavior of density we de-
fine the dimensionless variabfe— kc? R?p as a function of
x = r/R. On graph 2 its regular behavior is shown, bounded
and monotone decreasing for different values of the parame-

Rev. Mex. 5. 65(2019) 382-391
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0.25
40
0.20
30
= ~_0.15
e >
=20 &
0.10
10
0.05
0 |
0.2 0.4 0.6 0.8 1 0
X 0 0.2 0.4 0.6 0.8 1
u=0.5337971 u=0.4960593 u=0.4583215 =
----- u=0.4205838 u=0.3828460 u=0.5337971 — - u=0.4960593 u=0.4583215

""" u=0.4205838 u=0.3828460

FIGURE 4. Graphical representation of the magnitude of the elec-

tric field for wmax. FIGURE 5. Adiabatic index.

terv with w = wpax. The central density is greater for the . . . .- .
larger values of the charge parame)zenvhi)I/e or? the surface graphically in the Fig. 6 where it is observed that this is sat-
isfied.

the opposite occurs. The graphic representation, Fig. 3, of the ) i ) i
dimensionless function associated with presstire: kR2P The graphical representation of the hydrostatic functions
in terms of the function of: = /R shows its monotoni- presented in terms of dimensionless functions, is helpful to
cally decreasing behavior as well as bounded and positive?2Serve their behavior, however to obtain the ranges of the
By the effect of the electric charge manifested through thé)OSSIb|e physmql values of these functions, _|t is necessary to
parameter the pressure associated with the perfect fluid igntroduce the units to see that the values which the model are
lower for higher values of this which allows denser objects.consistent with orders of magnitude associated with this type
As can be seen from the comparison of Figs. 2 and 3 foPf objects. To determine the orders of magnitude of the den-
greater compactness the density is greater and the pressuréi§/ @nd the pressure below we consider a star with a mass
lower. Figure 4 shows that the solution satisfies the conditioffdu@l to the mass of the sun and we obtain the values of the
required for the adiabatic indexy, > 4/3, which guarantees radius, pressure and central density as well as its density at

its stability. the surface for the values of the compactness used for the
From Fig. 5 an increase of the electric field strenght is9raPhics.
observed as the electric charge increases From the Table I, it is observed that the ranges of values

Another condition imposed for a model to be physically of the central density. and the density on the surfapg are
acceptable is that the energy conditions are satisfied since tt¢é the order of magnitude associated with compact stars. So
density and the positive pressure are the same as the mag@iso the central pressuré. is consistent with the expected
tude of the electric fieldZ2. The only one that requires a ver- Values. The values of the speed of sound in the centand
ification is the dominate energy condition and this is shown on the surface,, are smaller than the speed of lighe,, these

TABLE Il. Values of the hydrostatic variables in the center and on the surface for different values of the compactness dg weMas

u 0.533797 0.496059 0.458322 0.420584 0.382846
R(m) 2765.976 2976.398 3221.473 3510.524 3856.563
pc(10'° Kg/m®) 7.954465 5.769167 3.909380 1.658865 2.727820
pp(10"8Kg/im®) 5.369969 5.425123 5.303410 5.032169 4.638761
P.(10%P) 2.421304 2.298425 2.080038 1.875830 1.667535
v2(c?) 0.402442 0.447095 0.506627 0.589964 0.714951
vE(c?) 0 0.163272 0.351349 0.570351 0.828586

v 1.929431 1.443294 1.441248 1.498013 1.643794
Q(10*°0) 1.648824 1.560997 1.421715 1.187770 0.713078

2 1.257805 1.171623 1.094611 1.025251 0.962353

Rev. Mex. 5. 65(2019) 382-391



A CHARGED PERFECT FLUID MODEL WITH HIGH COMPACTNESS 389

TaBLE Ill. Values of the hydrostatic variables in the center and on the surface SS1.

w 0.040500 0.038309 0.035478 0.032117 0.030456
v 0 1.475197 3.952775 8.085688 10.79803
PC(IOSSP) 2.207465 1.936262 1.526330 1.059583 .8073013
pc(1018%) 9.491643 7.652449 8.927432 8.523171 7.748338
pb(lolg%) 2.908835 2.767600 2.572201 2.318696 2.183865
UC(62)2 .5000328 14219832 .3371526 .2531569 2166285
vb(c2)2 0.652298 0.465718 0.264912 0.076179 0.000004
Q(10%°0) 0. 1.223631 1.875167 2.459075 2.711817
o1 1.908003 2.109820 1.911706 2.236546 1.455289
10 0.6
9
0.5 = =
8- e i
7 7
e = -
o . 0.3
% 0.2
3
5 0.1
. 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
x X
u=0.5337971 U= 0.4960593 u=0.4583215 :
_____ = = —— w=0.040500 w=0.038309 w=0.035478
u=0.4205838 u=03828460 | [T e Dda T S
FIGURE 6. Pressure for different values of the parameter FIGURE 7. Behavior of the speed of sound for different values of
compactness.

