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This pagination specifies the characteristics of Cattaneo-Christov heat diffusion model for the stagnation point flow of a Carreau nano-fluid.
The momentum equation is manifested with magneto-hydrodynamic effect and the generalised Fourier’s law and Fick’s law are considered
to manipulate the heat and mass flux with heat generation and chemical reaction. The fluid flow having infinite shear rate viscosity is
caused by the stretched sheet. The admissible transformations are invoked to alter the flow narrating coupled partial differential system
into the coupled ordinary differential system. Later on, these equations are sorted out numerically with the aid of Runge-Kutta Fehlberg
method supported with shooting scheme. The graphs are plotted that portrays the impact of fluid velocity and temperature towards various
engineering parameters which reveals that the fluid temperature increases when enlarging heat generation parameter. The validations for
the numerical values of skin friction coefficient are delineated with the existing literature. Also, the numerical findings for the local Nusselt
number are offered.
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1. Introduction

In the past few decades, researchers are interested in sev-
eral aspects of the non-Newtonian fluid which represents the
non-linear relation between shear stress and shear rate. The
flow diversity of non- Newtonian fluid model leads to uncer-
tainty related to rheological features. One cannot explain the
complete phase through single constitutive equation which
establish the relation between deformation rate and shear
stress. Shear thinning is the non-Newtonian behaviour of flu-
ids whose viscosity decreases under shear strain. The non-
Newtonian behaviour of fluids are of huge importance be-
cause of its usage at industrial and technological scales such
as melting of polymers, paints, asphalts and glues. In view
of its importance, many recent studies have been found on
the flow of Newtonian and non-Newtonian fluids. One of
the most commonly used rheological model and has certain
advantages over non-Newtonian fluid models. Further, non-
Newtonian flows from wedge phenomena arise in a number
of chemical engineering systems. The Carreau (1972) vis-
cosity model is known to be a good approximation for a large
number of shear-thinning fluids due to its capability to catch
the rheological behaviour at very low and very high shear
rates, while other idealized models, like the widely used Ost-
wald de Waele power-law model, are valid only in a limited
range of operational conditions. An analysis is carried out in
order to highlight the importance of boundary layer flow in
various industrial applications such as the condensation pro-
cess of metallic plate in a cooling bath and glass, extrusion
of plastic sheets, aerodynamic and also polymer industries.
Mehta and Rao [1] had given the remarkable conclusions
about non-Newtonian fluids in a porous medium past a verti-

cal flat plate with non-uniform surface heat flux. Pascal and
Pascal [2] give their analysis on non-Newtonian fluids along
with some non-linear shear flows. Pressure drop through
porous media in non-Newtonian purely viscous fluid flow ex-
amined by Sabiri and Comiti [3]. Some later works on the
boundary layer flow of non-Newtonian fluids are presented in
Refs. [4-10]. Etemad [11] explored the non-Newtonian fluid
flow and heat transfer in three dimensional laminar phenom-
ena. In case of ducts and porous media, Liu and Masliyah
[12] gave their analysis on non-Newtonian fluid flow. Tur-
bulent flow in a membrane tube with mass transfer in New-
tonian and non-Newtonian fluids studied by Parvatiyar [13].
Slip-flow boundary conditions for non-Newtonian lubrication
layers has been studied by Anderson and Valnes [14]. Also,
some useful applications regarding non-Newtonian flow is
observed by Hoyt [15]. Papalexandris [16] elaborates the
study of wedge-induced detonations in numerical aspects.
The theme beyond the flow of viscous incompressible fluid
with thermal conductivity and temperature dependent viscos-
ity past a permeable wedge aside by uniform surface heat flux
is studied by Hossainet al. [17]. In Carreau model, fall of
non-spherical particles in a liquid is studied by Machacet
al. [18]. Moreover, various aspects regarding Carreau fluid
models are investigated in Refs. [19-25]. The effects of peri-
staltic transport with magnetic field in a Carreau fluid is re-
ported by Hayatet al. [26]. A numerical analysis is carried
out upon sheardependent non-Newtonian fluids in compliant
vessels reported by Hundertmark-Zauskova and Lukacova-
Medvid’ova [27].

