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On the noncommutative energy level in a two-dimensional anharmonic oscillator
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We study quantum properties of a two-dimensional anharmonic oscillator in the space-space and momentum-momentum in noncommutative
variables. This work shows explicitly the effects of both deformations in the energy levels. The perturbation term in the Hamiltonian
manifest the main difference of the noncommutative parameters. Particular numerical values of noncommutative parameters are examined
and graphically illustrated for differentnx andny non-negative integers.
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1. Introduction

Deformations of phase space have been studied extensively
since the first proposal by Heisenberg and formalized by Sny-
der [1], this to understand the effects of noncommutativity in
many physical theories [2–4], where most of the arguments
are motivated from string theory [5]. Topics of noncommu-
tative deformations of gravity have been proposed in [6, 7],
the Seiberg-Witten map in [8,9] is used consistently to write
a noncommutative theory of gravity. In [10–12] the authors
consider an alternative to incorporate noncommutativity to
cosmological models, this through deforming the minisuper-
space variables. Apart from the advances mentioned, non-
commutativity has been included in the context of classical
and quantum mechanics [13], performing explicit calcula-
tions devoted to noncommutativity of the cannonical type
was presented by [14, 15]. In this sense, noncommutative
Minkowski space satisfy the commutation relations

[xµ, xν ] = iθµν (1)

where xµ, µ = 0, ldots, 3 and θµν is an antisymmetric
tensor. In the most of literature it is quite common to con-
sider only space coordinate deformed. Nevertheless, in this
work will be considered space-space coordinate variables and
momentum-momentum as noncommutative, this as an alter-
native to study quantum mechanical effects. In particular,
we present a two-dimensional anharmonic oscillator in non-
commutative coordinates and momentum variables and show
the eigenvalues correctionEnx,ny versus the noncommuta-
tive parametersθ andφ. Excited states are graphically illus-

trated. Section 2 is devoted to the study of the anharmonic os-
cillator under the influence of the noncommutative variables,
Sec. 3 to discussion and conclusions.

2. The Model

In quantum mechanics, there are only few problems whose
Hamiltonians can be solved exactly, for example the Har-
monic oscillator. However, small perturbations in the Hamil-
tonian may result the problem have no longer an exact solu-
tion, in these cases we have to use perturbation theory which
is one of the methods of approximation for solution to eigen-
value problems in quantum mechanics [16, 17]. The two di-
mensional oscillator have many symmetries which are man-
ifest as degeneration in the energy levels. Nevertheless, per-
turbations and noncommutativity could break these symme-
tries and produce energy level splitting. In this perturbation
theory one needs to solve the Hamiltonian of the type:

H = H0 + αH1 (2)

where H0 is the unperturbed Hamiltonian, which can be
solved exactly andαH1 the perturbation term. However, for
any arbitrary Hamiltonian, one has to use methods of approx-
imations [16], as in the special case of the anharmonic oscil-
lator

H =
1

2m
(p2

x + p2
y) +

1
2
mω2(x2 + y2) + α(x2 + y2)2 (3)

which is used frequently to test new approximation tech-
niques since the calculation of the fundamental physics as the



ON THE NONCOMMUTATIVE ENERGY LEVEL IN A TWO-DIMENSIONAL ANHARMONIC OSCILLATOR 399

eigenvalues and eigenfunctions leads to challenging mathe-
matical problems.

For our purpose, the noncommutative quantum oscillator
is characterized by a generalized canonical structure of the
form:

[x̂i, x̂j ] = iεijθ, [x̂i, p̂j ] = iσδij , [p̂i, p̂j ] = iεijφ (4)

with i, j = 1, 2, εij is totally antisymmetric tensor in two
dimensions,θ andφ are the noncommutative parameters in
phase space, [18–21] andσ = ~+ (θφ/4~). Furtherx̂1 = x̂,
x̂2 = ŷ, p̂1 = p̂x, p̂2 = p̂y.

