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The dynamics of pairwise quantum correlations for teleported state via a symmetric multi-qubit system is investigated. Using the quantum
discord, super quantum discord and concurrence to quantify quantum correlations for teleported state, some analytical and numerical results
are presented. We compare the dynamical evolutions of quantum correlations and fidelity versus the measurement strength and the number
of qubit channel for teleported state via symmetric multi-qubit model. The results show that the measurement strength and the number of
qubit can control the quantum information obtained through the quantum channel. Therefore, measurement strength can be a good option
for measuring exchanged information in the teleportation process. In addition to, this quantum correlations can provide an effective role in
quantum teleportation.
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1. Introduction

One of the processes which plays a fundamental role in
quantum information science is quantum teleportation [1–3].
Quantum teleportation, which was firstly proposed by Ben-
netet al, is the process of transmitting an unknown quantum
state from a sender (Alice) to a remote receiver (Bob) using a
quantum channel via local operations and classical commu-
nications [4, 5]. Moreover, this process can play a key role
for quantum computing [6] and quantum networks [7]. Var-
ious quantum systems have been evaluated as possible can-
didates for quantum teleportation such as photons [8, 9, 23],
single atoms [10], cavity-quantum-electrodynamics systems
[11,12], Jaynes-Cummings models [13] and chiral graphenes
[14].

The obligation of a maximally entangled quantum chan-
nel connecting Alice and Bob is very difficult to obtain or
preserve in practice since the influences of decoherence from
the environment reduces the entanglement of the quantum
state shared between them [15]. We are going to consider
this model as a quantum channel in the next section and
discuss teleportation through it. Hence, it is very interest-
ing and necessary to study the effect of decoherence on the
evolution of quantum correlations and fidelity for teleported
state. Recently the handling on dynamics of pairwise en-
tanglement have been made significant progress in differ-
ent fields. One of the simplest and most important models
in quantum mechanics is the symmetric multi-qubit system.
Recently with the help of this model, researchers have been
able to investigate many of the major quantum phenomena
including: spin squeezing [16], pairwise entanglement [17],
entanglement teleportation [18] and pairwise quantum dis-
cord (QD) for different types of noisy channels [19]. There-
fore, it is of interest and importance to investigate how the

pairwise correlations for teleported state are affected by de-
coherence channels. In order to quantify the quantum cor-
relations of a bipartite system, no matter whether it is sep-
arable or entangled, one can use theQD measure and the
super quantum discord (SQD). QD have been considered as
an informational-theoretical measure of the quantumness of
correlations which was proposed by Ollivier and Zurek [20].
QD can be described as a difference between classical cor-
relation and quantum mutual information which is captured
by the strong (projective) measurements. Then, when quan-
tum and classical correlations are the same, QD is zero. On
one hand, it is well known that non-zeroQD is sufficient to
teleport quantum information even when there is no entan-
glement [21]. However, when the system is perturbed slowly
making possible not to lose its coherence completely, a rand-
new quantum correlation will be constructed due to the weak
measurement. [22]. A Weak measurement performed on one
of the subsystems can lead to aSQD always larger than the
QD. In this paper, our attention is mainly focused on what
happens to the pairwise quantum correlations for a teleported
state via symmetric multi-qubit system. We calculate the con-
currence, theQD and theSQD of the replica state and the
fidelity between the input and the output states because it is
important to know how much the entanglement is transferred
to the replica state, and how close this replica state is to the
original unknown state. We will find out that measurement
strength and the number of qubit channel can be quantum in-
formation controllers for teleported state.

The layout is as follows: We present symmetric multi-
qubit system in Sec. 2. We calculate the quantum correlations
and average fidelity for the teleportated state and analyze the
parameters on the teleportated entanglement in Sec. 3. Fi-
nally, the main results will be summarized in Sec. 4.
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2. Description Model

We consider the Hamiltonian of one-axis twisting spin
squeezing interaction [40],

H = χS2
x. (1)

This term includes an ensemble ofN spin-1/2 particles with
exchange symmetry whose dynamical properties can be de-
scribed by collective operators, where

Sα =
1
2
Σ2

i=1σ
i
α, (α ∈ x, y, z)

are the collective spin operators, andσi
α are the Pauli ma-

trices for theith spin. χ describes the strength of the spin
squeezing interaction inx direction. The interaction estab-
lishes pairwise correlations between all of individual spins in
the collective spin system. In this paper, we choose the initial
symmetry state, which can be prepared by the product state
|0〉N = |00...0〉, thus the wave function at timet is obtained
as

|ψ(t)〉 = e−iχS2
xt|0〉N . (2)

