RESEARCH Revista Mexicana déskca65 (2019) 398-403 JULY-AUGUST 2019

On the noncommutative energy level in a two-dimensional anharmonic oscillator
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We study quantum properties of a two-dimensional anharmonic oscillator in the space-space and momentum-momentum in noncommutative
variables. This work shows explicitly the effects of both deformations in the energy levels. The perturbation term in the Hamiltonian
manifest the main difference of the noncommutative parameters. Particular numerical values of noncommutative parameters are examined
and graphically illustrated for differemt, andn, non-negative integers.
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1. Introduction trated. Section 2 is devoted to the study of the anharmonic os-

] . _ cillator under the influence of the noncommutative variables,
Deformations of phase space have been studied extensivelya: 3 to discussion and conclusions.

since the first proposal by Heisenberg and formalized by Sny-
der [1], this to understand the effects of noncommutativity in
many physical theories [2—4], where most of the argumentg' The Model

?rgvmc(;tn;a:(re: Iirorzn stfr mg f/ri]teokr]y\ES].b TOE'C? of nor&cic:]mém;— In guantum mechanics, there are only few problems whose
ative detformations of gravity nave been propose [6. ]Hamiltonians can be solved exactly, for example the Har-

the Selberg-vt\/rit_en tmhap n [?’ 9] 'S.tUS(Td cloonsisztegly totvr\]'memonic oscillator. However, small perturbations in the Hamil-
a noncommutative theory of gravity. In [10-12] the au O"Stonian may result the problem have no longer an exact solu-

consider an alternative to incorporate nhoncommutativity tOtion in these cases we have to use perturbation theory which

cosmological models, this through deforming the MINISUPETSq one of the methods of approximation for solution to eigen-

Sp?ncri \;a:silsleﬁ. Agar;fir:r? ;h% ?:\;ﬁncesn:ni:u?n?d, inon'alue problems in quantum mechanics [16, 17]. The two di-
commutativity nas been inciude € context o classiCal, o ysional oscillator have many symmetries which are man-

?nd chjJantE{m; ;nechanlcs [11%[],t_p$rforfrr1|r:19 eXp“C't_CallctUIa'ifest as degeneration in the energy levels. Nevertheless, per-
lons devoted to noncommutalivity of the cannonical tybe, ,4iiqng and noncommutativity could break these symme-
was presented by [14, 15]. In this sense, noncommutati

i i ) . . ies and produce energy level splitting. In this perturbation
Minkowski space satisfy the commutation relations theory one needs to solve the Hamiltonian of the type:
[, 2¥] = io" (1)

H = Hy + oH, (2)

rH — 22 i i
where z*, 11 0, ldOt.‘S’B andQ _'san antisymmetric where H, is the unperturbed Hamiltonian, which can be
tensor. In the most of literature it is quite common to con- .
; . .~ solved exactly andvH, the perturbation term. However, for
sider only space coordinate deformed. Nevertheless, in this : o
. . . ; eclpy arbitrary Hamiltonian, one has to use methods of approx-
work will be considered space-space coordinate variables and ~ . . . .

. . Imations [16], as in the special case of the anharmonic oscil-
momentum-momentum as noncommutative, this as an altefétor
native to study quantum mechanical effects. In particular,
we present a two-dimensional anharmonic oscillator in non- ;7 (p? +p2) + lmw2(x2 +4%) +a(z® +y*)? (3)
commutative coordinates and momentum variables and show 2m o2
the eigenvalues correctiof,,, ,,, versus the noncommuta- which is used frequently to test new approximation tech-

tive parameterg and¢. Excited states are graphically illus- niques since the calculation of the fundamental physics as the
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eigenvalues and eigenfunctions leads to challenging mathe- In order to find the eigenvalues &f it is convenient to

matical problems. introduce the ladder operators:

For our purpose, the noncommutative quantum oscillator
is characterized by a generalized canonical structure of the MQ iDa
form: e =\ S5 \*"" 3 )

(&5, @] = i€i;0, [&3,D5] = i00i5, [Di,D;] = i€ (4) T MQ ( iy )
a, =\ —— |T — ,

with 4,5 = 1, 2, ¢;; is totally antisymmetric tensor in two * 2h MQ
dimensionsf and ¢ are the noncommutative parameters in IViS) .
phase space, [18-21] and= /i + (0¢/4h). Furtherz; = Z, ay =\ 5 <y 4 %) ,
-%2 = @ﬁl :ﬁ$7ﬁ2 :ﬁ’tj

In noncommutative space where the motivations are MQ i
mainly theoretical, one replaces the ordinary product be- G =\ on ) (10)

tween functions by the Moyal or star product as in [13]. The

nary guantum mechanics variables by:
R 0 . ¢
Ti = Ty = 5p€ijDjs Di=Dpi+ o5 i3I 5) Hy = hQ(agal, + ayaz +1)
wherez; andp; satisfy the Heisenberg usual algebra and MO260 P
P, 8 and¢ are the noncommutative variables and parameters - < % + k@) (alay — azax) . (11)
respectively.

