RESEARCH Revista Mexicana dédica65 (2019) 412—-418 JULY-AUGUST 2019

The pairwise quantum correlations for teleported
state via a symmetric multi-qubit system

S. Ahadpour and F. Mirmasoudi

Department of Physics,
University of Mohaghegh Ardabili 56199-11367, Ardabil, Iran.

Received 23 December 2018; accepted 28 January 2019

The dynamics of pairwise quantum correlations for teleported state via a symmetric multi-qubit system is investigated. Using the quantum
discord, super quantum discord and concurrence to quantify quantum correlations for teleported state, some analytical and numerical results
are presented. We compare the dynamical evolutions of quantum correlations and fidelity versus the measurement strength and the number
of qubit channel for teleported state via symmetric multi-qubit model. The results show that the measurement strength and the number of
qubit can control the quantum information obtained through the quantum channel. Therefore, measurement strength can be a good option
for measuring exchanged information in the teleportation process. In addition to, this quantum correlations can provide an effective role in
qguantum teleportation.
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1. Introduction pairwise correlations for teleported state are affected by de-
coherence channels. In order to quantify the quantum cor-
One of the processes which plays a fundamental role ifejations of a bipartite system, no matter whether it is sep-
guantum information science is quantum teleportation [1-3]grable or entangled, one can use ® measure and the
Quantum teleportation, which was firstly proposed by Bensyper quantum discor&( D). QD have been considered as
netet al, is the process of transmitting an unknown quantumap, informational-theoretical measure of the quantumness of
state from a sender (Alice) to a remote receiver (Bob) using gorrelations which was proposed by Ollivier and Zurek [20].
quantum channel via local operations and classical commus) p can be described as a difference between classical cor-
nications [4, 5]. Moreover, this process can play a key rolee|ation and quantum mutual information which is captured
for quantum computing [6] and quantum networks [7]. Var-py the strong (projective) measurements. Then, when quan-
ious quantum systems have been evaluated as possible caim and classical correlations are the same, QD is zero. On
didates for quantum teleportation such as photons [8,9, 23hne hand, it is well known that non-ze€@D is sufficient to
single atoms [10], cavity-quantum-electrodynamics systemgeleport quantum information even when there is no entan-
[11,12], Jaynes-Cummings models [13] and chiral graphenegiement [21]. However, when the system is perturbed slowly
[14]. making possible not to lose its coherence completely, a rand-
The obligation of a maximally entangled quantum chan-new quantum correlation will be constructed due to the weak
nel connecting Alice and Bob is very difficult to obtain or measurement. [22]. A Weak measurement performed on one
preserve in practice since the influences of decoherence frogf the subsystems can lead t&@ D always larger than the
the environment reduces the entanglement of the quantug)p. In this paper, our attention is mainly focused on what
state shared between them [15]. We are going to considé{appens to the pairwise quantum correlations for a teleported
this model as a quantum channel in the next section angtate via symmetric multi-qubit system. We calculate the con-
discuss teleportation through it. Hence, it is very interestcyrrence, the) D and theSQD of the replica state and the
ing and necessary to study the effect of decoherence on thgjelity between the input and the output states because it is
evolution of quantum correlations and fidelity for teleportedjmportant to know how much the entanglement is transferred
state. Recently the handling on dynamics of pairwise entg the replica state, and how close this replica state is to the
tanglement have been made significant progress in differgriginal unknown state. We will find out that measurement

ent fields. One of the simplest and most important modelstrength and the number of qubit channel can be quantum in-
in quantum mechanics is the Symmetric muIti—qubit systemfgrmation controllers for teleported state.