The Fourier laws are used frequently, to determine
the characteristics of heat transfer phenomena. Cattaneo-
Christov heat flux model is the rectified form of the Fourier
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law which is used to determine the specifications of heat
flux model. A useful results regarding thermal convection
in a Newtonian fluid with Cattaneo-Christov heat flux equa-
tions are explored by Straughan [28]. He observed that ther-
mal relaxation parameter is notable as Cattaneo number in-
creases Also, Straughan extended his work by considering
the Cattaneo-Christov heat flux model in transverse waves
[29]. Cattaneo equations with thermal stratification are anal-
ysed and their closed form solutions are discussed by Al-
Qahtani and Yilbas [30]. The Cattaneo-Christov heat flux
is applied to Newtonian fluids and uniqueness solutions are
discussed by Tibullo and Zampoli [31]. The analytical solu-
tions of thermal slip effects of a Maxwell fluid along with
Cattaneo-Christov heat diffusion are discussed by Hanet
al. [32]. Also, the effects of elasticity, slip coefficient, and
Prandtl number are shown through graphical representation.
Haddad [33] examined the heat flux in a Brinkman porous
channel embedded with fluid inertia. Shivakumaraet al.
[34] observed the thermal convection with Cattaneo effects
in the solid and found that its impacts on the nature of con-
vective instability are efficient. Mustafaet al. [35] studied
the rotating flow upon linearly stretching disk. Nanofluids
are taken into account to determine the behaviour of heat
transfer rate through Cattaneo-Christov heat diffusion for-
mula. Various specifications of Cattaneo-Christov heat flux
model are discussed by Hayatet al. [36-37]. The charac-
teristics of heat flux through Cattaneo-Christov model in a
porous stretching sheet is analysed by Nadeem and Muham-
mad [38]. The Cattaneo-Christov model with non-Newtonian
fluids through stretching regimes is carried out by Abbasi and
Shehzad [39]. A theoretical approach for Cattaneo-Christov
model embedded with different geometries are observed by
Reddyet al. [40]. Li et al. [41] examined the heat flux
for magneto-hydrodynamic (MHD) viscoelastic fluid through
stretching sheet. Here, the energy equation have been ob-
tained with the help of Cattaneo-Christov theory. Ramzanet
al. [42] observed the homogenous-heterogeneous reactions
for the third grade fluid merged with Cattaneo-Christov heat
flux model. The specifications of heat transfer via Cattaneo-
Christov model induced by a stretching cylinder is studied
by Malik et al. [43]. The numerical scheme for Williamson
fluid is discussed and Cattaneo-Christov model is applied to
extract the characteristics of heat transfer Salahuddinet al.
[44]. The heat conduction via Cattaneo-Christov heat flux
through parallel plates in the presence of MHD is observed
by Dogonchi and Ganji [45]. Upadhyaet al. [46] studied
the Cattaneo-Christov heat flux on time dependent fluids with
MHD effects. The numerical approach for MHD fluid flow
induced by a cone emerged with Cattaneo-Christov heat flux
model is examined by Kumaret al. [47]. Further, the im-
portance of Cattaneo-Christov heat diffusion is highlighted
in Refs. [48-51].

As the heat conduction laws given by the French math-
ematician named Jean-Baptiste Joseph Fourier (1768-1830)
have been used to investigate the heat transfer mechanism
since two centuries in suitable conditions. Later on it was

analysed that this law is not applicable in the case when the
initial state is disturbed because it affects the whole system.
To overhaul this problem, Cattaneo (1911-1979) had played
his role to modify the Fourier law to get the hyperbolic equa-
tion by invoking thermal relaxation time. The above litera-
ture tells us that no work is done on Cattaneo-Christov heat
diffusion model with heat generation and chemical reaction
in concern with the motion of the Carreau nano-fluid. To fill
the gap, this report is presented in order to ascertain the heat
and mass flux rate through Cattaneo-Christov heat and mass
diffusion formulas. In Sec. 1, the relevant literature survey
is presented in order to enhance the importance of current
work. In Sec. 2, the flow describing equations are mod-
elled mathematically and the numerical techniquei.e. Runge-
Kutta Fehlberg method along with shooting scheme is ap-
plied to sort out the governing partial differential equations
in Sec. 3. The impacts of various physical parameters upon
fluid velocity, temperature and concentration are presented
through graphs. Also, the numerical values for the skin fric-
tion coefficient and local Nusselt number are offered in Sec.
4. In Sec. 5, the results and discussion for the impacts of
aforementioned physical parameters are exhibited. Finally,
the concluding remarks are done in Sec. 6.