To calculate quantum correlation, we first need to calculate
the two-body reduced density matrix. According to [17],
a state with exchange symmetry and parity ensures that its
two-qubit reduced state can be extracted randomly from this
state. In the{|00〉, |01〉, |10〉, |11〉} basis, the two-quibt re-
duced density matrix can be written formX-state, as follows:

ρ =




ρ11 0 0 ρ14

0 ρ22 ρ23 0
0 ρ32 ρ33 0

ρ41 0 0 ρ44


 . (3)

The elements of the two-quibt reduced density matrix can be
represented by the local expectation values of the one-axis
twisting state [41]:

ρ11 =
1
4
(1 + 2〈σ1z〉+ 〈σ1zσ2z〉), (4)

ρ22 = ρ33 =
1
4
(1− 〈σ1zσ2z〉), (5)

ρ44 =
1
4
(1− 2〈σ1z〉+ 〈σ1zσ2z〉), (6)

ρ23 = ρ∗32 = 〈σ1+σ2−〉, (7)

ρ14 = ρ∗41 = 〈σ1−σ2−〉. (8)

For example, by calculating〈σ1z〉 = Tr(ρσ1z) and
〈σ1zσ2z〉 = Tr(ρσ1zσ2z), it can be easily verified that the
relationshipρ11 = (1/4)(1+2〈σ1z〉+ 〈σ1zσ2z〉) is true. Ex-
pectation values for the one-axis twisting state are obtained:

〈σ1z〉 = − cosN−1 µ

2
, (9)

〈σ1zσ2z〉 =
1
2
(1 + cosN−2 µ), (10)

〈σ1+σ2−〉 =
1
8
(1− cosN−2 µ), (11)

〈σ1−σ2−〉 = −1
8

(
1− cosN−2 µ

− i

2
sin

µ

2
cosN−2 µ

2

)
, (12)

whereµ = 2χt. As we will exhibit soon, these spin pairs
can be considered as good quantum channels for teleporta-
tion. There are several measures for quantum entanglement,
among them concurrence is a measure of entanglement of bi-
partite states. For state (3), the quantum entanglement can be
measured by the concurrence [42],

C(ρ) = max[0,
√

λ1 −
√

λ2 −
√

λ3 −
√

λ4], (13)

whereλ1 > λ2 > λ3 > λ4 and λi are the eigenvalues,
ρ(σ2 ⊗ σ2)ρ∗(σ2 ⊗ σ2) σ2 is a Pauli matrix for the two-level
systems andρ∗ denotes the complex conjugate ofρ. The val-
ues of the concurrence range go from zero for an unentangled
state to unity for a maximally entangled state. We are going
to consider this model as a quantum channel in the next sec-
tion and discuss teleportation through it.

3. Teleportation

In this section, we’re going to consider the previous model as
a quantum channel and in this way we will carry out theQD,
theSQD the and entanglement teleportation. It is important
to discuss how the number of particles in a channel have an
effect on the quantum correlations dynamics of the teleported
state. Let us assume that we have two users, Alice and Bob,
who share an entangled state given by Eq. (3). Alice is in a
pure stateρin = |ψin〉〈ψin|, where,

|ψin〉 = cos
θ

2
|10〉+ eiϕ sin

θ

2
|01〉, (14)

with 0 ≤ θ ≤ π and0 ≤ ϕ ≤ 2π. The entanglement of the
input state can be measured by the concurrence and it is given
by Cin = 2| sin(θ/2) cos(θ/2)|. The aim of Alice is to send
this state to Bob using Eq. (3). The output state is calculated
as follows [43]:

ρout =
∑
µν

Pµν(σµ ⊗ σν)ρin(σν ⊗ σµ) (15)

wherePµν = Tr[EµρAB ]Tr[EνρAB ],
∑

µν Pµν = 1. σν

(µ, ν = 0, x, y, z) are the three components of the Pauli ma-
trix andσ0 is the identity matrix. Here,

E0 = |ψ−〉〈ψ−|, E1 = |φ−〉〈φ−|,
E2 = |φ+〉〈φ+|, E2 = |ψ+〉〈ψ+|,

where

|ψ±〉 =
|01〉 ± |10〉√

2
and

|φ±〉 =
|00〉 ± |11〉√

2
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FIGURE 1. Teleported super quantum discord versusµ andx for the (a) N=10 (b) N=9 (c) N=6 (d) N=5 with the fixed valueθ = (π/2) and
ϕ = 0.

