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On Cattaneo-Christov heat flux analysis with magneto-hydrodynamic and heat
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This pagination specifies the characteristics of Cattaneo-Christov heat diffusion model for the stagnation point flow of a Carreau nano-fluid.
The momentum equation is manifested with magneto-hydrodynamic effect and the generalised Fourier’'s law and Fick’s law are considered
to manipulate the heat and mass flux with heat generation and chemical reaction. The fluid flow having infinite shear rate viscosity is
caused by the stretched sheet. The admissible transformations are invoked to alter the flow narrating coupled partial differential system
into the coupled ordinary differential system. Later on, these equations are sorted out numerically with the aid of Runge-Kutta Fehlberg
method supported with shooting scheme. The graphs are plotted that portrays the impact of fluid velocity and temperature towards various
engineering parameters which reveals that the fluid temperature increases when enlarging heat generation parameter. The validations fc
the numerical values of skin friction coefficient are delineated with the existing literature. Also, the numerical findings for the local Nusselt
number are offered.
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1. Introduction cal flat plate with non-uniform surface heat flux. Pascal and
Pascal [2] give their analysis on non-Newtonian fluids along

In the past few decades, researchers are interested in sé’\vll—th some non-linear shear flows. Pressure drop through

eral aspects of the non-Newtonian fluid which represents thBOroUS media in non-Newtonian purely viscous fluid flow ex-

non-linear relation between shear stress and shear rate. T gnned by Sabiri and Comiti [3]. Some later works on the

. , X ) oundary layer flow of non-Newtonian fluids are presented in
flow diversity of non- Newtonian fluid model leads to uncer- . :
. g . Refs. [4-10]. Etemad [11] explored the non-Newtonian fluid
tainty related to rheological features. One cannot explain th(ﬁow and heat transfer in three dimensional laminar phenom-

complete phase through single constitutive equation which

) . . ena. In case of ducts and porous media, Liu and Masliyah
establish the relation between deformation rate and sherﬁz] ave their analvsis on non-Newtonian fluid flow. Tur-
stress. Shear thinning is the non-Newtonian behaviour of flu: 9 Y ’

. : : : bulent flow in a membrane tube with mass transfer in New-
ids whose viscosity decreases under shear strain. The nop- . ! . . .

. . . . onian and non-Newtonian fluids studied by Parvatiyar [13].
Newtonian behaviour of fluids are of huge importance be-

cause of its usage at industrial and technological scales su %Ilp-flow boundary conditions for non-Newtonian lubrication

: : . _Tayers has been studied by Anderson and Valnes [14]. Also,
as melting of polymers, paints, asphalts and glues. In view S . . .

o . some useful applications regarding non-Newtonian flow is
of its importance, many recent studies have been found on

the flow of Newtonian and non-Newtonian fluids. One of observed by HOYI [15]. Papalex.andrl's [16] ela}borates the
study of wedge-induced detonations in numerical aspects.

the most commonly used rheological model and has Certalﬁlhe theme beyond the flow of viscous incompressible fluid

advantages over non-Newtonian fluid models. Further, non- . o .
. o with thermal conductivity and temperature dependent viscos-
Newtonian flows from wedge phenomena arise in a number ) .
X . . .Ity past a permeable wedge aside by uniform surface heat flux

of chemical engineering systems. The Carreau (1972) vis- . .
i i S Is studied by Hossaipt al. [17]. In Carreau model, fall of
cosity model is known to be a good approximation for a large

number of shear-thinning fluids due to its capability to catch’o" spherical partlcles.m a liquid is StUdle.d by Macleac .
. . . al. [18]. Moreover, various aspects regarding Carreau fluid
the rheological behaviour at very low and very high shear . : . .
. ; : . ; models are investigated in Refs. [19-25]. The effects of peri-
rates, while other idealized models, like the widely used Ost-_ _ . ; NP .
. . - .~ staltic transport with magnetic field in a Carreau fluid is re-
wald de Waele power-law model, are valid only in a limited . o .
. . . : - ported by Hayatt al. [26]. A numerical analysis is carried
range of operational conditions. An analysis is carried out i . - .
N . . out upon sheardependent non-Newtonian fluids in compliant
order to highlight the importance of boundary layer flow in