Recently with the help of this model, researchers have been

able to investigate many of the major quantum phenomena The layout is as follows: We present symmetric multi-
including: spin squeezing [16], pairwise entanglement [17],qubit system in Sec. 2. We calculate the quantum correlations
entanglement teleportation [18] and pairwise quantum disand average fidelity for the teleportated state and analyze the
cord (D) for different types of noisy channels [19]. There- parameters on the teleportated entanglement in Sec. 3. Fi-
fore, it is of interest and importance to investigate how thenally, the main results will be summarized in Sec. 4.
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2. Description Model

We consider the Hamiltonian of one-axis twisting spin (o1_09_) = .- (1 —cosV 2y
squeezing interaction [40], 8
H = xS2. Q) — % sin % cos™ 2 g) , (12)

This term includes an ensemble §fspin-1/2 particles with
exchange symmetry whose dynamical properties can be de
scribed by collective operators, where

1

wherep = 2xt. As we will exhibit soon, these spin pairs
can be considered as good quantum channels for teleporta-
tion. There are several measures for quantum entanglement,
So=:%2 0l (aca,y,z) among them concurrence is a measure of entanglement of bi-
2 partite states. For state (3), the quantum entanglement can be

are the collective spin operators, anfj are the Pauli ma- measured by the concurrence [42],

trices for thei” spin. y describes the strength of the spin

squeezing interacption >i<m direction. The inte?action estaT)- C(p) = max(0. VA = VA2 = VA = VA, (19)

lishes pairwise correlations between all of individual spins inwhere \; > X, > A3 > )4 and )\; are the eigenvalues,

the collective spin system. In this paper, we choose the initiah(o, ® o) p* (02 ® 02) o9 is a Pauli matrix for the two-level

symmetry state, which can be prepared by the product statg/stems ang* denotes the complex conjugateofThe val-

|0) y = ]00...0), thus the wave function at timeis obtained  ues of the concurrence range go from zero for an unentangled

as state to unity for a maximally entangled state. We are going
[¥(t)) = e*ixsitm)zv. (2)  to consider this model as a quantum channel in the next sec-

To calculate quantum correlation, we first need to calculatdion and discuss teleportation through it.
the two-body reduced density matrix. According to [17],
a state with exchange symmetry and parity ensures that it§, Teleportation
two-qubit reduced state can be extracted randomly from this
state. In the{|00), [01),|10),|11)} basis, the two-quibt re- In this section, we're going to consider the previous model as
duced density matrix can be written fotkfrstate, as follows: a quantum channel and in this way we will carry out B,
the SQ D the and entanglement teleportation. It is important
0 0 to discuss how the number of particles in a channel have an
r=1 P22 P23 N (3) effect on the quantum correlations dynamics of the teleported
P32 pas state. Let us assume that we have two users, Alice and Bob,
pu 00 pas who share an entangled state given by Eq. (3). Alice is in a
The elements of the two-quibt reduced density matrix can b@ure state;,, = |V, ) (¥in|, Where,
represented by the local expectation values of the one-axis 0
twisting state [41]: [thin) = cos f|10> + €' sin — \01) (14)

pi1 O 0 pua

1 .
P11 = Z(1 + 2(012) + (012022)), (4) with0 <0 <7mand0 < ¢ < 27. The entanglement of the
input state can be measured by the concurrence and it is given

P22 = paz = 1(1 —{01:02.)) (5) by Cin = 2|sin(6/2) cos(6/2)|. The aim of Alice is to send
4 ’ this state to Bob using Eq. (3). The output state is calculated
1 as follows [43]:
pu= 70200} + o)), (6 4l
Pout = (0, ®0y)pin(oy @ 0y) (15)
pas = piy = (01402-), @) Z ' g
p1a = p1 = (01-02-). (8)  whereP,, = Tr|EFpAB]Tr[EY pAP), > P = 1. 00
For example, by calculatingo..) = Tr(po1.) and (/{/, v = O,l.‘,y, z).are the threg components of the Pauli ma-
(01.09,) = Tr(po1,02.), it can be easily verified that the trix andoy is the identity matrix. Here,
relationshipou = (1/4)(1-&-2(01.2}-1-.(0.1,20%)) is true. EX.' E° =y )|, E' = ¢~ Mo |,
pectation values for the one-axis twisting state are obtained:
N E*=|¢*)(¢7],  E®=h)rl,
(01,) = — cos =, 9)
2 where
L1+ cos-2 = EID)
(01,09,) = 5(1 + cos™ T ), (20) V2
1 and
(o1402-) = Z(1—cos™ 2 p), (11) gty = QO£ 1D
8 V2
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FIGURE 1. Teleported super quantum discord verguendz for the (a) N=10 (b) N=9 (c) N=6 (d) N=5 with the fixed valde= (7/2) and

p=0.