In noncommutative space where the motivations are
mainly theoretical, one replaces the ordinary product be-
tween functions by the Moyal or star product as in [13]. The
noncommutative variables can be solved in terms of the ordi-
nary quantum mechanics variables

x̂i = xi − θ

2~
εijpj , p̂i = pi +

φ

2~
εijxj (5)

wherexi andpi satisfy the Heisenberg usual algebra andx̂i,
p̂i, θ andφ are the noncommutative variables and parameters
respectively.

In two dimensional noncommutative phase space, the co-
ordinates operators (5) are expressed in terms of commuting
coordinates and their momenta as:

x̂ = x− θ

2~
py, ŷ = y +

θ

2~
px,

p̂x = px +
φ

2~
y, p̂y = py − φ

2~
x.

(6)

For the very specific case where ad−dimensional(2 ≤
d) oscillator with the phase space variables deformed, we can
construct the two-dimensional noncommutative quantum me-
chanical anharmonic oscillator as:

Hnc =
1

2m
(p̂2

x + p̂2
y) +

1
2
mω2(x̂2 + ŷ2) + α(x̂2 + ŷ2)2

(7)

where p̂x, p̂y, x̂ and ŷ are the noncommutative terms ex-
pressed by (6) andα(x̂2 + ŷ2)2 the anharmonic term with
α the perturbation parameter.

Now let us first begin with the noncommutative unper-
turbed Hamiltonian which can be viewed in terms of usual
quantum mechanics variables in the form:

H0 =
1

2M

(
p2

x + p2
y

)
+

MΩ2

2
(
x2 + y2

)

−
(

1
2
MΩ2 θ

~
+ k

φ

~

)
(xpy − ypx) (8)

whereM , Ω andk are defined as:

M =
4m~2

(m2ω2θ2 + 4~2)
,

Ω =

√
(m2ω2θ2 + 4~2) (4m2ω2~2 + φ2)

16m2~4
,

k =
1

2M

(
4~2 −M2Ω2θ2

4~2 + φθ

)
. (9)

In order to find the eigenvalues ofH0 it is convenient to
introduce the ladder operators:

ax =

√
MΩ
2~

(
x +

ipx

MΩ

)
,

a†x =

√
MΩ
2~

(
x− ipx

MΩ

)
,

ay =

√
MΩ
2~

(
y +

ipy

MΩ

)
,

a†y =

√
MΩ
2~

(
y − ipy

MΩ

)
. (10)

Hence the unperturbed non-diagonal Hamiltonian is given
by:

H0 = ~Ω(axa†x + aya†y + 1)

−
(

MΩ2θ

2i
+ k

φ

i

) (
a†xay − a†yax

)
. (11)

The productsaxa†x andaya†y are number operators and the
Hamiltonian is non-diagonal by the mixing terma†xay−a†yax.
To diagonalize (11) we make use of unitary transformations

(
ax

ay

)
=

1√
2

(
1 −i
i −1

)(
a′x
a′y

)
(12)

then the Hamiltonian (11) becomes:

H0 = ~Ω(a′xa′†x + a′ya′†y + 1)

−
(

MΩ2θ

2
+ kφ

) (
a′†x a′x − a′†y a′y

)
. (13)

The operatorsa′i and a′†j satisfy the same relations of
commutation asai anda†j , therefore we can identifya′ia

′†
i

as number operators. The eigenvalues of this unperturbed
Hamiltonian are therefore:

E0
nx,ny

= ~Ω(nx + ny + 1)

−
(

MΩ2θ

2
+ kφ

)
(nx − ny) (14)

where nx, ny are non-negative integers. We observe that
these eigenvalues are non-degenerated.