) . . e . vessels reported by Hundertmark-Zauskova and Lukacova-
various industrial applications such as the condensation P'Yedvidiova [27]

cess of metallic plate in a cooling bath and glass, extrusion
of plastic sheets, aerodynamic and also polymer industries. The Fourier laws are used frequently, to determine
Mehta and Rao [1] had given the remarkable conclusionshe characteristics of heat transfer phenomena. Cattaneo-
about non-Newtonian fluids in a porous medium past a vertiChristov heat flux model is the rectified form of the Fourier
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law which is used to determine the specifications of heatinalysed that this law is not applicable in the case when the
flux model. A useful results regarding thermal convectioninitial state is disturbed because it affects the whole system.
in a Newtonian fluid with Cattaneo-Christov heat flux equa-To overhaul this problem, Cattaneo (1911-1979) had played
tions are explored by Straughan [28]. He observed that themis role to modify the Fourier law to get the hyperbolic equa-
mal relaxation parameter is notable as Cattaneo number ition by invoking thermal relaxation time. The above litera-
creases Also, Straughan extended his work by considerinyre tells us that no work is done on Cattaneo-Christov heat
the Cattaneo-Christov heat flux model in transverse wavediffusion model with heat generation and chemical reaction
[29]. Cattaneo equations with thermal stratification are analin concern with the motion of the Carreau nano-fluid. To fill
ysed and their closed form solutions are discussed by Althe gap, this report is presented in order to ascertain the heat
Qahtani and Yilbas [30]. The Cattaneo-Christov heat fluxand mass flux rate through Cattaneo-Christov heat and mass
is applied to Newtonian fluids and uniqueness solutions ardiffusion formulas. In Sec. 1, the relevant literature survey
discussed by Tibullo and Zampoli [31]. The analytical solu-is presented in order to enhance the importance of current
tions of thermal slip effects of a Maxwell fluid along with work. In Sec. 2, the flow describing equations are mod-
Cattaneo-Christov heat diffusion are discussed by ldan elled mathematically and the numerical technigaeRunge-

al. [32]. Also, the effects of elasticity, slip coefficient, and Kutta Fehlberg method along with shooting scheme is ap-
Prandtl number are shown through graphical representatiomplied to sort out the governing partial differential equations
Haddad [33] examined the heat flux in a Brinkman porousn Sec. 3. The impacts of various physical parameters upon
channel embedded with fluid inertia. Shivakumataal.  fluid velocity, temperature and concentration are presented
[34] observed the thermal convection with Cattaneo effectshrough graphs. Also, the numerical values for the skin fric-
in the solid and found that its impacts on the nature of contion coefficient and local Nusselt number are offered in Sec.
vective instability are efficient. Mustafet al. [35] studied 4. In Sec. 5, the results and discussion for the impacts of
the rotating flow upon linearly stretching disk. Nanofluids aforementioned physical parameters are exhibited. Finally,
are taken into account to determine the behaviour of heahe concluding remarks are done in Sec. 6.

transfer rate through Cattaneo-Christov heat diffusion for-

mula. Various specifications of Cattaneo-Christov heat flu
model are discussed by Hayett al. [36-37]. The charac-

teristics of heat flux through Cattaneo-Christov model in ar beauty of mathematics allows us to express the upper-
porous stretching sheet is analysed by Nadeem and Muha onvective material derivative for anv v ; follow
mad [38]. The Cattaneo-Christov model with non-NeWtoniar:eo ective material derivative for any vectors as follows.

fluids through stretching regimes is carried out by Abbasi and DA  9A
Shehzad [39]. A theoretical approach for Cattaneo-Christov Dt~ ot
model embedded with different geometries are observed by .

