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A model for low mass compact objects
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Facultad de Qúımico Farmacobioloǵıa de la Universidad Michoacana de San Nicolás de Hidalgo,

Tzintzuntzan No. 173, Col. Matamoros, 58240, Morelia Michoacán, México.
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A model for low mass compact objects with compactness ratiou ≤ 0.06093 is presented here. Density, pressure and sound speed are regular
and monotonic decreasing functions. The change between the central densityρc and the density on the surfaceρb is lower than3.94% and
the maximum change occurs for the biggest compactness,i.e. ρc = 1.0394ρb. This allows us to apply this model for the case of compact
stars in which the density variation is very small. In particular, we can use this model for PSR B0943 + 10, a quark star candidate, with radius
R = 2.6 km and massM = 0.02 M¯. According to our model it turns out that the density on the surface isρb = 5.3881× 1017 kg/m3 and
the central density,ρc = 1.0072ρb, is slightly large than the surface density and larger than the nuclear density.
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1. Introduction

The behavior of particles inside compact stars like white
dwarfs, formed by matter with density lower than the nuclear
density, can be experimentally reproduced in some cases by
means of nuclear accelerators [1,2]. In adittion, complemen-
tary theoretical models that help describing the interactions
in the interior of compact stars, even for low energy interac-
tions, the dynamics can be explored as well through general
relativity or non relativistic effective theories [3,4]. For com-
pact objects like neutron or quark stars that have a density
larger than the nuclear density it is necessary to consider the-
oretical models using gravitational theories like general rela-
tivity. On the other hand, even though experiments have been
carried out to explore the quark reactions that could happen
inside the stars, the development of experiments for these or-
der of densities is not possible at laboratory level yet. How-

ever, phenomenological models approaching compact stars
through equations of state with parameters determined by
comparison with observations have been proposed [5,6].

Among the different kinds of stars are the low mass ones,
whose behavior can be different from those with mass on the
order of the sun mass. On this subject, there is still no con-
sensus about the equations of state that could describe the in-
terior of these stars, although different models are being cur-
rently used, from those that assume polytropic equations [7]
to others like PARSEC models [8] . While the description of
the interior of static stars is carried out through the construc-
tion of solutions to the Einstein equations, some of which
assume that the interior is described by a perfect fluid [9–11],
anisotropic [12,13], and charged [14–17], these last two mod-
els are characterized by compactness values that are larger
than the ones in the case described by a perfect fluid [18,19].
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Some other ways to build interior solutions is by means
of imposing some geometric condition, one of which is to
suppose four-dimensional space-time embedded in a five-
dimensional pseudo Euclidean space [20,21] known as Class
I solutions for a spherically symmetric space-time there is a
differential equation that relates the metric functionsgrr and
gtt that, under suitable choices of one of these functions al-
lows integrating the system, generating physically acceptable
models [22].

The type of solutions Class I is useful when stellar
models without charge and anisotropic pressures are pro-
posed [21–24] or with anisotropic pressures and electrically
charged [25], and has been used to describe the interior of
compact objects such as Cen X-3, PSR J0348+0432, PSR
B0943+10 and XTE J1739-285. However for the case of stel-
lar models associated with perfect fluid, the condition that the
radial pressurePr and tangential pressurePt be the same, im-
plies a differential equation between the metric potentialsgrr

andgtt, different from solutions of the Class I. and in such
case a there is no guarantee that these functions satisfy both
equations.

In our case we propose a model described by a perfect
fluid. Therefore, the construction of our solution, obtained
from the differential equation emerging from the equality of
radial and tangential pressuresPt = Pr and from imposing
a new gravitational potentialgtt motivated by recent work
[26,27] in which new physically acceptable stellar solutions
have been built with a different form to those previously pro-
posed [28]. An advantage of the choice of our potentialgtt is
that it generates a model with a speed of sound that is mono-
tonically decreasing as a function of the radial coordinate.
We also show that the model is physically acceptable and that
it can be applicable to the star PSR B0943 + 10.