2. Mathematical formulation

The beauty of mathematics allows us to express the upper-
convective material derivative for any vectors as follows.

DA

Dt
=

∂A

∂t
+ ~V · ~∇A−A · ~∇~V + (~∇)A, (1)

where~V is the velocity vector andA is supposed to be vec-
tor form of heat and mass flux. This report is concerned with
the Cattaneo-Christov model which specifies the thermal and
concentration diffusion. Then the structure in different gen-
eralised version of Fourier’s law and Ficks’s law considering
the Cattaneo-Christov form as Refs. [48-51]

q + λH

[
∂q

∂t
+ ~V · ~∇q − q · ~∇~V

+ (~∇ · ~V )q
]

= −kf
~∇T, (2)

J + λM

[
∂J

∂t
+ ~V · ~∇J − J · ~∇~V

+ (~∇ · ~V )J
]

= −DB
~∇C, (3)

where normal heat and mass flux are denoted byq and J ,
kf is the thermal conductivity,DB is the Brownian diffusion,
λH andλM are the relaxation time of heat flux and mass flux.
It is important to note down thatλH = 0 andλM = 0 lead (2)
and (3) to classical Fouriers law and Fick’s law, respectively.
Now by inserting the condition for incompressible fluidsi.e.
∇ · V = 0 and steady state clause∂q/∂t = 0, ∂J/∂t = 0,
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we get the new form of (2) and (3) as

q + λH [~V · ~∇q − q · ~∇~V ] = −kf
~∇T, (4)

J + λM [~V · ~∇J − J · ~∇~V ] = −DB
~∇C, (5)

later on we will deduce the energy and mass equations with
the help of Eq. (4) and (5). Consider the boundary layer flow
for an incompressible Carreau fluid model impinged on a
stretching surface where the flow is launched by the stretched
sheet. The coordinate system is designed in a way thatx-axis
is taken to be along stretching sheet whereasy-axis is per-
pendicular to the sheet and the fluid overcomes aty > 0.
The uniform magnetic fieldB0 is invoked alongy-direction
whereas the induced magnetic fieldB0 is supposed to be neg-
ligible for lesser magnetic Reynold’s number. The sheet ve-
locity is considered asuw(x) = cx with c > 0 as stretching
rate and the exterior velocity asu∞ = ax where a is con-

stant. The constitutive equations for the generalized Carreau
model are taken as

τ̂ = −pI + µ(γ̇)Al,

µ = µ0

[
β ∗+(1− β∗)[1 + (Γγ̇)2]

](n−1)/2

, (6)

whereτ̂ is the Cauchy stress tensor,p is the pressure,I is the
identity tensor,A1 = (gradV ) + (gradV )T the first Rivlin
Erickson tensor,̇γ =

√
(1/2)Π with Π as a second invariant

strain tensor and defined asΠ = trace(A2
1), n the power law

index,Γ a material time constant andβ∗ = (µ∞/µ0) the vis-
cosity ratio parameter withµ0, the zero shear rate viscosity
andµ∞ the infinite shear rate viscosity and taken to be less
than one here.

By manipulating the above assumptions and usual bound-
ary layer approximations, the governing equations for current
problem are given as

∂u

∂x
+

∂v

∂y
= 0, (7)

u
∂u

∂x
+ v

∂u

∂y
= u∞

du∞
dx

+ υ

(
∂2u

∂y2

)[
β∗ + (1− β∗)

{
1 + Γ2

(
∂u

∂y

)2 }(n−1)/2]