are bell states. Using the computational basis,|00〉, |11〉,
|10〉, |01〉, the density operator on Bob’s hand (out state),ρout,
is given by:

ρout =




ρ11
out 0 0 ρ14

out
0 ρ22

out ρ23
out 0

0 ρ32
out ρ33

out 0
ρ41

out 0 0 ρ44
out


 , (16)

the elements of this matrix are:

ρ11
out = ρ44

out = (ρ11 + ρ44)(ρ22 + ρ33), (17)

ρ14
out = ρ41

out = (ρ14 + ρ41)(ρ23 + ρ32)sinθ cos ϕ, (18)

ρ22
out = (ρ22 + ρ33)2 cos2

θ

2
+ (ρ11 + ρ44)2 sin2 θ

2
, (19)

ρ23
out =

1
2

[
(ρ23 + ρ32)

2
e−iϕ sin θ

+ (ρ14 + ρ41)2eiϕ sin θ

]
, (20)

ρ33
out = (ρ22 + ρ33)

2 sin2 θ

2
+ (ρ11 + ρ44)2 cos2

θ

2
. (21)

By knowing the input states and the output states, we intend
to characterize the quality of the teleportated state Eq. (16)

using quantum correlations and fidelity. From Eq. (A.12), we
recognize thatSQD explicitly depend on the measurement
strength. In the following, therefore, we first detect how the
measurement strength affects theSQD teleportation. For this
purpose, we assume that Eq. (14) is the maximum entangle-
ment. From Fig. 1, we know that the strength influences and
the number of qubit are not only the amplitude of theSQD
teleportation but also its survival time.SQD teleportation
can be exploited directly by the measurement strength and the
number of qubit channel, since the dynamical evolutions of
SQD teleportation and its stable value are closely depended
on the measurement strength and the number of qubit chan-
nel. A even-qubit states for a quantum channels make the
quantum correlation amplitude higher than odd-qubit states
in µ = 3.

The quality of Bob’s state will be measured in terms of
the fidelity and quantum correlations. Fidelity measures how
close the final state is to the initial state which is defined
by [44]:

F (ρin, ρout) =
{

Tr

[√√
ρinρout

√
ρin

]}2

. (22)

It is a useful indicator of the teleportation performance of a
quantum channel when the input state is a pure one. Since
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FIGURE 2. Teleported concurrence (blue, solid), average fidelity (purple, solid), quantum discord (red, solid) and super quantum discord
(green,dot-dashed) versusµ for the (a) N=10 (b) N=9 (c) N=6 (d) N=5 with the fixed valuex = 0.1, θ = (π/2) andϕ = 0.

FIGURE 3. Teleported concurrence (blue, solid), average fidelity (purple, solid), quantum discord (red, solid) and super quantum discord
(green,dot-dashed) versusµ for the (a) N=100 (b) N=99 (c) N=98 (d) N=97 with the fixed valuex = 0.1, θ = (π/2) andϕ = 0.

the transported state is a pure state, the efficiency of quan-
tum communication is characterized by the average fidelity,
which describes the fidelity averaged over all possible pure
input states in Bloch sphere formulated as:

Fa =
1
4π

2π∫

0

dϕ

π∫

0

F (ρin, ρout) sin θdθ. (23)

If our model is used as quantum channel for teleportating an
entanglement state,Fa can be expressed as:

Fa =
2
3
(ρ22

out + ρ33
out)

2

+
1
3
(ρ11

out + ρ44
out)

2 +
1
3
(ρ23

out + ρ32
out)

2. (24)

In common situation,0 ≤ Fa ≤ 1, information is distorted
to some extent after being transmitted. For quantum commu-
nication,Fa can be larger than(2/3), which is the maximum
of classical communication [45]. So that in order to trans-
mit |ψin〉 with better fidelity than any classical communica-
tion protocol, we require the value ofFa to be strictly greater
than(2/3).

