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Magnetic motion of spherical frictional charged particles on the unit sphere
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Mathematically, the unit sphereS2 is described in an ordinary space with positive curvature. In this study, we aim to present the manipulation
of a spherical charged particle in a continuous motion with a magnetic field on the sphereS2 while it is exposed to a frictional force. In other
words, we effort to derive the exact geometric characterization for the spherical charged particle under the influence of a frictional force field
on the unit 2-sphere. This approach also helps to discover some physical and kinematical characterizations belonging to the particle such as
the magnetic motion, the torque, the potential energy functional, and the Poynting vector.

Keywords: Spherical particle motion; frictional force; magnetic field; torque; Poynting vector.

PACS: 02.40.Hw; 03.50.De. DOI: https://doi.org/10.31349/RevMexFis.65.496

1. Introduction

Trajectories of a charged particle moving under the influ-
ence of a magnetic field on any Riemannian manifold are
represented by magnetic curves. A magnetic field on ak-
dimensional Riemannian manifold(R, ◦) is any closed 2-
form G. The Lorentz force of the magnetic fieldG is a one-
to-one tensor fieldΨ such that it is defined by

Ψ(A) ◦ B = G (A,B) , where∀A,B ∈ X (R).

Magnetic trajectories of the magnetic fieldG correspond to
magnetic curvesδ onR. These curves satisfy the following
Lorentz formula

∇δ′ δ
′ = Ψ(δ

′
). (1)

Evidently, magnetic curves generalize geodesics due to the
following equation, which is satisfied by geodesics:

∇δ′ δ
′ = 0.

This formula obviously represents the Lorentz formula in
the nonappearance of the magnetic field. Consequently, a
geodesic corresponds to trajectory of the moving charged par-
ticle when it is free from any magnetic field(G =0) [1].

In the case of a3D Riemannian manifold(R, ◦) , vec-
tor fields and 2-forms can be described thanks to the vol-
ume formdvh and the Hodge star operator? of the mani-
fold. Hence, divergence-free vector fields and magnetic fields
are in(1− 1) correspondence. Therefore, Lorentz formula is
given for any vector fieldS on the3D Riemannian manifold
as follows:

Ψ(S) = G × S, (2)

where G is a magnetic field such that∀S ∈ X (R) with
div(G) = 0. As a consequence, the magnetic flow reduced
by the Lorentz formula is written by the following form

∇δ′ δ
′ = G×δ′. (3)

In three-dimensional Riemannian and pseudo-Riemannian
manifolds, this fact leads to describe several class of mag-
netic curves including Killing magnetic curves and Killing

magnetic fields [2,3]. Another classical model of magnetic
fields is easily developed if one multiplies by a magnitude
the area of a Riemannian surface. Thus, it is obtained that on
a hyperbolic planeH2 magnetic trajectories are either open
curves or closed curves, on the Euclidean plane magnetic tra-
jectories are circles, and on the sphereS2 they are tiny circles
having a particular radius [4,5]. Studies on magnetic curves
have been mainly focused on the charged particle, which is
assumed to be free of any external force. However, in this
manuscript, we consider a well-known external force and at-
tempt to observe its effects on the motion of the charged par-
ticle lying fully on the unit 2-sphereS2.

In this manuscript, we take the unit sphereS2 and the
transformationδ : I → S2 ⊂ R3. Even though the selection
of the spherical frame is basically owing to its geometrical
understanding, it may be seen that the features of the trajec-
tory of the particle frequently emerge in physics. Considering
the definition ofS2 andδ in terms of the orthonormal frame
together with the specially defined dynamical force fields, we
firstly define a special magnetic curve, which is named as a
spherical frictional magnetic curve(Sf −magnetic curve)
of spherical vector fields. After presenting its geometric in-
terpretations, we investigate the magnetic and electromag-
netic field effects on the magnetic trajectories of theSf -
magnetic curve on theS2.

2. Geometric Background of a Curve on the
SphereS2

The geometric characterization of curves is a very efficient
method to comprehend many physical events. Through con-
necting with the motion of the particle in a given spacetime,
these physical events have been modeled by the geometric
equivalences.

Ordinary space is one of best fitted geometric settings for
many physical phenomena such that it has been intensively
studied by both differential geometers and physicists. Since
the unit sphereS2 is a submanifold of the ordinary 3-space we
firstly give geometry of the curves in the ordinary 3-space.
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Ordinary 3-space is a vector space endowed with a stan-
dard metric

x ◦ y = x1y1 + x2y2 + x3y3,

wherex =(x1,x2, x3) , y = (y1, y2, y3) are arbitrary vec-
tors in the space. The norm function of the given vectorx
is defined by‖x‖ = (|x ◦ x|)1/2 andx is called a unit speed
or an arc-length parametrized if‖x‖ = 1.