+ υ(1− β∗)Γ2

(
∂2u

∂y2

)(
∂u

∂y

)2

(n− 1)
{

1 + Γ2

(
∂u

∂y

)2 }(n−3)/2

+
σB2

0

ρ
(u∞ − u), (8)

u
∂T

∂x
+ v

∂T

∂y
+ λH

(
u

∂u

∂x

∂T

∂x
+ v

∂v

∂y

∂T

∂y
+ u

∂v

∂x

∂T

∂y
+ v

∂u

∂y

∂T

∂x
+ 2uv

∂2T

∂x∂y
+ u2 ∂2T

∂x2
+ v2 ∂2T

∂y2

)
= αf

∂2T

∂y2

+ τ

(
DB

∂C

∂y

∂T

∂y
+

DT

T∞

(
∂T

∂y

)2 )
+

Q0

ρcp
(T − T∞), (9)

u
∂C

∂x
+ v

∂C

∂y
+ λM

(
u

∂u

∂x

∂C

∂x
+ v

∂v

∂y

∂C

∂y
+ u

∂v

∂x

∂C

∂y
+ v

∂u

∂y

∂C

∂x
+ 2uv

∂2C

∂x∂y
+ u2 ∂2C

∂x2
+ v2 ∂2C

∂y2

)
= DB

∂2C

∂y2

+
DT

T∞
∂2T

∂y2
−K0(C − C∞), (10)

whereαf = kf/(ρcp)f , τ = (ρc)s/(ρc)f , Q, K are the
thermal diffusivity with(ρcp)f as the effective heat capacity
of the fluid, ratio of nanoparticle heat capacity and the base
fluid heat capacity, heat generation rate, and chemical reac-
tion rate. The boundary conditions are

u=uw=cx, v=0, T=Tw at y = 0,

u=u∞→ax, T→T∞ C→C∞ as y→∞, (11)

The following dimensionless quantities are used to
change the governing partial differential equations into
scheme of ordinary differential equations.

η = y

√
c

υ
, ψ(x, y) = x

√
cυf(η),

θ(η) =
T − T∞
Tw − T∞

, φ(η) =
C − C∞
Cw − C∞

, (12)

whereψ is to notify as stream functions which is supposed to
be satisfied by the continuity equations withu = ∂ψ/∂y and
v = −∂ψ/∂x. By using the above transformations, the mo-
mentum and energy and mass equations with the concerned
boundary conditions are

[β∗+(1−β∗){1+We2(f ′′)2}(n−3)/2{1+nWe2(f ′′)2}]f ′′′

+ ff ′′ − (f ′)2 + α2 + M2(α− f ′) = 0, (13)

1
Pr

θ′′ + fθ′ + Nbθ
′φ′ + Nt(θ′)2 − δe(ff ′θ′ + f2θ′′)

+ γθ = 0, (14)

φ′′ + LePrfφ′ +
Nt

Nb
θ′′ − Le Prδc(ff ′φ′ + f2φ′′)

− Leδφ = 0, (15)
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here,

α =
a

c
, M2 =

σB2
0

ρc
, We2 = Γ2 c3x2

υ

Pr =
υ

αf
, Nb =

τDB

υ
(Cw − C∞),

Nt =
τDT

υT∞
(Tw − T∞), δe = cλH , δc = cλM ,

Le =
αf

DB
γ =

Q0

ρCp

(υ

c

)
and δ =

K0

cx2

are the velocity ratio parameter, magnetic field parame-
ter, Weissenberg number, Prandtl number, Brownian diffu-
sion coefficient, thermophoresis parameter, temperature re-
laxation time parameter, nanoparticle volume fraction, Lewis
number, heat generation parameter and chemical reaction pa-
rameter.

The corresponding boundary conditions are as follows:

f(η) = 0, f ′(η) = 1, θ(η) = 1, φ(η) = 1 at η = 0,

f ′(η) → α, θ(η) → 0, φ(η) → 0 as η →∞. (16)

The involved physical quantities of engineering are skin
friction coefficient and local Nusselt number and is defined
as

Cfx =
2τw

ρu2
w(x)

, Nux =
xqw

k(Tw − T∞)
, (17)

whereτw is the surface shear stress andqw the surface heat
flux given by

τw=µ0

(
∂u

∂y

)[
β∗+(1−β∗)

{
1+Γ2

(
∂u

∂y

)2 }(n−1)/2]

qw = −k(Tw − T∞)
√

u0

xυ
θ′(0), (18)

the dimensionless form of the local skin friction coefficient
and the local Nusselt number are defined as:

Re1/2Cfx=f ′′(0)[β∗+(1−β∗){1+We2(f ′′(0))2}(n−1)/2],

Re−1/2Nux=− θ′(0), (19)

where Rex = xuw/υ is the Reynolds number.