are bell states. Using the computational ba#i§), |11),
|10}, |01}, the density operator on Bob’s hand (out statg);
is given by:

Pour O 0 Péﬁt
22 23

= 16
Pout El)l Pout pggt 24 ’ (16)
Pout 0 0 Pout
the elements of this matrix are:
Dot = Pagt = (p11 + paa) (p22 + p33), a7)

Poit = Pat = (P14 + pa1)(p2a + p32)Sind cos o, (18)
0
2 p—

Lo 0
5 + (p11 + paa)?sin® =, (19)

P22, = (paz + p33)? cos 5

1 i
Pt = 2[(023 + ps2)’ e sin 6
+ (p1a + pa1)?e? sin 5’] ; (20)

. o0 0
P33 = (pag + p3s)” sin? b} + (p11 + pas)? cos? 9" (21)

using quantum correlations and fidelity. From Eq. (A.12), we
recognize thaSQ D explicitly depend on the measurement
strength. In the following, therefore, we first detect how the
measurement strength affects 81@ D teleportation. For this
purpose, we assume that Eqg. (14) is the maximum entangle-
ment. From Fig. 1, we know that the strength influences and
the number of qubit are not only the amplitude of $@D
teleportation but also its survival timeSQ D teleportation

can be exploited directly by the measurement strength and the
number of qubit channel, since the dynamical evolutions of
SQ@D teleportation and its stable value are closely depended
on the measurement strength and the number of qubit chan-
nel. A even-qubit states for a quantum channels make the
guantum correlation amplitude higher than odd-qubit states
inp=3.

The quality of Bob’s state will be measured in terms of
the fidelity and quantum correlations. Fidelity measures how
close the final state is to the initial state which is defined
by [44]:

F(pin; pout) = {TT { \/P?Pout\/ﬁ] }2~ (22)

By knowing the input states and the output states, we intentt is a useful indicator of the teleportation performance of a
to characterize the quality of the teleportated state Eq. (16juantum channel when the input state is a pure one. Since
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FIGURE 2. Teleported concurrence (blue, solid), average fidelity (purple, solid), quantum discord (red, solid) and super quantum discord
(green,dot-dashed) versudor the (a) N=10 (b) N=9 (c) N=6 (d) N=5 with the fixed valwe= 0.1, § = (w/2) andy = 0.
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FIGURE 3. Teleported concurrence (blue, solid), average fidelity (purple, solid), quantum discord (red, solid) and super quantum discord
(green,dot-dashed) versudor the (a) N=100 (b) N=99 (c) N=98 (d) N=97 with the fixed valte= 0.1, § = (w/2) andyp = 0.

the transported state is a pure state, the efficiency of quarfer teleported state as a functions of scaled time= 2t
tum communication is characterized by the average fidelityin different number of particles for fixe#l = (7/2) and for
which describes the fidelity averaged over all possible puran arbitrary amount op. The results numerically indicate
input states in Bloch sphere formulated as: the dependence of the teleported states Eq. (14) on the num-
o o ber of qubits. As seen from Fig. 2, concurren@d), SQD
1 _ and average fidelity of teleported state oscillate with scaled
Fo = E/dQD/F(PimPout) sin 0df. (23)  time . and have the same behavior. But the value)®f
0 0 and SQ D, which approximately are the same, are always
'greater than those of average fidelity and concurrence. Also,
we observe that the concurrencgD, SQD and average fi-
delity are symmetric with respect jo = «. The important
point is that concurrenc&)D and average fidelity behavior

If our model is used as quantum channel for teleportating a
entanglement staté,, can be expressed as:

2 .
Fu =< (pom+ paay)’