Reddyet al. [40]. Li et al [41] examined the heat flux whereV is the velocity vector and! is supposed to be vec-
for magneto-hydrodynamic (MHD) viscoelastic fluid through tor form of heat and mass flux. This report is concerned with
stretching sheet. Here, the energy equation have been othe Cattaneo-Christov model which specifies the thermal and
tained with the help of Cattaneo-Christov theory. Ramean concentration diffusion. Then the structure in different gen-
al. [42] observed the homogenous-heterogeneous reactiogsalised version of Fourier’s law and Ficks’s law considering
for the third grade fluid merged with Cattaneo-Christov heathe Cattaneo-Christov form as Refs. [48-51]

flux model. The specifications of heat transfer via Cattaneo-

Christov model induced by a stretching cylinder is studied g+ i {3(1 +V -Vg—q-VV

by Malik et al. [43]. The numerical scheme for Williamson t

X2. Mathematical formulation

+V .VA—A.-VV + (V)A, 1)

fluid is discussed and Cattaneo-Christov model is applied to L. .

extract the characteristics of heat transfer Salahudtiial. + (V- V)CI] = —ksVT, )
[44]. The heat conduction via Cattaneo-Christov heat flux

through parqllel plates__in the presence of MHD is ob_served J+ Ay [&] IR B v R R v 74

by Dogonchi and Ganiji [45]. Upadhyet al. [46] studied t

the Cattaneo-Christov heat flux on time dependent fluids with Lo .

MHD effects. The numerical approach for MHD fluid flow + (V- V)J] = -DpVC, 3)

induced by a cone emerged with Cattaneo-Christov heat flux

model is examined by Kumaet al. [47]. Further, the im-  where normal heat and mass flux are denoted; land J,

portance of Cattaneo-Christov heat diffusion is hlgh'lghtEdkf is the thermal COﬂdUCtiVit}DB is the Brownian diffusion,

in Refs. [48-51]. Az and)\,, are the relaxation time of heat flux and mass flux.
As the heat conduction laws given by the French mathitis important to note down thaty = 0 and\,; = 0lead (2)

ematician named Jean-Baptiste Joseph Fourier (1768-183ahd (3) to classical Fouriers law and Fick’s law, respectively.

have been used to investigate the heat transfer mechanigtow by inserting the condition for incompressible fluids

since two centuries in suitable conditions. Later on it wasV - V' = 0 and steady state clause/ot = 0, 9J /0t = 0,
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we get the new form of (2) and (3) as stant. The constitutive equations for the generalized Carreau
oL L . model are taken as
g+ MgV -Vqg—q-VV]=—ksVT, 4)
- = S - 7T = —pl + p(y) A,
J+ MV VI —J-VV]=-DpVC, (5 P+ ()4 -
n—1)/2
later on we will deduce the energy and mass equations with p=pio| B *+(1 = Bx)[1 + (0)?] . (6)

the help of Eq. (4) and (5). Consider the boundary layer flow

for an incompressible Carreau fluid model impinged on awheret is the Cauchy stress tenspiis the pressurd, is the
stretching surface where the flow is launched by the stretcheidentity tensor,A; = (gradV) + (gradV)T the first Rivlin
sheet. The coordinate system is designed in a waytlaais ~ Erickson tensory = +/(1/2)I1 with IT as a second invariant

is taken to be along stretching sheet whergasis is per-  strain tensor and defined Hs= trace(A?), n the power law
pendicular to the sheet and the fluid overcomeg at 0.  index,I" a material time constant aritk = (. /o) the vis-
The uniform magnetic field3, is invoked alongy-direction  cosity ratio parameter witp, the zero shear rate viscosity
whereas the induced magnetic fiédd is supposed to be neg- and ., the infinite shear rate viscosity and taken to be less
ligible for lesser magnetic Reynold’s number. The sheet vethan one here.