3. Computational algorithm

The governing equations Eqs. (11)-(13) are highly nonlinear
in coupled form. The shooting algorithm with fourth-fifth or-
der Runge-Kutta integration scheme is proposed in order to
get the solution of this system. In this regard, we consider the
following steps as follows:

f ′′′ =
−α2+(f ′)2−ff ′′−M2(α−f ′)

[β∗+(1− β∗){1 + nWe2(f ′′)2}{1 + We2(f ′′)2}(n−3)/2]
, (20)

θ′′ = − (fθ′ + Nbθ
′φ′ + Nt(θ′)2 − δeff ′θ′ + γθ)(

1
Pr − δef2

) , (21)

φ′′ = −

(
LePrfφ′ + Nt

Nb
θ′′ − LePrδcff ′φ′ − Leδφ

)

(1− LePrδcf2)
. (22)

The above set of higher order differential equations descend to a set of first order ordinary differential equations, we introduce
new variables as follows.

y1 = f, y2 = y′1 =
df

dη
, y3 = y′2 =

d2f

dη2
,

y5 = y′4 =
dθ

dη
, y6 = φ, y7 = y′6 =

dφ

dη
, (23)

by substituting these expressions, we get

y′1 = y2

y′2 = y3

y′3 =
y2
2 − y1y3 − α2 −M(α− y2)

β∗ + (1− β∗)[1 + nWe2y2
3 ](n−3)/2

y′4 = y5
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y′5 = − (y1y5 + Nby5y7 + Nty
2
5 − δey1y2y5 + γy4)(

1
Pr − δcy2

1

)

y′6 = y7

y′7 = −

(
LePry1y7 − Nt

Nb
y′5 − LePrδcy1y2y7 − Leδy6

)

(1− LePrδcy2
1)

(24)

the transformed boundary conditions are

y1(η) = 0, y2(η) = 1, y4(η) = 1, y6(η) = 1 at η = 0,

y2(η) → α, y4(η) → 0, y6(η) → 0 as η →∞, (25)

the initial guesses for the values off ′′(0), θ′(0) andφ′(0) are
y3(0) = u1, y5(0) = u2, y7(0) = u3.

The following procedure is done in order to solve the
above system of equations by shooting method:

• Firstly, choose the values ofη∞ between 5 and 10.

• Then we pursue the initial guesses fory3(0), y5(0) and
y7(0). Initially, y3(0) = y5(0) = y5(0) = 1 are
adopted.

• Then we sort out the ODE’s by considering fourth-fifth
order Runge-Kutta technique.

• Finally, the absolute variations in the given and cal-
culated values ofy3(∞), y5(∞), and y7(∞) that is
boundary residuals are calculated. The solution is said
to be convergent if it lies below the tolerance error,
which is considered to be10−5.

4. Graphical representation

FIGURE 1. Influence ofM onf ′(η) for α = 0.01.

FIGURE 2. Influence ofβ∗ onf ′(η) for α = 1.

FIGURE 3. Influence ofM onθ(η).
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FIGURE 4. Influence ofβ∗ onθ(η).

FIGURE 5. Influence of Pr onθ(η).

FIGURE 6. Influence ofWe onθ(η).

FIGURE 7. Influence ofγ onθ(η).

FIGURE 8. Influence ofLe onφ(η).

FIGURE 9. Influence ofNb onφ(η).
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FIGURE 10. Influence ofNt onφ(η).