3 are different depending on the number of qubits whether odd
1, PRV 429 or even atu = 7. However,SQD approximately have the
+ 5 (Pout + Pow)” + 5 (Pour + Pouw)”™ (24)  same behavior for the number of qubits both odd or even

at . = w. Therefore, quantum correlations and average fi-

In common situation) < F,, < 1, information is distorted elity differ when the number of qubits state is initially odd
to some extent after being transmitted. For quantum commugr even. From Figs. 2, one has found that entanglement
nication, ¥, can be larger thaf2/3), which is the maximum  can fall abruptly to zero and will remain zero for a period of
of classical communication [45]. So that in order to trans-time, which is called entanglement sudden death [46]. Sev-
mit [¢in) with better fidelity than any classical communica- erg) investigations have focused on this subject [47]. @Dt
tion protocol, we require the value &, to be strictly greater  and.5QD decay continuously with respect to time, they tend
than(2/3). to zero and then gradually evolve to their maximum values

In the following, we are interesting in pairwise entangle- gy even-qubit states. This means tgab and SQD do not
ment and pairwise quantum correlations properties of teleghow a phenomenon of sudden death for teleportad state. But
ported states in terms of concurrencgl), SQD and aver-  for odd-qubit statesSQD intends to revive unlikeé) D and
age fidelity for pairs of particles extracted from a Symmetricentanglement ine = 7. From these figures, one finds that
state of multi-qubit systems. Continuing our discussion, We)D, SQD and average fidelity always coincide with each
will focus on a specific case that the teleported state Eq. (14jther in the dynamical evolutions. By comparing the behav-

is located at maximum entanglemefiy = 1. In Figs. 2(a-  jor of the concurrence) D, SQ D with average fidelity under
d) we provide concurrenc&)D, SQD and average fidelity
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the same condition, we can say thab, SQ D can be agood where the quantity’(p4 ) is defined as a measure of classi-
measure to get information from the teleported states as wedlal correlation [27]:
as fidelity.

To better see the effect of the number of qubits in the Clpas) = S(pa) — min S(paiB), (A.2)
teleported states, we plot Figs. 3 similar to as in Figs. 2 but *
with more qubits. The results are similar to the previous ongyhere {11} denotes a complete set of positive operator-
with the difference that the death and revival quantum coryalued measure (POVM) performed on the subsysinn
relations and average fidelity happen quickly for teleportedsych a way tha} HB = 1, wherep 5 denotes the bipar-
states. Therefore, the length of the chain a quantum channgle density matrlx Of a composite systedB, p4 and pp
can have a significant impact on the amount of data transepresent the density matrices of pattsnd B. The quan-
ferred via teleport stated. Also, Figs. 2 and 3 reflect wherajty 5(p) = —trplog p refers to the Neumann entropy and
the SQD is stable through the whole process under channeb(, ,) = trzp4p is the entropy of the reduced density ma-
decoherence. Therefor8()D is promising to be a nice op- trix, wheretr stands for the trace of matrix [28—30]. The total
tion for quantum information resource in the teleportation. correlation is quantified by the quantum mutual information

I(paB):
4. Conclusion I(pan) = S(pa) + S(pp) + Sy logy . (A3)

In summary, we have investigated quantum correlation teleThe reduced matrices pf, andpy are given by:
portation via symmetric multi-qubit system as a quantum

channel. UsingQD and SQD to quantify quantum corre- S(pa) = —(p11 + p22)logy(p11 + p22)

lations for teleported state, some analytical and numerical

results are presented. The results show that they are sensi- = (P33 + paa) 1ogs (a3 + paa), (A-4)
tive to any change in the degree of measurement strength and S(pg) = —(p11 + p33) logy(p11 + p33)

the number of qubit channel. In addition, we investigated

the effect of the above parameters on the average fidelity in — (p22 + paa)logy(p2z + paa). (A.5)

detail and we compared them with quantum correlation tele-
portation. When enlarging the measurement strengthpD
firstly decreases quickly to a minimum value and it then in-
creases abruptly to a maximum value ashe reached ap- €1 =
proximately tor. The important point is that its value at

