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A model for low mass compact objects
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A model for low mass compact objects with compactness tati00.06093 is presented here. Density, pressure and sound speed are regular
and monotonic decreasing functions. The change between the central geresity the density on the surfapg is lower than3.94% and

the maximum change occurs for the biggest compactiess. = 1.0394p,. This allows us to apply this model for the case of compact

stars in which the density variation is very small. In particular, we can use this model for PSR B0943 + 10, a quark star candidate, with radius
R = 2.6 km and mas$/ = 0.02 M. According to our model it turns out that the density on the surfapg is 5.3881 x 10'7 kg/m* and

the central density,. = 1.0072py, is slightly large than the surface density and larger than the nuclear density.
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1. Introduction ever, phenomenological models approaching compact stars
through equations of state with parameters determined by
The behavior of particles inside compact stars like whitecomparison with observations have been proposed [5, 6].
dwarfs, formed by matter with density lower than the nuclear
density, can be experimentally reproduced in some cases by Among the different kinds of stars are the low mass ones,
means of nuclear accelerators [1, 2]. In adittion, complemenwhose behavior can be different from those with mass on the
tary theoretical models that help describing the interactionsrder of the sun mass. On this subject, there is still no con-
in the interior of compact stars, even for low energy interacsensus about the equations of state that could describe the in-
tions, the dynamics can be explored as well through generaérior of these stars, although different models are being cur-
relativity or non relativistic effective theories [3,4]. For com- rently used, from those that assume polytropic equations [7]
pact objects like neutron or quark stars that have a densitio others like PARSEC models [8] . While the description of
larger than the nuclear density it is necessary to consider théhe interior of static stars is carried out through the construc-
oretical models using gravitational theories like general relation of solutions to the Einstein equations, some of which
tivity. On the other hand, even though experiments have beeassume that the interior is described by a perfect fluid [9-11],
carried out to explore the quark reactions that could happeanisotropic [12,13], and charged [14-17], these last two mod-
inside the stars, the development of experiments for these oels are characterized by compactness values that are larger
der of densities is not possible at laboratory level yet. How-+than the ones in the case described by a perfect fluid [18, 19].
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Some other ways to build interior solutions is by means  This paper is organized in the following manner: In Sec.
of imposing some geometric condition, one of which is to2 we work out the solution considering that the interior of
suppose four-dimensional space-time embedded in a fivahe star is described by a perfect fluid; Section 3 focuses on
dimensional pseudo Euclidean space [20,21] known as Classbtaining the validity intervals for the parameters involved
| solutions for a spherically symmetric space-time there is an the model, stemming from the physical conditions men-
differential equation that relates the metric functignsand tioned above. In Sec. 4 we show that this solution applies to
g that, under suitable choices of one of these functions allow mass compact stars and that it describes the behavior of
lows integrating the system, generating physically acceptablESR B0943+ 10. Finally, we end with the conclusions of
models [22]. this analysis.

The type of solutions Class | is useful when stellar
models without charge and anisotropic pressures are prgs . .
posed [21-24] or with anisotropic pressures and electrical&' Perfect fluid solution
ggi{g:gt [gsj]écigdsggs degelrj]s;d?)topdse;cgg 3? 4214?021;?'0; S%ccording to the Jebsen-Birkhoff theorem for stellar models,
80943410 and XTE J1739-285. However for the case of stel e exterior of a star is described by the Schwarzschild met-

lar models associated with perfect fluid, the condition that therIC [30-32]

radial pressuré,. and tangential pressurfé be the same, im- 2GM oM\ !

plies a differential equation between the metric potentjals ds® = — (1 2, ) dt® + (1 - ) dr®
and g, different from solutions of the Class I. and in such

case a there is no guarantee that these functions satisfy both +72(df* +sin?0d¢?), r>R (1)
equations.