do not violate the condition of causality and even in the case

of greater compactness the speed of sound at the surfaceyging this a monotonously increasing function. In the
zero. From the graphic behavior and the value of the adiacharged case there are different behaviorsofoB2117 <
batic indexy in the center given in the table is obtained that,, ~ 0.0405. The function of the speed of sound

the solution is stable, because> 4/3. Two other quan- presents a region where it is monotonously increasing and
tities given for the different values of compactness are thepother where it is growing monotonous. Far €

net charge and the value of gravitational redshift on the SUrtp.030456, 0.032117] the speed of sound is monotonically
face, both values are within the expected ranges [40]. decreasing as a result of the effect of the charge.

Finally we apply our model for the data of SAX J1808.4- |, the Table 11, the values are shown with the magnitudes
3658 (SS1) star of mas/ = 1.435 Mg and radioR = o the hydrostatic variables as well as the charge for the same
7.07 km [42], its compactness value is = 0.2996795, SO narameter values, in this it is observed that for the maxi-
the value ot is determined from the Eq. (22) mum value of the charge, the speed of sound on the surface

(0.1+w)(14+w)(0.0405 — w)(2.469124 — w) approaches zero. In addition, the orders of magnitude of the
v =0.14799 (0.056512 + 1) (0.589845 — w)u? : celiasn[j:gjes are similar to the values reported with other mod-
From the analysis of the restrictions for the model to be
physically acceptable, we obtain that the validity interval
of w € [0.030456,0.040500]. The only difference in the 5. Conclusions
behavior of the functions for this data and the data for
greater compactness is that there is now a subinterval dfiere we have obtained a charged perfect fluid solution that
w € [0.030456,0.032117] in which the speed of sound is generalized a perfect fluid uncharged solution in a spacetime
a decreasing monotone function. The Fig. 7 shows the bestatic and spherically symmetric. The solution depends of
havior of the speed when there is no charge= 0.0405, two parametersv and v the latter related to charge. The
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built solution considers a new form of gravitational potentialthe model for smaller values of compactness, in particular
g = (1+10ar?)3/(1 + ar?)? [22] and a particular form  for « = 0.2996795 can be associated with the data of the
of the increasing monotonous charge, this is the one that gestar J1808.4-3658(SS1). There is a parameter range
erates different profiles of behavior of the speed of soundwhich the speed of sound is a decreasing monotonous func-
differing from the case without charge where the speed igion, characteristic that some authors consider as desirable for
only monotone increasing. Another point in which the elec-some models.
tric charge generates changes with respect to the case without Finally, it is worth mentioning that although the graphi-
electric charge is that the maximumy,., = 0.5337972212  cal analysis and physical hydrostatic values were presented
is much higher than at the maximum possible value for a perfor specific parameters, the behavior for other values of the
fect neutral fluidu < 4/9. parameters, is similar so it is concluded that the model can be
This remarkable characteristics of the model, as far as wased for other compact stans< 0.5337972212. This work
know, have not been reported previously analytic solutiongjives rise to some questions that could be developed in the fu-
with such large compactness values, although in previous reure, such as what are the characteristics that the electric field
ports mention has been made of the possibility of having elecfunction must have that allows to represent compact objects
trically charged models with greater compactness thdh  with a wide spectrum of possibilities in the representation of
upper bound for the case of a perfect fluid neutral [21]. highly compact objects. Another question is the construction
As aresult of the analysis of the solution we have that theand analysis of an anisotropic charged model which general-
density and pressure, as radial functions, are monotonouges the one presented here and the determination of the effect
decrescent, bounded and regular. Additionally, consideringf the anisotropy and the electric charge and their comparison
the data of a star with massdl we have it has that the or- between both of them.
ders of magnitude that the model generates with respect to
density and pressure are consistent with those expected for
neutron stars or quarks, with the advantage of having a rangdcknowledgments
of possible values of the density, which, as expected, stars
with the same radius and mass data may have different intefVe appreciate the facilities provided by the Universidad Mi-
nal behavior. In our case what determines in a specific waghoacana de San Ni@sd de Hidalgo. The author JMPF
the internal structure of the stars is the charge. On the othé¥ould like to thank CONACYT Mxico for the individual re-
hand, the adiabatic index is a growing monotonous functiorsearch grant received. We thank the reviewer of the work for
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