5. Results and discussion

The Carreau nano-fluid with stagnation point flow towards a
stretching sheet is debated in the present report. The Carreau
nano-flow model is manifested with externally applied mag-
netic field. The energy and mass equations are presumed by
the Cattaneo-Christov heat and mass flux model. The thermal
boundary layer is executed with heat generation and chem-

ical reaction. The laws of conversation of momentum and
energy are used to describe the flow field that can be shown
in the form of coupled partial differential equations. Later
on, such equations are further reformed to coupled ordinary
differential equations by declining the independent variables.
The similarity transformation is considered in order to reduce
the number of independent variables. The numerical results
for the reduced system are sorted out by means of shooting
technique with Runge-Kutta Fehlberg method. The involved
physical parameters areM (magnetic field parameter),β∗

(viscosity ratio parameter),NB (Brownian motion parame-
ter), Nt (thermophoresis parameter),γ (heat generation pa-
rameter). The impacts of both theM and β∗ on the Car-
reau fluid velocity are investigated and provided by means of
Figs. 1-2. Further, the influences ofM , β∗, Pr,We andγ on
the Carreau fluid temperature are explored and the results in
this context are presented in Figs. 3-7. Also, the fluctuation
in Carreau fluid concentration towardsLe, Nb andNt is ac-
quired and shown in the form of Figs. 8-10. Now in detail,
Fig. 1 indicates the influence ofM on Carreau fluid velocity.
It is testified that the fluid velocity shows the decline values
towardsM whenM(= 0.0, 0.1, 0.3, 0.5) and this is due to
the fact that increasing the values ofM causes the enhance-
ment of Lorentz force. This is a kind of resistive force that
oppose fluid particles to move in a free manner and as result
the average velocity of the Carreau fluid gets diminished. The
influence ofβ∗ on a Carreau fluid velocity is observed and the
fluctuation in this regard is captured in Fig. 2. When we iter-
ateβ∗(= 0.1, 0.3, 0.5, 0.7), the velocity profile declines. The
Carreau fluid temperature relies upon the variation ofM , β∗,
Pr,We, γ. To be more specific, the effects ofM on a Carreau

TABLE I. The numerical values for the skin friction in comparison with [52].

M We α β∗ −(1/2)
√

ReCfx Current results

n = 1.75 n = 1.75

0 3 0.3 0.001 -1.053800 -1.0537

0.3 3 0.3 0.001 -1.090060 -1.0901

0.6 3 0.3 0.001 -1.194930 -1.1954

0.8 3 0.3 0.001 -1.298290 -1.29830

0.3 2 0.3 0.001 -1.012570 -1.0126

0.3 3 0.3 0.001 -1.090060 -1.0901

0.3 3.5 0.3 0.001 -1.125350 -1.1252

0.3 4 0.3 0.001 -1.158450 -1.1586

0.3 3 0.7 0.001 -1.090060 -1.0901

0.3 3 1.3 0.001 -0.490977 -0.4910

0.3 3 0.3 0.001 0.598867 0.5989

0.3 3 0.7 0.001 1.827620 1.8277

0.3 3 1.3 0.001 -1.090210 -1.0901

0.3 3 1.7 0.001 -1.059190 -1.0592

0.3 3 0.3 0.0 -1.024390 -1.0244

0.3 3 0.3 0.2 -1.007155 -1.0073
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TABLE II. The numerical values of local Nusselt number(−θ′(0)) towards various values of Pr,Nt andNb.

Pr Nt Nb Re−1/2Nux = −θ′(0)