In two dimensional noncommutative phase space, the ¢
ordinates operators (5) are expressed in terms of commuti
coordinates and their momenta as:

i—x—i j = -i-i
= 2ﬁpy> y=y 2hpza

(6) a \ _ 1 (1 —i al,
f)r:pm+2i;yv ﬁy:pyf%l'. <ay>\@<7’ —1)(&;) (12)

For the very specific case whereladimensional(2 < then the Hamiltonian (11) becomes:
d) oscillator with the phase space variables deformed, we can
construct the two-dimensional noncommutative quantum me- Ho = hQ(d.alt + a;ag +1)
chanical anharmonic oscillator as:

Ohe productsz,af, anda,a, are number operators and the

"Hamiltonian is non-diagonal by the mixing terta, —a a,.
To diagonalize (11) we make use of unitary transformations

1 . R 1 . . . N
H, = %(pi +py) + §mw2(a:2 + %) + a2 + §%)?
(7

wherej,, p,, & andj are the noncommutative terms ex- ~ The operatorsy; and a’] satisfy the same relations of

pressed by (6) and(#? + §2)? the anharmonic term with commutation as:; and a}, therefore we can identify/a,'

« the perturbation parameter. as number operators. The eigenvalues of this unperturbed
Now let us first begin with the noncommutative unper- Hamiltonian are therefore:

turbed Hamiltonian which can be viewed in terms of usual

(M2
2

+ kgf)) (alfal, — aga;) . (13)

guantum mechanics variables in the form: Egrny = (ng +ny +1)
Ly, MO2 MQ?0
Ho = 537 (0o +py) + —— (@° +97) —< 5 +qu5> (N2 — ny) (14)
1,0 ¢
— (MY ko) (@py — ypa) (8)  wheren,,n, are non-negative integers. We observe that

these eigenvalues are non-degenerated.

where), 2 andk are defined as: Even in the commutative theory the anharmonic term is

M= 4mh? non-diagonal and can't be solve exactly, this is studied in per-
(m2w262 + 4h2)’ turbation theory. In view that energies are non-degenerated
we can use non-degenerated perturbation theory. To first or-
0= \/(m2w292 +4R?) (Am?e?h? + ¢2) der the shifts of thg energiespare given by theyexpectation
16m?ht ’ value:
b= 1 [4h? — M?Q%0? ©) )
T oM ( 4h% + ¢f > SED = (ngny | o (i +52) | ng,n,) . (15)
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The action ofa (&2 + y2)2 on the element n,,n,)©®
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investigation to give an appropriate interpretation. However,

of the Fock basis contains a superposition of states, and oribe fundamental idea is to assume that both eigenvalues and

of them is the propefn,, n, )

N ~2\ 2
a (@ +9%)" | ne,n,) @ =G0 [ ne,n,)©

+ other (16)

0)

The correction to the energies a(rIéL To find this we

My *

write (2% + §?) in function of the ladder operator under the

unitary transformation (12)

2+ 97 = 4p%alld, + 472(1;;[@; +2 (52 + 72)

— 4ifyalay + 4iﬁ’yagag @an
wheres and~ are:
5= 1 h MQo?
2 MQ 4h )7
1 h MQH?
”—2(\/1\49* 4n> (18)

Next, we apply(#2 + §2) two times on| n,, n,)(®. The
resultis:

2 2
O =16a | 5* (n. + ! +9* (ny + L
Mg, My 2 Y 2

3
+ 32a8%~? (nw + Ny + 2nn, + ) .

1 (19)

Choosingm = h = w = 1, the nth energy level is given

by:

1
Enon, = 1 (2 +4)(0%2 +4) (ny +ny + 1)

1
- §(¢ + 9) (n:c - ny)

2 1 2 1\1”
+ 16c {ﬁ (nm—&—?)—&-v (ny+2>}

+ 1605*9” [neny + (ne +1) (ny + 1)) (20)
where:
s L[(ers HRNCEZAN
2 [\ g2 +4 2\ 62+4 ’
1[/0244\T 1 /¢2+4\7
773 <¢2+4> +2(92+4> 4' 1)

As stated above, the energy levels of the unperturbed

eigenvectors of the Hamiltonian under consideration can be
expanded in powers of the perturbation paramettr deter-
mine the coefficients in the perturbative expansions. In this
way, we show the effects of noncommutativity on energy lev-
els corrected to first order in perturbation theory performing
the spectrum of energies in terms of the noncommutative pa-
rameters, this energy can be written as:

_ L

Bnny = 50049 Iny =ns)

+ VTG 4) (g 47y +1)

o[ ¢°0° +80°+16
16 [ /(62 +4) (02 + 4)

2
X (ng +ny + 1) +46 (ny — ny)

a (62¢2-16)°
16 (02+4) (¢2+4)

2nyng+ny+n,+1). (22)

An exhaustive analysis of quantum operators in the noncom-
mutative plane are treated in [22, 23].