In the following, we are interesting in pairwise entangle-
ment and pairwise quantum correlations properties of tele-
ported states in terms of concurrence,QD, SQD and aver-
age fidelity for pairs of particles extracted from a symmetric
state of multi-qubit systems. Continuing our discussion, we
will focus on a specific case that the teleported state Eq. (14)
is located at maximum entanglementCin = 1. In Figs. 2(a-
d) we provide concurrence,QD, SQD and average fidelity

for teleported state as a functions of scaled timeµ = 2χt
in different number of particles for fixedθ = (π/2) and for
an arbitrary amount ofϕ. The results numerically indicate
the dependence of the teleported states Eq. (14) on the num-
ber of qubits. As seen from Fig. 2, concurrence,QD, SQD
and average fidelity of teleported state oscillate with scaled
time µ and have the same behavior. But the values ofQD
and SQD, which approximately are the same, are always
greater than those of average fidelity and concurrence. Also,
we observe that the concurrence,QD, SQD and average fi-
delity are symmetric with respect toµ = π. The important
point is that concurrence,QD and average fidelity behavior
are different depending on the number of qubits whether odd
or even atµ = π. However,SQD approximately have the
same behavior for the number of qubits both odd or even
at µ = π. Therefore, quantum correlations and average fi-
delity differ when the number of qubits state is initially odd
or even. From Figs. 2, one has found that entanglement
can fall abruptly to zero and will remain zero for a period of
time, which is called entanglement sudden death [46]. Sev-
eral investigations have focused on this subject [47]. ButQD
andSQD decay continuously with respect to time, they tend
to zero and then gradually evolve to their maximum values
for even-qubit states. This means thatQD andSQD do not
show a phenomenon of sudden death for teleportad state. But
for odd-qubit statesSQD intends to revive unlikeQD and
entanglement inµ = π. From these figures, one finds that
QD, SQD and average fidelity always coincide with each
other in the dynamical evolutions. By comparing the behav-
ior of the concurrence,QD, SQD with average fidelity under
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the same condition, we can say thatQD, SQD can be a good
measure to get information from the teleported states as well
as fidelity.

To better see the effect of the number of qubits in the
teleported states, we plot Figs. 3 similar to as in Figs. 2 but
with more qubits. The results are similar to the previous one
with the difference that the death and revival quantum cor-
relations and average fidelity happen quickly for teleported
states. Therefore, the length of the chain a quantum channel
can have a significant impact on the amount of data trans-
ferred via teleport stated. Also, Figs. 2 and 3 reflect where
theSQD is stable through the whole process under channel
decoherence. Therefore,SQD is promising to be a nice op-
tion for quantum information resource in the teleportation.

4. Conclusion

In summary, we have investigated quantum correlation tele-
portation via symmetric multi-qubit system as a quantum
channel. UsingQD andSQD to quantify quantum corre-
lations for teleported state, some analytical and numerical
results are presented. The results show that they are sensi-
tive to any change in the degree of measurement strength and
the number of qubit channel. In addition, we investigated
the effect of the above parameters on the average fidelity in
detail and we compared them with quantum correlation tele-
portation. When enlarging the measurement strength,SQD
firstly decreases quickly to a minimum value and it then in-
creases abruptly to a maximum value as theµ is reached ap-
proximately toπ. The important point is that its value at
µ = π depends on whether the number of qubits of the chan-
nel is odd or even. By comparingQD, SQD, average fidelity
and concurrence, we observed thatQD andSQD are good
measures for quantum information processing via teleported
state. Moreover, the results indicate thatSQD can be better
thanQD in order to maintain the exchanged quantum data
through the quantum channel.

Appendix

A. QD and SQD For Two Qubits

Here, we briefly explain the quantum discord and super quan-
tum discord as measures of quantum correlations.

A.1 Quantum discord

QD was originally defined as the difference between total
correlation and classical correlation and it measures all non-
classical correlations. It prepares information on the quan-
tum nature of the correlations in a bipartite system without
emphasizing if it is entangled or separable [24–26]. For a
bipartite systemAB quantum discord is given by [20]:

DQ(ρAB) = I(ρAB)− C(ρAB), (A.1)

where the quantityC(ρAB) is defined as a measure of classi-
cal correlation [27]:

C(ρAB) = S(ρA)−min
ΠB

k

S(ρA|B), (A.2)

where {ΠB
j } denotes a complete set of positive operator-

valued measure (POVM) performed on the subsystemB, in
such a way that

∑
j ΠB

j = 1, whereρAB denotes the bipar-
tite density matrix of a composite systemAB, ρA andρB

represent the density matrices of partsA andB. The quan-
tity S(ρ) = −trρ log ρ refers to the Neumann entropy and
S(ρA) = trBρAB is the entropy of the reduced density ma-
trix, wheretr stands for the trace of matrix [28–30]. The total
correlation is quantified by the quantum mutual information
I(ρAB):