1.0 0.2 0.3 0.31492

1.0 0.2 0.3 0.2141

1.0 0.2 0.3 0.2765

1.0 0.2 0.3 0.3166

3.0 0.3 0.3 0.3234

3.0 0.3 0.3 0.2902

3.0 0.3 0.3 0.2861

3.0 0.3 0.3 0.2397

5.0 0.5 0.3 0.2921

5.0 0.5 0.3 0.3327

5.0 0.5 0.3 0.2690

fluid temperature is inspected and the results are presented in
the form of Fig. 3. The enhancing values of causes uplift in
the Carreau fluid temperature. Figure 4 indicates the fluctu-
ation in Carreau fluid temperature due toβ∗ and thus testi-
fies that the temperature enlarges asβ∗(= 0.1, 0.3, 0.5, 0.7).
Figures 5-6 show the impacts of Pr andWe upon Carreau
fluid temperature. This presents the picture of temperature
profile getting decline towardsPr = (0.0, 0.1, 0.3, 0.5) and
We = (0.0, 0.1, 0.3, 0.5). Figure 7 is prepared to describe
the link between heat generation and Carreau fluid tempera-
ture. On iterating the values ofγ i.e. γ(= 0.0, 0.1, 0.3, 0.5),
one can observe that Carreau fluid temperature enhances.
This is due to the fact that the production of heat energy emits
heat particles that causes increase in temperature. The influ-
ence of Carreau fluid concentration towardsLe is offered in
Fig. 8. This picture shows the decaying trend for Carreau
fluid concentration towardsLe(= 0.0, 0.1, 0.3, 0.5). Figure 9
depicts the fluctuation in the fluid concentration correspond-
ing to multiple values of Brownian motion parameterNb.
The larger values ofNb(= 0.0, 0.1, 0.3, 0.5) causes reduc-
tion in the fluid concentration as well as the related bound-
ary layer thickness. This is because of the Brownian force
confined the fluid particles to move in the reverse direction
of the concentration gradient and causes the fluid more con-
sistent. Thus, the uplifting values ofNb causes the lower
concentration gradient and more uniform concentration pro-
file. Figure 10 delineated the impacts ofNt on the Carreau
fluid concentrationφ(η). Here the fluid concentration and the
corresponding boundary layer thickness increases for higher
values ofNt i.e. Nt(= 0.0, 0.1, 0.3, 0.5). Physically the ther-
mophoretic force implies to oppose the nanoparticles against
the direction of temperature gradient. This may also cause
the nano-particles in a fluid concentration to be more non-
unifrom. Thus the concentration gradient enhances for large
values ofNt and causes for more non-uniform fluid concen-
tration. The variation of skin friction coefficient correspond-
ing to various values ofM , We, α andβ∗ are shown in Ta-
ble I. It is testified that excellent match is captured for current

results with the existing literature [52]. Also, the numerical
values for the local Nusselt number towards various values of
Pr,Nt andNb are delineated in Table II.

6. Concluding remarks

The current report elaborates the specification of Cattaneo-
Christov heat diffusion formula merged with the Carreau
nano-fluid flow at a stagnation point. The energy and mass
equations are manifested with heat generation and chemical
reaction whereas the flow is caused by the stretching sheet.
The governing PDE’s descend to ODE’s through similarity
transformations. The numerical results are deduced with the
aid of Runge-Kutta Fehlberg technique with shooting profi-
ciency. The numerical findings for the skin friction coeffi-
cient and the local Nusselt number are deduced. The key
points are as follows:

• The Carreau fluid velocity trend is observed as de-
clined towardsM .

• The higher values ofβ∗ causes the decreasing trend for
Carreau velocity profile.

• The Carreau fluid temperature enhances corresponding
to higher values ofM .

• It is observed that the Carreau fluid temperature in-
creases by upliftingβ∗ andγ .

• The temperature trend for the Carreau fluid model tes-
tifies the decline towards Pr andWe.

• The Carreau fluid concentration profile decreases for
growing values ofLe.

• The investigation tells us that Carreau concentration
trend diminish when enlargingNb.

• On uplifting the values ofNt, we get the increasing
trend for Carreau concentration profile.
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Nomenclature

u, v Velocity component inx−, y−directions (m/s)

x Direction along the surface (m)

y Direction normal to the surface (m)

T Temperature of the fluid (K)

Tw Temperature at sheet (K)

µ Dynamic viscosity (Ns/m2)

cp Specific heat capacity at constant pressure (J/ KgK)

λH Relaxation time of heat flux

kf Thermal conductivity (W/mK)

(ρcp)f Effective heat capacity (Kg/ m3K)

T∞ Temperature away from the sheet (K)

ρ Density of the fluid (Kg/m3)

DB Brownian diffusion coefficient

Nb = τDB(Cw−C∞)
υ

Brownian motion parameter

δε = cλH Relaxation time parameter of temperature

αf =
kf

(ρcp)p
Coefficient for thermal diffusion (m2/s)

f ′(η) Dimensionless velocity

φ(η) Dimensionless temperature

σ Electrical conductivity

q Heat flux

Le =
αf

DB
Lewis number

δc = cλM Nano-particle volume fraction

Γ Material time constant

M2 =
σB2

o
ρc

Magnetic field parameter

υ Kinematic viscosity (m2/s)