Physically acceptable solutions for a perfect fluid in a
spherically symmetric space are required to satisfy the fol-
lowing conditions [28]:

1. The solution must be regular,i.e. the geometry and
the physical quantities inside the star have to be non-
singular.

2. The pressure is null on the star surface.

3. The pressure and density must be positive and mono-
tonic decreasing functions ofr.

4. The causality condition must be satisfied, the sound
speed must be lower than the speed of light .

5. The gravitational redshift function must be positive, fi-
nite and monotonically decreasing inr.

Among the set of stars of low mass there are some com-
pact stars, like the PSR B0943+ 10 with mass 0.02 M̄ and
radius 2.6 km, a quark star candidate [29] with compactness
ratio equal to 0.06093. In this work, we intend to describe
this object using the low mass star model that is introduced
in what follows.

This paper is organized in the following manner: In Sec.
2 we work out the solution considering that the interior of
the star is described by a perfect fluid; Section 3 focuses on
obtaining the validity intervals for the parameters involved
in the model, stemming from the physical conditions men-
tioned above. In Sec. 4 we show that this solution applies to
low mass compact stars and that it describes the behavior of
PSR B0943+ 10. Finally, we end with the conclusions of
this analysis.

2. Perfect fluid solution

According to the Jebsen-Birkhoff theorem for stellar models,
the exterior of a star is described by the Schwarzschild met-
ric [30–32]

ds2 = −
(

1− 2GM

c2r

)
dt2 +

(
1− 2GM

c2r

)−1

dr2

+ r2(dθ2 + sin2 θ dφ2), r ≥ R (1)

whereM is the mass of the star,G is the gravitational con-
stant andc is the speed of light. This metric and its sec-
ond fundamental form have to be continuous over the bound-
ary [33,34]. On the other hand, the interior geometryr ≤ R,
for a perfect fluid, is determined by the solution of the Ein-
stein equations

Gµν = k
[
(P + c2ρ)uµuν + Pgµν

]
, k =

8πG

c4
(2)

whereGµν are the Einstein tensor components,P is the pres-
sure,ρ is the density of the energy-matter measured by an
observer with a four-velocityuµ andgµν the metric compo-
nents, which for a static and spherically symmetric spacetime
can be described by the line element

ds2 = −C2Y 2(r)dt2 +
dr2

B(r)
+ r2(dθ2 + sin2 θ dφ2). (3)

Considering this metric in Eq. (2), one obtains the conditions

kc2ρ = −B′

r
+

1−B

r2
, (4)

kP =
2BY ′

rY
− 1−B

r2
, (5)

kP =
(rY ′′ + Y ′)B

rY
− (rY ′ + Y )B′

2rY
. (6)

And from the Bianchi identity∇µGµν = 0, Eq. (2) implies

P ′ = −
(
P + c2ρ

)
Y ′

Y
, (7)

where′ denotes the derivative with respect to ther coordi-
nate. Substituting the form of the density and the pressure
given by Eqs. (4) and (5) in Eq. (7), it follows that Eq. (6) is
satisfied, so we only need to consider the system formed by
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Eqs. (4)-(6). To build a model that is applicable to a compact
low mass star, we assume a particular form ofY (r) given by

Y (r) =
5− 3ar2

1 + ar2
, (8)

Although this function is new, the functional form of this has
recently been proposed [26,27] to generate stellar models that
describe compact objects. Therefore, guided by the previous
results, we assume this functional form. If we use this in
the expressions for the pressure given by Eqs. (5) and (6)
and subtracting one from the other, the following differential
equation forB results

r(5+ar2)B′

2(1+ar2)
− (5+22ar2+a2r4)B

(1 + ar2)2
+

5− 3ar2

1−3ar2
=0, (9)

This can be solved analytically and allows us to obtain

B (r) = 1− 32
(
77− 154ar2 + 117a2r4 − 32a3r6

)
ar2

(5− ar2)4
,

− 768
(
1− ar2

)4
ar2

(5− ar2)4
S(r) (10)

with

S(r) = A + ln
(

1 + 3 ar2

1− ar2

)
.

The functionsY andB, given by Eqs. (8) and (10) respec-
tively, determine the metric and allow us to get the form of
the hydrostatical variables. FromB and Eq. (4), the density
follows

ρ (r) =
768a

(
1− ar2

)3 (
15− 50 ar2 + 3 a2r4

)

(5− ar2)5 kc2
S(r)

+
32aS1(r)

(1 + 3ar2) (5− ar2)5 kc2
, (11)

whereS1(r) is given by:

S1(r) = 1155 + 960ar2 − 9834a2r4 + 13032a3r6

− 5473a4r8 + 288a5r10.