Now, we can define the unit sphereS2, which is the ana-
logue of the ordinary 3-space, by using the argument dis-
cussed above in the following manner:

S2 = {x ∈R3 : x ◦ x = 1}.
Hereafter, we consider a smooth regular curve lying fully on
theS2. In the theory of curves, one of the most efficient ways
of exploring the intrinsic feature of the curve is to consider
its orthonormal frame. It is constructed by a number of or-
thonormal vectors and associated curvatures depending on
the dimension of the space. For the case ofS2, this orthonor-
mal frame was introduced by Koenderink and O’Neil [6,7].
The curve satisfying the spherical frame equation is called
a spherical curve. Finally, we are ready to establish the or-
thonormal frame of spherical curves lying fully on theS2.

Let δ : I → S2 be a unit speed regular spherical
curve, that is it is an arc-length parametrized and sufficiently
smooth. Then the spherical frame is defined along the curve
δ as follows:

∇δ′ δ = T,

∇δ′T = −δ + µN, (4)

∇δ′N=−µT,

where∇ is a Levi-Civita connection andµ = det
(
δ,T,T′

)
is the geodesic curvature ofδ. The following identities in-
cluding pseudo vector product also hold[8]:

δ = T×N, T = N×δ, N = δ×T.

The problem on the motion of the particle on a block or
on a surface is well-known and it is extensively studied for
the cases of circular and flat surfaces. Point particle sliding
on a downward concave surface under the action of a fric-
tional force, a normal force, or a gravitational force can be
expressed by using the orthonormal frame, which is defined
along the trajectory of the point particle. It is shown that for
any particle sliding down on a surface with a massm, the
normal force is

N=±NN, (5)

whereN = ‖N‖ ; the gravitational force is

W=m(g0T + g1N), (6)

where gi=0,1 are gravitational coefficients; the frictional
force is

f = −αNT, (7)

FIGURE 1. Particle trajectory together with the force fields.

whereα is a frictional coefficient [9]. These forces and the
trajectory of the particle on the section of theS2 can be seen
in Fig. 1.

3. Magnetic Fields ofSf -magnetic curves on
the Unit SphereS2

In flat spacetime, the motion of a charged point particle was
highly active and popular research field since the early study
of Poincare, Abrahams, and Lorentz. As such, Einstein’s
study of special relativity was inspired on the electrodynam-
ics of moving objects. Poincare and Lorentz were also mo-
tivated and guided by the equations of Maxwell to investi-
gate spacetime transformations. This gave rise to the radi-
cal unification of some special spacetime structures. In this
context, it is fairly true that Maxwell equations played a key
role to comprehend the profound connection between the dy-
namics of the major physical fields and interactions. Further
researches, in turn, led to connect the spacetime geometry
with the electromagnetic field. As a conclusion, one reaches
that the field equations are entirely general at the very base
of electromagnetic theory, regardless of considering of any
affine structure or metric of spacetime, however, its compre-
hension in spacetime by way of essential connections, admits
constitutive relations between the causal framework of space-
time and electrodynamics.

In this section, we attempt to explore the impacts of Rie-
mannian geometry on the motion of a spherical charged parti-
cle under the influence of some external force fields acting on
a magnetic field derived from generalized Lorentz equations.
Followings are also useful sources to understand the back-
ground of the study. Dynamics of the charged particles that
correspond to the trajectories of a particular type of curves in
electromagnetic fields has been of significance in the litera-
ture and it is applied to many experimental studies [10-13].
Furthermore [14,15] studied the motion of charged particles
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in homogeneous electromagnetic fields by concentrating on
the invariant geometric description of their trajectories. Bear-
ing in mind, the importance of the frictional force of the dis-
placement of charged particles in magnetic fields, Coronel-
Escamillaet al. [16] focused on the fractional dynamics of
charged particles in harmonic magnetic fields, ramp magnetic
fields, and constant magnetic fields. Körpınar and Demirkol
also defined frictional and gravitational magnetic curves to-
gether with their energy functionals and uniformity condi-
tions on the 3D Riemannian surface [17,18].

Here, we assume thatβ is a moving spherical charged
particle with a magnetic fieldG such that it is influenced by
the frictional force on the unit sphereS2. We also assume
for the rest of the manuscript that the trajectory of this par-
ticle corresponds to a unit speed sufficiently smooth regular
spherical curveδ : I→ S2 to define and investigate frictional
spherical magnetic curves lying fully on the unit 2-sphere by
using the spherical orthonormal frame describing along with
the trajectory.