γ, δ Dimensionless parameter

η Similarity variable

ko Reaction rate

Rex = xuw
υ

Reynold number

τ = (ρc)s

(ρc)f
Ratio of nanoparticles heat capacity and the base fluid heat capacity

qw Surface heat flux

τw Surface shear stress

DT Thermophoresis diffusion coefficient

Nt = τDT (Tw−T∞)
υT∞ Thermophoresis parameter

β∗ = µ∞
µs

Viscosity ratio parameter

u∞ = ax, (a > 0) Velocity of exterior flow

α = a
c

Velocity ratio parameter

We2 = c3Γ2x2

υ
Weissenberg number

µ0, µ∞ Zero and infinite shear rate viscosity

Pr = υ
αf

Prandtl number
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Computers and Mathematics with Applications60 (2010) 572-
590.

28. B. Straughan,International Journal of Heat and Mass Transfer
53 (2010) 2808-2812.

29. B. Straughan,Physics Letters A374(2010) 2667-2669.

30. H. Al-Qahtani, and B. S. Yilbas,Physica B: Condensed Matter,
405(2010) 3869-3874.

31. V. Tibullo and V. Zampoli,Mechanics Research Communica-
tions, 38 (2011) 77-79.

32. S. Han, L. Zheng, C. Li, and X. Zhang,Applied Mathematics
Letters, 38 (2014) 87-93.

33. S. A. M. Haddad,International Journal of Heat and Mass
Transfer, 68 (2014) 659-668.

34. I. S. Shivakumara, M. Ravisha, C. O. Ng, and V. L. Varun,In-
ternational Journal of Non-Linear Mechanics, 71(2015) 39-47.

35. M. Mustafa, J. A. Khan, T. Hayat, and A. Alsaedi,Journal of
Molecular Liquids211(2015) 119-125.

36. T. Hayat, K. Muhammad, M. Farooq and A. Alsaedi,Journal
of Molecular Liquids220(2016) 216-222.

37. T. Hayat, M. I. Khan, M. Farooq, T. Yasmeen, and A. Alsaedi,
Journal of Molecular Liquids220(2016) 49-55.

38. S. Nadeem, and N. Muhammad,Journal of Molecular Liquids,
224(2016) 423-430.

39. F. M. Abbasi, and S. A. Shehzad,Journal of Molecular Liquids,
220(2016) 848-854.

40. J. R. Reddy, V. Sugunamma, and N. Sandeep,Journal of Molec-
ular Liquids, 223(2016) 1234-1241.

41. J. Li, L. Zheng, and L. Liu,Journal of Molecular Liquids, 221
(2016) 19-25.

42. M. Ramzan, M. Bilal, and J. D. Chung,Journal of Molecular
Liquids, 223(2016) 1284-1290.

43. R. Malik, M. Khan, and M. Mushtaq,Journal of Molecular
Liquids, 222(2016) 430-434.

44. Salahuddin, M. Y. Malik, A. Hussain, S. Bilal, and M. Awais,
Journal of magnetism and magnetic materials401(2016) 991-
997.

45. A. S. Dogonchi, and D. D. Ganji,Journal of the Taiwan Insti-
tute of Chemical Engineers, 80 (2017) 52-63.

46. S. M. Upadhya, C. S. K. Raju, and S. Saleem,Results in Physics
9 (2018) 779-786.

47. K. A. Kumar, J. R. Reddy, V. Sugunamma, and N. Sandeep,
Alexandria Engineering Journal(2016).

48. M. A. Meraj, S. A. Shehzad, T. Hayat, F. M. Abbasi, and A.
Alsaedi,Applied Mathematics and Mechanics, 38 (2017) 557-
566.

49. S. M. Upadhya, C. S. K. Raju, S. A. Shehzad, and F. M. Abbasi,
Powder Technology340(2018) 68-76.

50. P. D. Prasad, S. V. K. Varma, C. S. K. Raju, S. A. Shehzad, and
M. A. Meraj, Rev. Mex. Fis64 (2018) 519-529.

51. V. Nagendramma, C. S. K. Raju, B. Mallikarjuna, S. A. She-
hzad, and A. Leelarathnam,Applied Mathematics and Mechan-
ics 39 (2018) 623-638.

52. M. Khan, H. Sardar, and M. M. Gulzar,Results in physics8
(2018) 524-531.

Rev. Mex. Fis.65 (5) 479-488