The pressure is obtained from Eq. (5) usingY and the func-
tion B

P (r)=
256a(30− 225ar2+327a2r4−152a3r6+12a4r8)

k (5+3ar2) (5−ar2)4

−768a
(
5+30ar2− 3a2r4

) (
1− ar2

)3

k (5 + 3ar2) (5− ar2)4
S(r). (12)

Another relevant parameter in the construction of a stellar
model is the speed of sound defined as:

v2
s(r) =

∂P (ρ)
∂ρ

,

from where we get:

v2
s(r)=

4
(
1+3ar2

) (
5−ar2

)
[S2+(1 + 3ar2)S3S]

(1−ar2) (5+3 ar2)2 [S4S−S5]
, (13)

with:

S2 = 6975 + 9600 ar2 − 49530 a2r4 + 22072 a3r6

+ 9411 a4r8 − 576 a5r10

S3 = 48(1− ar2)2(25− 175ar2 − 45a2r4 + 3a3r6)

S4 = 192(1− ar2)(1 + 3ar2)2(25− 50ar2 + a2r4)

S5 = 225−45750ar2−56916a2r4+115238a3r6−2301a4r8

Having solved the system of equations for the perfect fluid
model, we now proceed to determine the validity intervals of
the parameters in order to have a physically acceptable solu-
tion.

3. Behavior of the solution

The determination of the physical values of the model pa-
rameters requires to fulfil the conditions listed in Sec. 1. The
first derivative of the pressure, density and speed of sound
at the origin vanish. On the other hand, evaluation of the
functions and their second derivatives at the origin, results in
the following set of inequalities after imposing the conditions
enunciated in Sec. 1

kc2ρ(0) =
96 (77 + 24A) a

625
> 0,

kc2ρ′′(0) = −384(−3 + 64A) a2

625
< 0,

kP (0) =
768 (2−A) a

625
> 0,

kP ′′(0) = −1536
3125

(93 + 16A)a2 < 0,

v2
s(0)=

4(93 + 16A)
5(−3 + 64 A)

≤ c2,

v2
s
′′
(0)= −8 a

(
32768 A2 + 18928 A + 409197

)

25 (3− 64 A)2
< 0.

The sign ofa is determined by

k
(
ρ (0) c2 + 3 P (0)

)
=

96 a

5
> 0. (14)

Hencea > 0 and using the previous set of inequalities, we
find that these are satisfied if

387
256

< A < 2. (15)

The integration constantA is related toa and the radius of
the object,R, since the pressure must be null on the surface,
that isP (R) = 0. Imposing this condition we get

A=− ln
(

1 + 3y

1− y

)
+

30− 225y + 327y2 − 152y3 + 12y4

3(5 + 30y − 3y2)(1− y)3
,
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FIGURE 1. Graphical representation of the density behavior.

with y = aR2 > 0. From here we see that the model depends
only on the parametery. Using this form ofA in Eq. (15)
and the fact thatA(y) is a monotonic decreasing function
for y > 0 in the range given by the inequality (15), the
maximum acceptable value fory = ymax takes place when
A(ymax) = (387/256), from where we gety ∈ [0, 0.02149].
In thisy interval, the forms of the density, pressure and speed
of sound functions inside the star are described by the Figs. 1-
3. For the graphic representation of these functions we de-
fine dimensionless variablesr → x = r/R, ρ → kR2c2ρ,
P → kR2P andv2 → v2/c2.

Figure 1 shows that the density is a monotonic decreasing
function and that the difference between the density in the
core and on the surface lowers as the value ofy decreases.
The maximal difference between the density in the surface
and in the core happens fory = 0.02149, when we have
ρc = 1.0394ρb.

The behavior observed in Fig. 2 for the pressure is the
expected one for physically acceptable solutions in the case
of a perfect fluid, that is, a monotonic decreasing behavior
and the existence of a region, the surface, where the pressure
is null.

FIGURE 2. Pressure for different values of they parameter.

FIGURE 3. Speed of sound behavior.