Definition 1. Let β be a moving spherical charged par-
ticle under the influence of a frictional force in the mag-
netic fieldG on theS2 such that its trajectory corresponds
to a unit speed sufficiently smooth regular spherical curve
δ : I → S2. Frictional spherical magnetic trajectories
(Sf − magnetic curve) of the charged particleβ are de-
fined via the Lorentz force formula as follows:

∇δ′ f = Ψ (f) = G×f. (8)

Proposition 2.Let δ be an arc-length parametrized fric-
tional spherical magnetic curve together with the spherical
frame elements{δ,T,N, µ} on the unit sphereS2. Then,
Lorentz forceΨ of the magnetic fieldG is written in the
spherical frame as follows:




Ψ(δ)
Ψ(T)
Ψ(N)


 =




0 1 −c
−1 0 µ
c −µ 0







δ
T
N


 , (9)

wherec is an arbitrary smooth function along with the mag-
netic curve such that it satisfiesc = Ψ(N) ◦ δ.

Proof. Let δ be an arc-length parametrizedSf -
magnetic curve on theS2 together with the spherical frame
elements{δ,T,N, µ}. One knows that

{Ψ(δ), Ψ(T), Ψ(N)} ∈ span{δ,T,N}.
From the definition of theSf -magnetic curve given in the
Eq. (8) together with the spherical frame equations given in
the Eq.(4) and the frictional force in the Eq. (7), one has

Ψ(f) = (αN) δ − (αN)′T− (αNµ)N.

If one also considers the following feature of the Lorentz
force tensor fieldΨ

Ψ(f) ◦ δ = −f ◦Ψ(δ),

Ψ(f) ◦T = −f ◦Ψ(T),

Ψ(f) ◦N = −f ◦Ψ(N),

then it is obtained following equalities:

αN = Ψ(f) ◦ δ = −f ◦Ψ(δ) = αN(T ◦Ψ(δ)),

− (αN)′ = Ψ(f) ◦T = −f ◦Ψ(T) = αN(T ◦Ψ(T)),

−αNµ = Ψ(f) ◦N = −f ◦Ψ(N) = αN(T ◦Ψ(N)).

Finally, using the obvious properties of the inner product one
has

Ψ(δ) = T+c1δ + c2N,

Ψ(T) = −((αN)′ /αN)T+c3δ + c4N, (10)

Ψ(N) = −µT+c5δ + c6N,

where ci (i = 1, ..., 6) are smooth functions along with
the Sf -magnetic curve. Here if one also uses the anti-
symmetric feature of the Lorentz force

Ψ(T) ◦T =Ψ(N) ◦N =Ψ(δ) ◦ δ= 0

and following identities

Ψ(δ) ◦T = −δ ◦Ψ (T) ,

Ψ(δ) ◦N = −δ ◦Ψ (N) ,

Ψ(T) ◦N = −T ◦Ψ(N) ,

then it is concluded that

c1 = − (αN)′ /αN = c6 = 0,

c3 = −1, c4 = µ, c5 = −c2 = c.

If one plugs each value obtained in the Eq. (11) into the
Eq. (10), then the proof is completed.

This proposition proves that the Lorentz forceΨ in
the spherical frame of theSf -magnetic curve and the
T−magnetic curve on theS2 is the same. Some characteriza-
tions of theT−magnetic curve on theS2 have been given by
Abdel-Azizet al. [8]. In particular, they find a magnetic vec-
tor field G as the trajectory of theT−magnetic curve on the
S2. Thus, we can apply their finding to our case and give the
following theorem due to the similarity of the Lorentz force
Ψ in the spherical frame of theSf -magnetic curve and the
T−magnetic curve on theS2.

Theorem 3. δ is a unit speedSf -magnetic curve of
the magnetic fieldG if and only if

G =µδ + cT + N (11)

along with the Sf -magnetic curve, wherec = Ψ(N) ◦ δ
and (αN)′ = 0 [8] . Figure 2 demonstrates the magnetic
trajectories of theSf −magnetic curve on the unit sphere
S2. It is used the charged particle tracing module of Comsol
Multiphysics software to create this sample demonstration.
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FIGURE 2. Magnetic trajectories of theSf −magnetic curve.