1 = w depends on whether the number of qubits of the chan- e¢; =
nel is odd or even. By comparir@D, SQ D, average fidelity

The eigenvalues of the density matfXp45) are given by:

(p11 + pas) + V/(p11 + paa)2 +4lp1al?|, (A6)

(p11 + pas) — V/ (p11 + pas)® +4|p1al?|, (A7)

N~ N~ N~ N~

and concurrence, we observed thiab and SQD are good €3 = _(022 + p33) + /(paz + p3s)® + 4‘p23|2' . (A.8)
measures for quantum information processing via teleported - :
state. Moreover, the results indicate ti3&@ D can be better

aip €4 == |(p22 + p33) — V/(p2z + p33)® + 4|p23|?| . (A9)

than@D in order to maintain the exchanged quantum data

through the quantum channel. The calculation of quantum discord is complicated due to re-

quirement for optimization over all possible measurements.

Appendix Hopefully, for the simplest case of two-qubit state described
by the density matriy, the analytical expression of thigD

A. QD and SQD For Two Qubits is specified by

Here, we briefly explain the quantum discord and super quan- DQ(pap) = min(Q1, Q2), (A.10)

tum discord as measures of quantum correlations. where

4
Qj = H(pi1 + p3s3) + Z €;logy €; + Dy,
QD was originally defined as the difference between total i=1
correlation and classical correlation and it measures all non- 1+\/[1*2(p33+p44)]2+4(|p14|+|p23|)2
classical correlations. It prepares information on the quan- D1=H( 5 >7
tum nature of the correlations in a bipartite system without
emphasizing if it is entangled or separable [24-26]. Fora D, =— Zpii logh'* —H (p11 + p33),
bipartite systemd B quantum discord is given by [20]: ;

A.1 Quantum discord

DQ(pap) = I(pas) — Clpas), (A1) H(z) = —xlogs —(1 — ) logl ™.
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It is necessary to say a few important features of discordabout the subsystem after performing the measurements
Firstly discord is always non-negative and reaches zero foP?(z) = P(x) on subsysten® [31]. The SQD denoted by
the classically correlated states [31]. Secondly, discord iD,,(pap) is defined as:

asymmetric under the interchange Afand B. The main
idea of calculation discord is to extract some information
about A by reading the state aB without distributing state

of A any way. When discord is minimized, we disturb these
correlation at least and hence we extract maximum informa-

tion [32, 33].

A.2 Super quantum discord

of

Now, let us to define what we call super quantum discord
(S@D) [34]. A quantum correlation in quantum information
processing is super quantum discord if the weak measure-
ment is always larger than tiigD [35]. The weak measure- .h
ment operators are given as:

P(+£x)

wherex is the strength parameter of measureméht,and

11, are orthogonal projectors that satidfy, + II; = 7. In
addition, in the strong measurement limit we have the pro-
jective measurement operatdisi, ., P(+z) = II; and
lim, 0o P(—2) =1I5.

1 F tanh 1+ tanh
R T R (ALl
2 2 an

Dy(pa) = S(pB) — S(pas)

+ min S,(A|PB(2)). A.12
S (A[PZ(x)) (A.12)

This is a positive quantity which follows from monotonicity

the mutual information, where the weak quantum condi-

tional entropy is given by:

Sw(A|PP (2)) = P(+2)S(pajpe (+2))

+ P(=2)S(paips(-a)), (A.13)

P(+z)=trap[(Ia ® PP (+x))pap(la ® PP (+x))],
d
tre[(1a ® PB(£x))pap(la ® PB(£x))]

PAIPE )= (T4 © PB(x2))pap(Is @ PB(xx))’

Here, I 4 is the identity operator on the Hilbert spaklg .
Also, P5(+x) is the weak measurement operator performed
If we replace all projection measurements with weakon subsystenB. Unluckily, the SQ D is also difficult to cal-

measurements in classical correlation and quantum discordulate. At recent years, some researchers have tried to calcu-

it leads to a new type of quantum correlations caltggD.
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