In our case we propose a model described by a perfes¥hereM is the mass of the staf; is the gravitational con-
fluid. Therefore, the construction of our solution, obtainedstant andc is the speed of light. This metric and its sec-
from the differential equation emerging from the equality of ond fundamental form have to be continuous over the bound-
radial and tangential pressur&s = P, and from imposing ~ ary [33,34]. On the other hand, the interior geometry R,

a new gravitational potentia};; motivated by recent work for a perfect fluid, is determined by the solution of the Ein-
[26,27] in which new physically acceptable stellar solutionsstein equations

have been built with a different form to those previously pro- R

posed [28]. An advantage of the choice of our potengtials G =k |(P+ czp)uuu,, + Py |, k=— (2)

that it generates a model with a speed of sound that is mono- ¢

tonically decreasing as a function of the radial coordinatewhereG,,, are the Einstein tensor componertsis the pres-
We also show that the model is physically acceptable and thajure, p is the density of the energy-matter measured by an
it can be applicable to the star PSR B0943 + 10. observer with a four-velocity* andg,, the metric compo-

Physically acceptable solutions for a perfect fluid in anents, which for a static and spherically symmetric spacetime
spherically symmetric space are required to satisfy the folean be described by the line element
lowing conditions [28]:

cr

dr?
2 2v2 2 2 2 a2 2
1. The solution must be regulai,e. the geometry and @5~ = —C7Y"(r)dt” + B(r) +77(d0” + sin” 0 d”). (3)
the physical quantities inside the star have to be non-

singular. Considering this metric in Eq. (2), one obtains the conditions
i B 1-B
2. The pressure is null on the star surface. kep = -= = )
3. The pressure and density must be positive and mono-
- . . 2BY’ 1-B
tonic decreasing functions of kP = — (5)
rY r2 ’

4. The causality condition must be satisfi_ed, the sound rY"+Y"B (rY'+Y)B

speed must be lower than the speed of light . kP = vy TS (6)

5. The gravitational redshift function must be positive, fi- And from the Bianchi identit "G, = 0, Eq. (2) implies

nite and monotonically decreasingsin

,__(P+p)Y!

Among the set of stars of low mass there are some com- Pl=— )
pact stars, like the PSR B094310 with mass 0.02 M and
radius 2.6 km, a quark star candidate [29] with compactneswhere’ denotes the derivative with respect to theoordi-
ratio equal to 0.06093. In this work, we intend to describenate. Substituting the form of the density and the pressure
this object using the low mass star model that is introducedjiven by Egs. (4) and (5) in Eq. (7), it follows that Eq. (6) is

in what follows. satisfied, so we only need to consider the system formed by
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Egs. (4)-(6). To build a model that is applicable to a compacfrom where we get:

low mass star, we assume a particular fornY¢f) given b
P ) g y o2 :4 (1+3ar?) (5—ar?) [52;—(1 + 3ar2)535]7 (13)
5 — 3ar? (1—ar?) (5+3ar?)” [S4S—Ss]
Y (T) = 1_"_72, (8) s
ar with:

Although this function is new, the functional form of this has 5, = 6975 + 9600 ar? — 49530 a*r* + 22072 a*r°
recently been proposed [26,27] to generate stellar models that

describe compact objects. Therefore, guided by the previous + 9411a’r® — 57647

results, we assume this functional form. If we use this mS = 48(1 — ar?)?(25 — 175ar? — 45a%r* + 3a3r)
the expressions for the pressure given by Eqgs. (5) and (6)

and subtracting one from the other, the following differential Sy = 192(1 — ar?)(1 + 3ar?)?(25 — 50ar? + a*r*)

equation forB results
q S5 = 225 —45750ar> —56916a%r* +115238a3r% — 2301a*r®

2 2 2.4 2
r(5+ar®)B"  (5+22ar”+a*)B | 5 —3ar —0, (99 Having solved the system of equations for the perfect fluid