4. Magnetic Motion of the β on the Unit
SphereS2

In this section, we define the non-relativistic magnetic mo-
tion for the spherical charged particleβ with a chargeq and
massm, which acts under the frictional force, in the presence
of magnetic fieldG on theS2. The Newton second law for
the Lorentz force is readily computed by

q(T× G)= F = m∇δ′T, (12)

whereT is the velocity vector [19]. If one considers Eqs.
(4, 12, 13) , then it is obtained that charge to mass ratio of the
β on theS2 is equal to−1 . The ratio of the charge to mass is
intensely used in the electrodynamics of the charged particles
particularly in electron optics, cathode ray tubes, electron mi-
croscopy, accelerator, nuclear physics, and mass spectrome-
try. The significance of the ratio of charge to mass regarding
electrodynamics is released on the fact that two particles hav-
ing the same ratio move in the same trajectory in a vacuum
when they are subjected to the magnetic fields. However,
we rather choose to focus on some mathematical equalities
including this ratio to obtain new characterizations forSf -
magnetic curves.

It is known that the magnetic force causes the centripetal
force, thus cyclotron radius or gyroradiusr is described by
the radius of the curvature of the trajectory of the unit speed
magnetic curve whose charge isq, mass ism, speed isv,
and the strength of the magnetic field isG as the following
equality:

r =
mv

qG
. (13)

In this case, since the ratio of charge to mass is -1,
the radius of gyration and the gyro-frequency of theSf -
magnetic curve are computed respectively as follows:

r =
−1

(µ2 + c2 + 1)1/2
, κ = − (

µ2 + c2 + 1
)1/2

, (14)

whereµ is the geodesic curvature ofδ andc = Ψ(N) ◦ δ. In
the theory of a classical electromagnetism, Larmor theorem
states that a rotating charged particle has a magnetic moment
such that it is proportional to its angular momentum. Thus,
we can present the following consequences.

The angular momentum or mechanical angular momen-
tum of theβ on theS2 is given by

L =f ×mΨ(f) = m(α2N2µδ + α2N2N). (15)

Here, one can easily induce that the magnitude of the angular
momentum of theβ on theS2 is

‖L‖ = mα2N2(µ2 + 1)1/2. (16)

There also exists another expression for the magnitude of the
angular momentum(‖L‖ = mvr) that we can take into ac-
count to find out the constant functionc = Ψ(N)◦ δ in terms
of the geodesic curvatureµ of the δ and coefficients of the
force fieldsα, N. If one uses that definition together with
Eqs. (15,17), it is yielded that

‖L‖ = mvr =
−m

(µ2 + c2 + 1)
1
2

= mα2N2(µ2 + 1)1/2.

Thus, we get

c = ±
(
−µ2 − 1 +

1
α4N4(µ2 + 1)

)1/2

.

Finally, we reach to the point where the magnetic moment of
theβ on theS2 is written as a vector field:

θ =
q

2m
L =

−L
2

=
−m

2
(α2N2µδ + α2N2N).

All these results include the behavior of theβ on theS2 with
spin in a magnetic fieldG on theS2. Hence,β experiences a
torque given by the following identity:

τ = θ × G =
mα2N2c

2
(δ − µN),

whereµ is the geodesic curvature andc = ±(−µ2 − 1 +
(1/α4N4(µ2 + 1)))1/2. In Fig. 3, it is given relation be-
tween the angular velocity and magnitude of the torque of
the charged particle.

FIGURE 3. The torque of theβ on theS2.
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Now, we are able to investigate the potential energy(P)
of theβ on theS2 by only using the geometrical coefficients
that are presented along with the paper:

(P) = −θ ◦ G =
m

2
α2N2(1 + µ2).

Generalization of the angular momentum is constructed by
the magnetic force-torque and the mechanical angular mo-
mentum:

LG = f ×mΨ(f) +
q

2
G(f ◦ f)

= m(α2N2µδ − α2N2N)

+
q

2
(−α2N2)(µδ − cT−N).

Gauge invariance is guaranteed due to this structure. Iff ◦
G =Ψ(f) ◦ G = 0, then it is found thatc = 0 and

LG = α2N2
(
m +

q

2

)
G,

whereG =µδ−N. As a result,LG andG are parallel and it
implies that the motion of theβ on theS2 is invariant with
respect to rotations.

Main Result: This approach can also be extended to
characterize the torque and the potential energy of each
Lorentz forceΨ of the magnetic fieldG on theS2. Namely,
if one considers each Lorentz force equation of the spherical
frame at the Eq. (9) and following formulae

τΨ(δ) =
−m

2
(Ψ(δ)×∇δ′Ψ(δ))× G,

τΨ(T) =
−m

2
(Ψ(T)×∇δ′Ψ(T))× G,

τΨ(N) =
−m

2
(Ψ(N)×∇δ′Ψ(N))× G,

then it is obtained a magnetic torque of each Lorentz force as
follows:


τΨ(δ)

τΨ(T)

τΨ(N)


 =

m

2




$ 0 0
0 ρ 0
0 0 φ







Ψ(δ)
Ψ(T)
Ψ(N)


 ,

where

$ = (µc2 − c′),

ρ = µ′ − c(1 + µ2),

φ = −µ2 + µ(µ + c′) + c(c− µ′),

c = ±(−µ2 − 1 +
1

α4N4(µ2 + 1)
)1/2.