Even in the commutative theory the anharmonic term is
non-diagonal and can’t be solve exactly, this is studied in per-
turbation theory. In view that energies are non-degenerated
we can use non-degenerated perturbation theory. To first or-
der the shifts of the energies are given by the expectation
value:

δE(1)
nx,ny

=(0) 〈nx, ny | α
(
x̂2 + ŷ2

)2 | nx, ny〉(0). (15)
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The action ofα
(
x̂2 + ŷ2

)2
on the element| nx, ny〉(0)

of the Fock basis contains a superposition of states, and one
of them is the proper| nx, ny〉(0)

α
(
x̂2 + ŷ2

)2 | nx, ny〉(0) = C(0)
nx,ny

| nx, ny〉(0)

+ other. (16)

The correction to the energies areC
(0)
nx,ny . To find this we

write (x̂2 + ŷ2) in function of the ladder operator under the
unitary transformation (12)

x̂2 + ŷ2 = 4β2a′†x a′x + 4γ2a′†y a′y + 2
(
β2 + γ2

)

− 4iβγa′xa′y + 4iβγa′†x a′†y (17)

whereβ andγ are:

β =
1
2

(√
~

MΩ
−

√
MΩθ2

4~

)
,

γ =
1
2

(√
~

MΩ
+

√
MΩθ2

4~

)
. (18)

Next, we apply(x̂2 + ŷ2) two times on| nx, ny〉(0). The
result is:

C(0)
nx,ny

= 16α

(
β4

(
nx +

1
2

)2

+ γ4

(
ny +

1
2

)2
)

+ 32αβ2γ2

(
nx + ny + 2nxny +

3
4

)
. (19)

Choosingm = ~ = ω = 1 , the nth energy level is given
by:

Enx,ny =
1
4

√
(φ2 + 4)(θ2 + 4) (nx + ny + 1)

− 1
2
(φ + θ) (nx − ny)

+ 16α

[
β2

(
nx +

1
2

)
+ γ2

(
ny +

1
2

)]2

+ 16αβ2γ2 [nxny + (nx + 1) (ny + 1)] (20)

where:

β =
1
2

[(
θ2 + 4
φ2 + 4

) 1
4

− 1
2

(
φ2 + 4
θ2 + 4

) 1
4

θ

]
,

γ =
1
2

[(
θ2 + 4
φ2 + 4

) 1
4

+
1
2

(
φ2 + 4
θ2 + 4

) 1
4

θ

]
. (21)

As stated above, the energy levels of the unperturbed
Hamiltonian are non-degenerated, this new feature generated
by the two-dimensional oscillator in a noncommutative plane
could have an important impact on our conception of the
quantum structure of physical systems. This deserves further

investigation to give an appropriate interpretation. However,
the fundamental idea is to assume that both eigenvalues and
eigenvectors of the Hamiltonian under consideration can be
expanded in powers of the perturbation parameterα to deter-
mine the coefficients in the perturbative expansions. In this
way, we show the effects of noncommutativity on energy lev-
els corrected to first order in perturbation theory performing
the spectrum of energies in terms of the noncommutative pa-
rameters, this energy can be written as:

Enx,ny
=

1
2
(θ + φ) [ny − nx]

+
1
4

√
(θ2 + 4) (φ2 + 4) (nx + ny + 1)

+
α

16

[
φ2θ2 + 8θ2 + 16√
(φ2 + 4) (θ2 + 4)

× (nx + ny + 1) + 4θ (ny − nx)
]2

+
α

(
θ2φ2−16

)2

16 (θ2+4) (φ2+4)
(2nynx+ny+nx+1) . (22)

An exhaustive analysis of quantum operators in the noncom-
mutative plane are treated in [22,23].

To illustrate the effects of the noncommtativity on this en-
ergies we consider a particular interesting example, when the
states arenx + ny = 4, which in the absence of noncommu-
tativity and perturbation term are degenerated. In the Fig. 1
we see how the energy levels are splitting as theθ, φ andα
parameters turn on. Values of the parametersθ, φ andα are
shown in the Table I.

In Fig. 1 a) column A, we show the effects of noncommu-
tativity when the perturbation parameter is off (α = 0), then
the effect of noncommutativity in the momentum column B
is the same as that of the noncommutativity of the coordi-
nates as shown in column C, breaking the degeneration in the
energy levels by the same value. This because in the absence
of perturbation, the Hamiltonian is symmetric under the ex-
change between coordinates and moments. The combination
of θ andφ, column D only amplifies the effect of splitting the
energy levels.