I(ρAB) = S(ρA) + S(ρB) + Σ4
i=1εi logεi

2 . (A.3)

The reduced matrices ofρA andρB are given by:

S(ρA) = −(ρ11 + ρ22) log2(ρ11 + ρ22)

− (ρ33 + ρ44) log2(ρ33 + ρ44), (A.4)

S(ρB) = −(ρ11 + ρ33) log2(ρ11 + ρ33)

− (ρ22 + ρ44) log2(ρ22 + ρ44). (A.5)

The eigenvalues of the density matrixS(ρAB) are given by:

ε1 =
1
2

[
(ρ11 + ρ44) +

√
(ρ11 + ρ44)2 + 4|ρ14|2

]
, (A.6)

ε2 =
1
2

[
(ρ11 + ρ44)−

√
(ρ11 + ρ44)2 + 4|ρ14|2

]
, (A.7)

ε3 =
1
2

[
(ρ22 + ρ33) +

√
(ρ22 + ρ33)2 + 4|ρ23|2

]
, (A.8)

ε4 =
1
2

[
(ρ22 + ρ33)−

√
(ρ22 + ρ33)2 + 4|ρ23|2

]
. (A.9)

The calculation of quantum discord is complicated due to re-
quirement for optimization over all possible measurements.
Hopefully, for the simplest case of two-qubit state described
by the density matrixρ, the analytical expression of theQD
is specified by

DQ(ρAB) = min(Q1, Q2), (A.10)

where,

Qj = H(ρ11 + ρ33) +
4∑

i=1

εi log2 εi + Dj ,

D1=H

(
1+

√
[1−2(ρ33+ρ44)]2+4(|ρ14|+|ρ23|)2

2

)
,

D2 = −
∑

i

ρii logρii

2 −H(ρ11 + ρ33),

H(x) = −x logx
2 −(1− x) log(1−x)

2 .
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It is necessary to say a few important features of discord.
Firstly discord is always non-negative and reaches zero for
the classically correlated states [31]. Secondly, discord is
asymmetric under the interchange ofA and B. The main
idea of calculation discord is to extract some information
aboutA by reading the state ofB without distributing state
of A any way. When discord is minimized, we disturb these
correlation at least and hence we extract maximum informa-
tion [32,33].

A.2 Super quantum discord

Now, let us to define what we call super quantum discord
(SQD) [34]. A quantum correlation in quantum information
processing is super quantum discord if the weak measure-
ment is always larger than theQD [35]. The weak measure-
ment operators are given as:

P (±x) =

√
1∓ tanh x

2
Π0 +

√
1± tanh x

2
Π1 (A.11)

wherex is the strength parameter of measurement,Π0 and
Π1 are orthogonal projectors that satisfyΠ0 + Π1 = I. In
addition, in the strong measurement limit we have the pro-
jective measurement operatorslimx→∞ P (+x) = Π0 and
limx→∞ P (−x) = Π1.

If we replace all projection measurements with weak
measurements in classical correlation and quantum discord,
it leads to a new type of quantum correlations calledSQD.
The classical correlation represents the information gained

about the subsystemA after performing the measurements
PB(x) = P (x) on subsystemB [31]. TheSQD denoted by
Dw(ρAB) is defined as:

Dw(ρAB) = S(ρB)− S(ρAB)

+ min
{P B(x)}

Sw(A|PB(x)). (A.12)

This is a positive quantity which follows from monotonicity
of the mutual information, where the weak quantum condi-
tional entropy is given by:

Sw(A|PB(x)) = P (+x)S(ρA|P B(+x))

+ P (−x)S(ρA|P B(−x)), (A.13)

with

P (±x)=trAB [(IA ⊗ PB(±x))ρAB(IA ⊗ PB(±x))],

and

ρA|P B(±x)=
trB [(IA ⊗ PB(±x))ρAB(IA ⊗ PB(±x))]
trAB [(IA ⊗ PB(±x))ρAB(IA ⊗ PB(±x))

.

Here, IA is the identity operator on the Hilbert spaceHA.
Also, PB(±x) is the weak measurement operator performed
on subsystemB. Unluckily, theSQD is also difficult to cal-
culate. At recent years, some researchers have tried to calcu-
late it. They were able to give only few explicit formulae for
general X-type two-qubit states [38,39].
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