locity is considered as,,(z) = cx with ¢ > 0 as stretching By manipulating the above assumptions and usual bound-
rate and the exterior velocity as., = ax wherea iscon-  ary layer approximations, the governing equations for current
| problem are given as

ou  Ov
9ty =0 Y
ou Ju Ao 0u N . 5 [ Ou 2 (nh/2
vty =t o (g ) [Pl (G) ]
. 0%u ou\? ou\2 "2 sp2
oo (53) () ool (5) | e ®
ua£+va£+)\ u@@i+v@8£+u@8£+u@8£+2uv62’f +u2(927T+02827T —aagi
ox Oy B\ "oz 0 Oy Oy oz Oy Oy Ox OOy ox? oy? ) f oy
8CaT  Dr (AT\*\ = Qo
ooy 7 (5) ) e ®
L D0 (nDC | 000C | 0vDC | udC PO L0PC O 0%
Oz Oy M\ " or ox Oy Oy Oz Oy Oy Ox Oz 0y Ox? oy? ) B Oy?
Dr 8°T
Dr O e - ) 10)

whereay = ky/(pcy)r, 7 = (pc)s/(pc)y, Q. K are the

thermal diffusivity with(pc,)  as the effective heat capacity k/vherezb is to notify as stream functions which is supposed to

of the fluid, ratio of nanoparticle heat capacity and the basée satisfied by the continuity equations witk= 9v /9y and

fluid heat capacity, heat generation rate, and chemical reae-= —091/9z. By using the above transformations, the mo-

tion rate. The boundary conditions are mentum and energy and mass equations with the concerned
boundary conditions are

u=u,=cx, v=0, T=T, at y=0,

u=tgo—az, T—Ts C—Cs as y—oo, (11) (B +(1—B) {1+ We2( )2} =3 /2 1 W e ()2} £
The following dimensionless quantities are used to fr" = () +a*+ M*(a— f') =0, (13)
e e, CaUROnS N2y (' Nifl o+ Ni(0')* = 6,10 + 1°0")
0= y\/f W(z,y) = e/ f (), +19=0, N (14)
T_T c_c ¢" + LePrfd’ + ﬁbe” — LeP.(ff'¢ + f2¢")
o) =7 ¢t =g—¢ (12 eso—o, s
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here, wherer,, is the surface shear stress apdthe surface heat

" 9’ v 033’ We? — 12 32 flux given by

¢ pe ’ (n=1)/2
2 n—

v "Dy s (22 [5ra- {12 (2

Pr o’ Ny . (Cw — Co), w0\ 9y ( ) dy
7D [ %o

Nt = UT: (Tw - Too)7 (Se = C>\H7 6c = C)\]\l7 quw = _k(Tw - Too) 59/(0)7 (18)

K

Le= 2L 4= Lo (9) and 6= —y the dimensionless form of the local skin friction coefficient

Dp pC, \c cr

) . o and the local Nusselt number are defined as:
are the velocity ratio parameter, magnetic field parame-

ter, Weissenberg number, Prandtl number, Brownian diffu-
sion coefficient,gthermophoresis parameter, temperature reBel/Qwa:fH(O)m*Jr(l_ﬁ*){lerez(fu(o))z}(n 1)/2]’
laxation time parameter, nanoparticle volume fraction, LewisRe—1/2NuI: —0(0), (19)
number, heat generation parameter and chemical reaction pa-
rameter.

The corresponding boundary conditions are as follows:

f) =0, filn)=1, 6(n)=1,¢(n) =1 atn=0,

!
i) —a, 0m) =0, ¢n—0 as n—oo (16) o Computational algorithm
The involved physical quantities of engineering are skin

friction coefficient and local Nusselt number and is defined,e governing equations Egs. (11)-(13) are highly nonlinear
as in coupled form. The shooting algorithm with fourth-fifth or-

7 (17) der Runge-Kutta integration scheme is proposed in order to
k(Tw — Two) get the solution of this system. In this regard, we consider the
|  following steps as follows:

where Re = zu,, /v is the Reynolds number.