As we can see from Fig. 3, the speed of sound at the
core for the maximal value ofy is the same as the speed of
light in vacuum and decreases as the distance to the surface
decreases. Moreover, wheny has lower values, the speed of
sound in the interior decreases. From the figures presented
here, we have that the behavior of the density, pressure and
speed of sound correspond to monotonic positive decreasing
regular functions, which makes this model physically accept-
able.

4. Compact stars of low mass

From the condition of continuity between the internal and
the external metrics, we obtain the constantC2 = (1 −
2GM/c2R)/Y (R) and the compactness ratio

u =
GM

c2R
=

1
2
(1−B(R)) =

16y

5 + 30 y − 3 y2
, (16)

which together with the form of the density profile determine
the kind of objects that can be described by the model. In
this case, the value of the compactnessu = u(y) as a func-
tion of y is monotonic and decreasing, so its minimal value
is obtained fory = 0 and its maximal value takes place for
y = 0.02149, beingu = 0.06093. For this value of max-
imal compactness, the speed of sound at the origin is the
same as the speed of the light and the value on the surface
is 0.91404c, while the maximal value of the density ratio
core/surface isρc/ρb = 1.0394. This allows us to propose
that the model presented in this analysis is applicable to com-
pact low-mass stars. One of these stars is the quark star can-
didate PSR B0943+ 10, with observed mass 0.02 M̄and
radiusR = 2.6 km.

If we consider the maximum compactness value, there is
still room for a variety of different stars. For instance, if the
mass isM = 0.02 M¯, its radius will beR = 4.8464 km,
with central densityρc = 8.5338 × 1017 kg/m3 and surface
densityρb = 8.2107 × 1017 kg/m3. While for a star with
radius 2.6 km, the mass would beM = 0.1073 M¯, with
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TABLE I. Behavior inside of a star with compactness ratiou =

0.01136.

r(m) ρ (1017 kg/m3) P (1032 Pa) vs(c)

0 5.4266 2.8301 0.9103

260 5.4262 2.8016 0.9102

520 5.4251 2.7163 0.9098

780 5.4232 2.5740 0.9092

1040 5.4205 2.3751 0.9083

1300 5.4170 2.1195 0.9072

1560 5.4128 1.8075 0.9058

1820 5.4078 1.4393 0.9042

2080 5.4020 1.0151 0.9023

2340 5.3954 0.5352 0.9003

2600 5.3881 0 0.8979

central densityρc = 2.9651×1018 kg/m3 and surface density
ρb = 2.8529×1018 kg/m3. In these two cases, the object with
higher density, approximately ten times the nuclear density,
is the one with lower mass and radius.

For the case of PSR B0943 + 10, with compactness
u = 0.01136, our analysis delivers the values for the param-
eter space in the interior of the star kisted in Table I.

Hence, even though the density is a monotonic decreas-
ing function, its variation is very slow since both the central
density and the density at the surface are of the same order
ρc = 1.0072ρb, and higher than the nuclear density, which is
characteristic of the quark stars. A similar pattern is followed
by the speed of sound , that satisfiesvs(0) = 1.0138vs(R).
The evolution of these two parameters can be seen in Figs.
1 and 3 and correspond to the curves at the bottom of each

panel, withy = 0.0036. From here we see that the model is
adequate and physically acceptable to represent the star PSR
B0943 + 10.

5. Conclusions

Assuming a specific form for the metric functionY (r), we
derive a relativistic stellar solution for compact stars consid-
ering a perfect fluid to model its interior. The regular and
monotonic decreasing evolution of the density, pressure and
speed of sound makes the solution physically acceptable. On
the other hand, we show that the speed of sound grows with
density and equals the speed of light in the center of the star
for the highest density case. When we apply this model to
the quark star candidate PSR B0943 + 10, with mass 0.02
M¯ and radiusR = 2.6 km, it comes out that the density
at the surface isρb = 5.3881 × 1017 kg/m3, which is larger
than the nuclear saturation density, and its central density is
slightly higher than the surface densityρc = 1.0072ρb, which
is a characteristic density for compact stars. Although we
have chosen the star PSR B0943 + 10 to apply our model, it
can be useful as well to analyse stars with compactness ratio
u ≤ 0.06093.
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