2(1+ar?) (14 ar?)? 1-3arz 7 model, we now proceed to determine the validity intervals of
This can be solved analytically and allows us to obtain Eirl)enparameters in order to have a physically acceptable solu-
B _q 32 (77 — 154ar? 4+ 117a2r* — 32(131"6) ar?
(r)= 5— ar2)* ’ 3. Behavior of the solution
( )
768 (1 — ar2)4ar2 The determination of the physical values of the model pa-
- (5 ar2)4 S(r) (10)  rameters requires to fulfil the conditions listed in Sec. 1. The
first derivative of the pressure, density and speed of sound
with at the origin vanish. On the other hand, evaluation of the
_ 1+ 3ar? functions and their second derivatives at the origin, results in
Sr)y=A+n|{— | ; " i . "
1—ar? the following set of inequalities after imposing the conditions

The functionsY” and B, given by Eqgs. (8) and (10) respec- enunciated in Sec. 1

i i i 96 (77 + 24A
tively, determine the metric and allow us to get the form of ;2 ) _ (7 +244)a o

the hydrostatical variables. From and Eq. (4), the density 625
follows 384(—3 + 64A) a2
kc?p"(0) = — ( 6;5 )a <0,
() = 7% (1—ar?)® (15 — 50 ar® + 3a2r?) St . p
r)= T 68 (2 —
P (5 — ar?)” ke kP(0) = 82— 4)a >0,
625
32a.5:(r) 1536
, 11 11 _
(L1 30r2) (5 — ar?)’ h? (11) KP"(0) = — 5752 (93 + 164)a” <0,
o _ 4(93 + 16 A)
whereS; (r) is given by: 200)= 2T <22
1(r) 0= 553 6aa) =
_ 2 2,4 3,.6
— 5473a*r® + 288a°r0. v (0)=- 25 (3 — 64 A)? <0

The pressure is obtained from Eq. (5) usignd the func- The sign ofa is determined by

96 a

tion B k(p(0)* +3P(0)) = == >0, (14)
2 2,4 3,.6 4,8
p(r):256a(30 — 225ar”+327a"r 71522 r°+12a%r°%) Hencea > 0 and using the previous set of inequalities, we
k (5+3ar?) (5—ar?) find that these are satisfied if
387
768a (5+30ar? — 3a?r*) (1 — ar? ’ <A< 15
_768a ) ( V50 a2 256~ © (13)

2 _ ae2)4
k(5 +3ar2) (5 — ar?) The integration constar is related toe and the radius of

Another relevant parameter in the construction of a stellathe object,R, since the pressure must be null on the surface,

model is the speed of sound defined as: that isP(R) = 0. Imposing this condition we get
dP(p) A L3y [ 30— 225y + 327y% — 152y + 12y*
v = - 1—y 3(5+ 30y —3y%) (1 —y)?

dp
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FIGURE 1. Graphical representation of the density behavior. FIGURE 3. Speed of sound behavior.

with y = aR? > 0. From here we see that the model depends ~AS we can see from Fig. 3, the speed of sound at the
only on the parametey. Using this form ofA in Eq. (15)  core for the maximal value of is the same as the speed of
and the fact thatd(y) is a monotonic decreasing function light in vacuum and decreases as the distance to the surface
for y > 0 in the range given by the inequality (15), the decreases. Moreover, whgrhas lower values, the speed of
maximum acceptable value fgr— y... takes place when sound in the interior decreases. From the figures presented
A(ymax) = (387/256), from where we gey € [0,0.02149]. here, we have that the behavior of the density, pressure and
In thisy interval, the forms of the density, pressure and spee§Peed of sound correspond to monotonic positive decreasing
of sound functions inside the star are described by the Figs. Fegular functions, which makes this model physically accept-
3. For the graphic representation of these functions we deable.
fine dimensionless variables— = = r/R, p — kR%c?p,

P — kR?P andv? — v?/c% 4
Figure 1 shows that the density is a monotonic decreasing
function and that the difference between the density in thq:rom the condition of continuity between the internal and
core and_on th? surface lowers as the valg@ (_ifecreases. the external metrics, we obtain the constaft = (1 —