2Ty, TGw
C T = ) Num =TT TN
7o pu2 ()

= —042+(f/)2—ff”—M2(a—f’) ( 7 (20)
[6*+(1 = B) {1 +nWe2(f")2H{1 + We2(f")2}(n=3)/2]
(fO0' + Np0'¢) + N(0")2 — 5. f 10 + ~0)
(5 — 0ef?) ’
(LePrfgb’ + Neg — LePISf 1) — L65¢>)
(1 — LePrs.f2?)

gll:_

(21)

¢//:_

(22)

The above set of higher order differential equations descend to a set of first order ordinary differential equations, we introduce
new variables as follows.

y = f y = y/ = ﬁ y: = y/ = d27f
1 ) 2 1 dan’ 3 2 dn?’
a9 dé
=y = — = =y = 23
Ys =Ya= g Yo b, Y7 ="Ys dn’ (23)

) _ Y3 —yiys — o’ — M(a—yp)
3 ﬁ* + (1 _ ﬁ*)[l +nWe2y§](”—3)/2

Y

yf;:ys
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(11y5 + Noysyr + Ney2 — Sey1y2ys + Y1)

483

/
Ys = —
(%, - 60:‘/%)
Yo = Y7
(LePfy1y7 — Nyh — LePey1yayr — Leéye)
r_ ° (24)
Yr (1 — LePro,47?)
the transformed boundary conditions are 1.2 - -
yi(n) =0, y2(n) =1, ya(n) =1, ye(n) =1 atn =0,
y2(n) — a, ya(n) — 0, ye(n) — 0 asn — oo, (25)
the initial guesses for the values ff(0), 6’(0) and¢’(0) are
y3(0) = u1, y5(0) = u2, y7(0) = us. =
The following procedure is done in order to solve the E
above system of equations by shooting method: b
¢ Firstly, choose the values of, between 5 and 10. ——g=0.1
e Then we pursue the initial guesses §g(0), y5(0) and ===5'=0.3
y7(0). Initially, y3(0) = y5(0) = ys5(0) = 1 are ""§'=0.5
adopted. --f=07
e Then we sort out the ODE'’s by considering fourth-fifth
order Runge-Kutta technique. 4 5 6
e Finally, the absolute variations in the given and cal-
culated values ofj3(c0), y5(c0), andyr(oco) that is
boundary residuals are calculated. The solution is saigtigure 2. Influence of3* on (1) for o = 1.
to be convergent if it lies below the tolerance error,
which is considered to be)—°.
4. Graphical representation 1
1 -] =0.0
——=M=0.1| |
0.9 - M=0.0 =M =03
——Ar=0.1 M e
0.8 M 0.5
0.7 - =05 1
=
06 e
05 1
0.4
0.3 4
0.2
0.1
9 5 1]

FIGURE 1. Influence ofM on f’(n) for « = 0.01.

FIGURE 3. Influence ofM oné(n).
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FIGURE 5. Influence of Pr o (7).
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FIGURE 6. Influence ofiWe oné(n).
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FIGURE 9. Influence ofN, on ¢(n).
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FIGURE 10. Influence ofN; on ¢(n).

5. Results and discussion

ical reaction. The laws of conversation of momentum and
energy are used to describe the flow field that can be shown
in the form of coupled partial differential equations. Later
on, such equations are further reformed to coupled ordinary
differential equations by declining the independent variables.
The similarity transformation is considered in order to reduce
the number of independent variables. The numerical results
for the reduced system are sorted out by means of shooting
technique with Runge-Kutta Fehlberg method. The involved
physical parameters ark/ (magnetic field parameter)j*
(viscosity ratio parameter)yz (Brownian motion parame-
ter), N; (thermophoresis parameter),(heat generation pa-
rameter). The impacts of both the and 5* on the Car-
reau fluid velocity are investigated and provided by means of
Figs. 1-2. Further, the influences bf, 5*, Pr,iWe and~ on

the Carreau fluid temperature are explored and the results in
this context are presented in Figs. 3-7. Also, the fluctuation
in Carreau fluid concentration towards, N, and IV, is ac-
quired and shown in the form of Figs. 8-10. Now in detail,
Fig. 1 indicates the influence @f on Carreau fluid velocity.