The effect of nonconmutativity is more significative when
the perturbation term is present Fig. 1 b). The presence of
this term breaks partially the degeneration when the noncom-
mutative parameters are zero, column E. On the other hand,
column F and G exhibit a difference between the noncom-
mutative parameters. The difference between these effects is
small, nonetheless it allows to decide in a particular situation

TABLE I. Values ofθ, φ andα.

A B C D E F G H

α 0 0 0 0 0.01 0.01 0.01 0.01

θ 0 0 0.01 0.01 0 0 0.01 0.01

φ 0 0.01 0 0.01 0 0.01 0 0.01
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FIGURE 1. Level energy effects of the noncommutativity (a)Enx,ny with α = 0, (b) Enx,ny with α = 0.01. E4,0 (dashing − tiny),
E3,1 (dotdashed), E2,2 (solid− line), E1,3 (dashing − large) andE0,4 (dashing −medium).

FIGURE 2. Enx,ny versusθ, solid line correspond toα = 0, dotted line toα = 0.2, dotdashed toα = 0.4. Figures (a) and (b) correspond
to (nx, ny) → (0, 4), (c) and (d) to(nx, ny) → (4, 0).

if any effect on the energy levels is due to the noncommu-
tative space variables, momentum variables or both. Finally,
column H shows the combined effect of both noncommuta-
tive parametersθ andφ, the effect is strong in this case as we
show in the third term of the Eq. (22).

To illustrate the dependence of the energy levels in the
noncommutative parameters (θ andφ), we show Fig. 2 for
the levelsE4,0 andE0,4. It can be seen that energy increase
with the noncommutative parameterθ and the perturbation
parameterα = 0, 0.2 and0.4. Also it can be noticed a slight
increases in the energy forφ = 1, Fig. 2 (b) and (d).

Figure 3 illustrates the dependence of the energy levels
E4,0 and E0,4 for φ and the perturbation parameterα =

0, 0.2 and0.4. Whenθ = 0 we can appreciate that the effect
of perturbation increases the energy of the levels for small
values ofφ (φ . 4), for higher values, around 4, the energy
is also increased, but this is slightly noticeable in the graphs,
furthermore withθ = 1 there is a remarkable increase in the
energy. Another characteristic to be highlighted is that for
large values ofφ the energy grows suggestively linearly with
φ, although in reality is a quadratic behavior.

3. Conclusions

In this letter we have constructed the two-dimensional an-
harmonic oscillator model and studied in a noncommutative

Rev. Mex. F́ıs. 65 (2019) 398–403
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FIGURE 3. Enx,ny versusφ, solid line correspond toα = 0, dotted line toα = 0.2, dotdashed toα = 0.4. Figures (a) and (b) correspond
to (nx, ny) → (0, 4), (c) and (d) to(nx, ny) → (4, 0).

phase space,i.e. making the transformation (6) on the phase
space we work out a Hamiltonian that depends on the non-
commutative variableŝxi and p̂i, allowing us to obtain
the equations of the two-dimensional anharmonic oscillator.
Based in previous work [14] and [15], we have found the
eigenvalues of the anharmonic oscillators in noncommutative
phase space with perturbationα(x̂2 + ŷ2)2. The introduction
of phase space deformation implies the appearance of a con-
stantθ andφ terms in the Hamiltonian and it is shown that the
resulting shift in the eigenvalue of the Hamiltonian has an ob-
servational signature. We look for the effects that can cause
noncommutativity in eigenvalues. We have already obtained
a new representation forM andΩ. The energy eigenvalues
are non-degenerate, which is unexpected and it could have an
important impact on the quantum physical systems. Such a
feature deserves further investigation to better understand the
underlying physical mechanism.

It should be noted that the effect ofθ is to increase the
energy of the states, nevertheless, these effects are more no-
torious as theα value increases. Besides,φ shows a similar
behavior but with two order of magnitude smaller than the
effect ofθ. An important characteristic that arise is that the
energy levels grows lineally withφ for intermediates values
of φ. These levels are more sensitive to the noncommutative
of coordinates than noncommutative momenta. Finally, if we
take the limitsθ → 0 andφ → 0 in the noncommutative an-
harmonic oscillator we get (3) which is the usual anharmonic
oscillator.
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