The _maX|maI difference between the density in the SurfaC%GM/CQR)/Y(R) and the compactness ratio
and in the core happens fgr = 0.02149, when we have
pe = 1.0394py. GM 1

The behavior observed in Fig. 2 for the pressure isthe “~ 2p — 5(1 — B(R))
expected one for physically acceptable solutions in the case
of a perfect fluid, that is, a monotonic decreasing behaviokvhich together with the form of the density profile determine
and the existence of a region, the surface, where the pressutfee kind of objects that can be described by the model. In
is null. this case, the value of the compactness «(y) as a func-

tion of y is monotonic and decreasing, so its minimal value
e is obtained fory = 0 and its maximal value takes place for
. },:t]:nhs y = 0.02149, beingu = 0.06093. For this value of max-
—— y =0.003626402821 | imal compactness, the speed of sound at the origin is the
‘ same as the speed of the light and the value on the surface
is 0.91404¢, while the maximal value of the density ratio
core/surface ip./p, = 1.0394. This allows us to propose
that the model presented in this analysis is applicable to com-
pact low-mass stars. One of these stars is the quark star can-
didate PSR B0943- 10, with observed mass 0.024viand
radiusR = 2.6 km.

If we consider the maximum compactness value, there is
still room for a variety of different stars. For instance, if the
mass isM = 0.02 Mg, its radius will beR = 4.8464 km,
with central density, = 8.5338 x 10'7 kg/m? and surface
densityp, = 8.2107 x 10'7 kg/m?. While for a star with
FIGURE 2. Pressure for different values of thygparameter. radius 2.6 km, the mass would & = 0.1073 Mg, with

Compact stars of low mass

16y

= 16
5430y — 3y2’ (16)
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panel, withy = 0.0036. From here we see that the model is
TABLE |. Behavior inside of a star with compactness ratio= adequate and physically acceptable to represent the star PSR

0.01136. B0943 + 10.
r(m) p (10'7 kg/m?) P(102 Pa) vs(c)
0 5.4266 2.8301 0.9103 5. Conc'usions

260 5.4262 2.8016 0.9102

520 5.4251 27163 09098 Assuming a specific form for the metric functidfn(r), we

780 54232 25740 0.9092 de_rlve a relat|V|st|g stellar solutllon.for gompact stars consid-
ering a perfect fluid to model its interior. The regular and

1040 5.4205 23751 0.9083 monotonic decreasing evolution of the density, pressure and

1300 5.4170 2.1195 0.9072  gpeed of sound makes the solution physically acceptable. On

1560 5.4128 1.8075 0.9058 the other hand, we show that the speed of sound grows with

1820 5.4078 1.4393 0.9042 density and equals the speed of light in the center of the star

2080 5.4020 10151 0.9023 for the highest dens_lty case. When we apply Fhls model to
the quark star candidate PSR B0943 + 10, with mass 0.02

2340 5.3954 0.5352 0.9003

Mg and radiusR = 2.6 km, it comes out that the density
2600 5.3881 0 0.8979  at the surface i, = 5.3881 x 10'7 kg/m?, which is larger
than the nuclear saturation density, and its central density is
central density. = 2.9651 x 10'® kg/m* and surface density slightly higher than the surface density= 1.0072p;, which
p» = 2.8529x10'® kg/m?. In these two cases, the object with is a characteristic density for compact stars. Although we
higher density, approximately ten times the nuclear densityhave chosen the star PSR B0943 + 10 to apply our model, it
is the one with lower mass and radius. can be useful as well to analyse stars with compactness ratio
For the case of PSR B0943 + 10, with compactness; < 0.06093.
u = 0.01136, our analysis delivers the values for the param-
eter space in the interior of the star kisted in Table I.
Hence, even though the density is a monotonic decreagdCknowledgments
ing function, its variation is very slow since both the central
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pe = 1.0072p,, and higher than the nuclear density, which isNicolas de Hidalgo for the facilities provided during the ex-
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