It is testified that the fluid velocity shows the decline values
towardsM when M (= 0.0,0.1,0.3,0.5) and this is due to

the fact that increasing the values f causes the enhance-
ment of Lorentz force. This is a kind of resistive force that
oppose fluid particles to move in a free manner and as result

The Carreau nano-fluid with stagnation point flow towards athe average velocity of the Carreau fluid gets diminished. The
stretching sheet is debated in the present report. The Carreéfluence of3* on a Carreau fluid velocity is observed and the
nano-flow model is manifested with externally applied mag-fluctuation in this regard is captured in Fig. 2. When we iter-
netic field. The energy and mass equations are presumed laye3* (= 0.1, 0.3,0.5,0.7), the velocity profile declines. The
the Cattaneo-Christov heat and mass flux model. The therm&arreau fluid temperature relies upon the variatiodofg*,
boundary layer is executed with heat generation and chen®r,We, +. To be more specific, the effectsbf on a Carreau

TABLE |. The numerical values for the skin friction in comparison with [52].

M We a B —(1/2)vV/ReC/s Current results
n =175 n=1.75

0 3 0.3 0.001 -1.053800 -1.0537
0.3 3 0.3 0.001 -1.090060 -1.0901
0.6 3 0.3 0.001 -1.194930 -1.1954
0.8 3 0.3 0.001 -1.298290 -1.29830
0.3 2 0.3 0.001 -1.012570 -1.0126
0.3 3 0.3 0.001 -1.090060 -1.0901
0.3 3.5 0.3 0.001 -1.125350 -1.1252
0.3 4 0.3 0.001 -1.158450 -1.1586
0.3 3 0.7 0.001 -1.090060 -1.0901
0.3 3 1.3 0.001 -0.490977 -0.4910
0.3 3 0.3 0.001 0.598867 0.5989
0.3 3 0.7 0.001 1.827620 1.8277
0.3 3 1.3 0.001 -1.090210 -1.0901
0.3 3 1.7 0.001 -1.059190 -1.0592
0.3 3 0.3 0.0 -1.024390 -1.0244
0.3 3 0.3 0.2 -1.007155 -1.0073
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TABLE Il. The numerical values of local Nusselt numiet§’ (0)) towards various values of PN, and Ny.

Pr Ny N, Re Y2Nu, = —6'(0)
1.0 0.2 0.3 0.31492
1.0 0.2 0.3 0.2141
1.0 0.2 0.3 0.2765
1.0 0.2 0.3 0.3166
3.0 0.3 0.3 0.3234
3.0 0.3 0.3 0.2902
3.0 0.3 0.3 0.2861
3.0 0.3 0.3 0.2397
5.0 0.5 0.3 0.2921
5.0 0.5 0.3 0.3327
5.0 0.5 0.3 0.2690

fluid temperature is inspected and the results are presentediiasults with the existing literature [52]. Also, the numerical
the form of Fig. 3. The enhancing values of causes uplift invalues for the local Nusselt number towards various values of
the Carreau fluid temperature. Figure 4 indicates the fluctuPr, Nt and N, are delineated in Table II.

ation in Carreau fluid temperature due@b and thus testi-
fies that the temperature enlargesias= 0.1,0.3,0.5,0.7).
Figures 5-6 show the impacts of Pr akide upon Carreau

fluid temperature. This presents the picture of temperaturghe current report elaborates the specification of Cattaneo-
profile getting decline towardBr = (0.0,0.1,0.3,0.5) and  Christov heat diffusion formula merged with the Carreau
We = (0.0,0.1,0.3,0.5). Figure 7 is prepared to describe nano-fluid flow at a stagnation point. The energy and mass
the link between heat generation and Carreau fluid temperaquations are manifested with heat generation and chemical
ture. On iterating the values ofi.e. v(= 0.0,0.1,0.3,0.5),  reaction whereas the flow is caused by the stretching sheet.
one can observe that Carreau fluid temperature enhancephe governing PDE’s descend to ODE's through similarity
This is due to the fact that the production of heat energy emitgansformations. The numerical results are deduced with the
heat particles that causes increase in temperature. The inflgid of Runge-Kutta Fehlberg technique with shooting profi-
ence of Carreau fluid concentration towaddsis offered in  cjency. The numerical findings for the skin friction coeffi-
Fig. 8. This picture shows the decaying trend for Carreaitient and the local Nusselt number are deduced. The key
fluid concentration towardbe(= 0.0,0.1,0.3,0.5). Figure 9 points are as follows:

depicts the fluctuation in the fluid concentration correspond-

ing to multiple values of Brownian motion parametdy. e The Carreau fluid velocity trend is observed as de-
The larger values ofV,(= 0.0,0.1,0.3,0.5) causes reduc- clined towards\/.

tion in the fluid concentration as well as the related bound-
ary layer thickness. This is because of the Brownian force
confined the fluid particles to move in the reverse direction
of the concentration gradient and causes the fluid more con- e The Carreau fluid temperature enhances corresponding

6. Concluding remarks

e The higher values gf* causes the decreasing trend for
Carreau velocity profile.

sistent. Thus, the uplifting values d@¥, causes the lower to higher values of\/.

concentration gradient and more uniform concentration pro- ] ] )
file. Figure 10 delineated the impacts &f on the Carreau o It is observed that the Carreau fluid temperature in-
fluid concentratior(n). Here the fluid concentration and the creases by uplifting” and- .

corresponding boundary layer thickness increases for higher
values ofN; i.e. N;(= 0.0, 0.1, 0.3,0.5). Physically the ther-
mophoretic force implies to oppose the nanoparticles against
the direction of temperature gradient. This may also cause e The Carreau fluid concentration profile decreases for
the nano-particles in a fluid concentration to be more non- growing values of’e.

unifrom. Thus the concentration gradient enhances for large
values of N; and causes for more non-uniform fluid concen-
tration. The variation of skin friction coefficient correspond-
ing to various values oM, We, o and3* are shown in Ta- e On uplifting the values ofV,, we get the increasing
ble I. Itis testified that excellent match is captured for current trend for Carreau concentration profile.

e The temperature trend for the Carreau fluid model tes-
tifies the decline towards Pr afife.

e The investigation tells us that Carreau concentration
trend diminish when enlargingy,.
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ON CATTANEO-CHRISTOV HEAT FLUX ANALYSIS WITH MAGNETO-HYDRODYNAMIC AND HEAT GENERATION EFFECTS...

Nomenclature

N < 8

~

Dr

_ D7 (Tw—Too)
Nt - VT oo

* _ foo
ﬁ_uo:

Uoo = azx, (a > 0)

Velocity component inc—, y—directions (m/s)
Direction along the surface (m)

Direction normal to the surface (m)
Temperature of the fluid (K)

Temperature at sheet (K)

Dynamic viscosity (Ns/rf)

Specific heat capacity at constant pressure (J/ KgK)
Relaxation time of heat flux

Thermal conductivity (W/mK)

Effective heat capacity (Kg/ PiK)
Temperature away from the sheet (K)
Density of the fluid (Kg/m)

Brownian diffusion coefficient

Brownian motion parameter

Relaxation time parameter of temperature
Coefficient for thermal diffusion (fis)
Dimensionless velocity

Dimensionless temperature

Electrical conductivity

Heat flux

Lewis number

Nano-particle volume fraction

Material time constant

Magnetic field parameter

Kinematic viscosity (/s)

Dimensionless parameter

Similarity variable

Reaction rate

Reynold number

Ratio of nanoparticles heat capacity and the base fluid heat capacity
Surface heat flux

Surface shear stress

Thermophoresis diffusion coefficient
Thermophoresis parameter

Viscosity ratio parameter

Velocity of exterior flow

a=12 Velocity ratio parameter
We? = €% Weissenberg number
1o, Moo Zero and infinite shear rate viscosity
Pr = # Prandtl number
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