To illustrate the effects of the noncommtativity on this en-
ergies we consider a particular interesting example, when the
states are:, + n, = 4, which in the absence of noncommu-
tativity and perturbation term are degenerated. In the Fig. 1
we see how the energy levels are splitting aséthe and«
parameters turn on. Values of the paramefers anda are
shown in the Table I.

In Fig. 1 a) column A, we show the effects of noncommu-
tativity when the perturbation parameter is aff £ 0), then
the effect of noncommutativity in the momentum column B
is the same as that of the noncommutativity of the coordi-
nates as shown in column C, breaking the degeneration in the
energy levels by the same value. This because in the absence
of perturbation, the Hamiltonian is symmetric under the ex-
change between coordinates and moments. The combination
of 8 and¢, column D only amplifies the effect of splitting the
energy levels.

The effect of nonconmutativity is more significative when
the perturbation term is present Fig. 1 b). The presence of
this term breaks partially the degeneration when the noncom-
mutative parameters are zero, column E. On the other hand,
column F and G exhibit a difference between the noncom-
mutative parameters. The difference between these effects is
small, nonetheless it allows to decide in a particular situation

TABLE |. Values off), ¢ anda.

B C D E F G H

Hamiltonian are non-degenerated, this new feature generated

by the two-dimensional oscillator in a noncommutative plane
could have an important impact on our conception of the ¢ 0 0
guantum structure of physical systems. This deserves furtheryp 0

a O 0 0 0 0.01 0.01 0.01 o0.01
0.01 o0.01 0 0 0.01 o0.01
0.01 0 0.01 0 0.01 0 0.01
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FIGURE 1. Level energy effects of the noncommutativity @&),,, », with o = 0, (b) En,, », With o = 0.01. E4 (dashing — tiny),
Es.1 (dotdashed), E2 3 (solid — line), E1 3 (dashing — large) andEy 4 (dashing — medium).
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FIGURE 2. En,, n, Versusd, solid line correspond te: = 0, dotted line too = 0.2, dotdashed tax = 0.4. Figures (a) and (b) correspond
to (le, ’I’Ly) - (07 4)‘ (C) and (d) to("z, ny) - (43 0)

if any effect on the energy levels is due to the noncommu9, 0.2 and0.4. Whenf = 0 we can appreciate that the effect
tative space variables, momentum variables or both. Finallypf perturbation increases the energy of the levels for small
column H shows the combined effect of both noncommutavalues of¢ (¢ < 4), for higher values, around 4, the energy
tive parameter8 ando¢, the effect is strong in this case as we is also increased, but this is slightly noticeable in the graphs,
show in the third term of the Eq. (22). furthermore withd = 1 there is a remarkable increase in the
To illustrate the dependence of the energy levels in th&nergy. Another characteristic to be highlighted is that for
noncommutative parameter$ 4nd ¢), we show Fig. 2 for large values of the energy grows suggestively linearly with
the levelsE, o and Ey 4. It can be seen that energy increase, although in reality is a quadratic behavior.
with the noncommutative parametérand the perturbation
parametery = 0,0.2 and0.4. Also it can be noticed a slight 3. Conclusions
increases in the energy for= 1, Fig. 2 (b) and (d).
Figure 3 illustrates the dependence of the energy leveli this letter we have constructed the two-dimensional an-
E,0 and Ey 4 for ¢ and the perturbation parameter = harmonic oscillator model and studied in a nhoncommutative
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FIGURE 3. Ey, n, Versusp, solid line correspond ta = 0, dotted line too = 0.2, dotdashed tex = 0.4. Figures (a) and (b) correspond
0 (nz,ny) — (0,4), (¢) and (d) to(nz, ny) — (4,0).

c)

phase spaceé.e. making the transformation (6) on the phase It should be noted that the effect 6fis to increase the
space we work out a Hamiltonian that depends on the norenergy of the states, nevertheless, these effects are more no-
commutative variablesi; and p;, allowing us to obtain torious as thex value increases. Besidesshows a similar

the equations of the two-dimensional anharmonic oscillatorbehavior but with two order of magnitude smaller than the
Based in previous work [14] and [15], we have found theeffect of#. An important characteristic that arise is that the
eigenvalues of the anharmonic oscillators in noncommutativenergy levels grows lineally with for intermediates values
phase space with perturbatioiz? + §%)2. The introduction  of ¢. These levels are more sensitive to the noncommutative
of phase space deformation implies the appearance of a coof coordinates than noncommutative momenta. Finally, if we
stantf and¢ terms in the Hamiltonian and it is shown that the take the limits# — 0 and¢ — 0 in the noncommutative an-
resulting shift in the eigenvalue of the Hamiltonian has an obharmonic oscillator we get (3) which is the usual anharmonic
servational signature. We look for the effects that can causescillator.

noncommutativity in eigenvalues. We have already obtained

a new representation fav/ and{2. The energy eigenvalues

are non-degenerate, which is unexpected and it could have #hcknowledgements

important impact on the quantum physical systems. Such a
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