Finally, the potential energy of each Lorentz forceΨ of the
magnetic fieldG on theS2 are given by

(P)Ψ(δ) =
m

2
(µ2 −$µ + c2 + 1),

(P)Ψ(T) =
m

2

((
ρ− µ′

c

)2

+ µ′c

)
,

(P)Ψ(N) =
m

2
(µ2(µ2 + c2 + 1) + φ).

FIGURE 4. The potential energy of Lorentz forceΨ of G on theS2.

In Fig. 4, it is shown the variation of the potential energy of
each Lorentz force field with respect to time.

5. Electrodynamics of the β on the Unit
SphereS2

The fundamental of electrodynamics is constructed upon
the theory of Maxwell together with electromagnetic field
(EMF), energy, force, and momentum, which are closely con-
nected each other by the Lorentz force law and the theory of
the Poynting vector. This theory governs the electromagnetic
energy flow and its exchange between magnetic and electric
fields. EMF transports both momentum and energy. In this
section, we aim to explore the chance of angular momentum
being associated with EMF.

Generalizing the Lorentz force law given at the Eq.(13) ,
one obtains that

F =q(E+T× G)=m∇δ′T, (17)

which is the force exerted on a moving spherical charged par-
ticle β with a velocity vector fieldT in the electromagnetic
fieldsG andE [19]. If one considers Eqs.(4, 12) , it is easy
to get that

E = −
(

1 +
m

q

)
δ + µ

(
1 +

m

q

)
N, (18)

whereµ is the geodesic curvature of the curve. Thus, one can
compute the Poynting vectorS, which represents the direc-
tion of propagation of trajectories of theSf -magnetic curve
on theS2 as well as the density of energy flux. From Eqs.
(12,19), one has

S = −µc

(
1 +

m

q

)
δ

+
(

1 +
m

q

)
(1 + µ2)T− c

(
1 +

m

q

)
N,
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FIGURE 5. Magnetic trajectories and total energy ofβ on theS2.

wherec = Ψ(N) ◦ δ. Based on this definition the density of
the angular momentum of the EMF is defined by

LD = −αNµc

(
1 +

m

q

)
N + αNc

(
1 +

m

q

)
δ.

Thus, the angular momentum of the EMF is defined by

LEMF =

s∫

0

−αNµc

(
1 +

m

q

)
N+αNc

(
1 +

m

q

)
δds.

Since EMF also stores energy then we can discuss the energy
density of the electromagnetic trajectories of theβ on theS2.
The total energyU contained in a section of theS2 with both
magnetic and electric field is

U =
1
2

(
1 +

m

q

)2

(1 + µ2) + (1 + µ2 + c2).

In Fig. 5, it is seen magnetic trajectories ofβ under the elec-
tromagnetic fields and total energy density on theS2.

6. Conclusion

The subject of electromagnetic force and optical angular mo-
mentum is highly broad and many distinguished research pa-
pers, reviews, and monographs have been devoted to these

topics for a long time. The aim of the paper has not been
to report new discoveries nor to break new ground. Rather, it
has been our goal to show how the findings obtained through-
out the manuscript are useful and applicable to clarify some
of the fundamental features of the electromagnetic force,
energy-exchanges rate, optical angular and linear momen-
tum, and optical magnetic-torque experienced by the spher-
ical frictional magnetic curve(Sf − magnetic curve) of
spherical vector fields on the sphereS2.

It is desired that our meticulous debate of the principles
considering the Serret-Frenet law and Lorentz force law in
conjunction with a coherent practice of the statement of some
special magnetic curves, electromagnetic force, optical an-
gular momentum, torque, magnetic-force torque, has been
beneficial in clarifying some of the aspect of the spherical
charged particle in a continuous motion with a magnetic field
on the sphereS2 while it is exposed to a frictional force, on
the unit sphereS2.

This study will also lead up to further research on the
investigation of the electrodynamics of the moving spherical
charged particles when they are experienced some other well-
known external forces beside the the frictional force such as
the gravitational force, the normal force, and the resultant
force. Consequently, we aim to obtain more applicable and
widely acceptable results to comprehend the exact movement
of the spherical charged particle in a given geometric and
physical spacetime structure.
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