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Magnetic motion of spherical frictional charged particles on the unit sphere
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Mathematically, the unit sphef# is described in an ordinary space with positive curvature. In this study, we aim to present the manipulation

of a spherical charged particle in a continuous motion with a magnetic field on the §3hehdle it is exposed to a frictional force. In other

words, we effort to derive the exact geometric characterization for the spherical charged particle under the influence of a frictional force field
on the unit 2-sphere. This approach also helps to discover some physical and kinematical characterizations belonging to the particle such as
the magnetic motion, the torque, the potential energy functional, and the Poynting vector.
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1. Introduction magnetic fields [2,3]. Another classical model of magnetic
fields is easily developed if one multiplies by a magnitude
Trajectories of a charged particle moving under the influthe grea of a Riemannian surface. Thus, it is obtained that on
ence of a magnetic field on any Riemannian manifold arg hyperbolic plan&l? magnetic trajectories are either open
represented by magnetic curves. A magnetic field dr @ cyrves or closed curves, on the Euclidean plane magnetic tra-
dimensional Riemannian manifoldk, o) IS any _closed 2= jectories are circles, and on the sph&tehey are tiny circles
form G. The Lorentz force of the magnetic fiefflis a one-  having a particular radius [4,5]. Studies on magnetic curves
to-one tensor fieldr such that it is defined by have been mainly focused on the charged particle, which is
. assumed to be free of any external force. However, in this
W (A)oB=G(AB), wherevA, B € X(R). manuscript, we consider a well-known external force and at-

Magnetic trajectories of the magnetic figfdcorrespond to  tempt to observe its effects on the motion of the charged par-

magnetic curves onR. These curves satisfy the following ticle lying fully on the unit 2-spherg?.

Lorentz formula In this manuscript, we take the unit sph&® and the
Vyd =0(0). (1) transformationy : I — S* C R®. Even though the selection

Evidentl i i desics due to t of the spherical frame is basically owing to its geometrical
vidently, magnetic curves generalize geodesics due to hEnderstanding, it may be seen that the features of the trajec-
following equation, which is satisfied by geodesics:

tory of the particle frequently emerge in physics. Considering
V8 = 0. the definition ofS? and§ in terms of the orthonormal frame
together with the specially defined dynamical force fields, we

This formula obviously represents the Lorentz formula infirstly define a special magnetic curve, which is nhamed as a

the nonappearance of the magnetic field. Consequently, spherical frictional magnetic cur&f — magnetic curve)

geodesic corresponds to trajectory of the moving charged paof spherical vector fields. After presenting its geometric in-

ticle when it is free from any magnetic fie(d =0) [1]. terpretations, we investigate the magnetic and electromag-
In the case of 8D Riemannian manifoldR, o), vec-  netic field effects on the magnetic trajectories of $g

tor fields and 2-forms can be described thanks to the volmagnetic curve on theS2.

ume formdv;, and the Hodge star operaterof the mani-

fold. Hence, divergence-free vector fields and magnetic fields .

arein(1 — 1) correspondence. Therefore, Lorentz formulais2. Geometric Background of a Curve on the

given for any vector field on the3 D Riemannian manifold SphereS2

as follows:
U(S)=G xS, 2) The geometric characterization of curves is a very efficient

method to comprehend many physical events. Through con-
ecting with the motion of the particle in a given spacetime,
hese physical events have been modeled by the geometric
equivalences.
Vo =Gxd. 3 Ordinary space is one of best fitted geometric settings for
many physical phenomena such that it has been intensively
In three-dimensional Riemannian and pseudo-Riemanniastudied by both differential geometers and physicists. Since
manifolds, this fact leads to describe several class of maghe unit spher&? is a submanifold of the ordinary 3-space we
netic curves including Killing magnetic curves and Killing firstly give geometry of the curves in the ordinary 3-space.

where G is a magnetic field such thatS € X(R) with
div(G) = 0. As a consequence, the magnetic flow reduce
by the Lorentz formula is written by the following form
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Ordinary 3-space is a vector space endowed with a stan-
dard metric i

Xoy = x1Y1 + Ta2y2 + X3Ys3,

wherex = (z1,22,23), ¥ = (y1,%2,y3) are arbitrary vec-
tors in the spaceThe norm function of the given vector
is defined byj|x|| = (|x o x|)*/? andx is called a unit speed
or an arc-length parametrized|fik|| = 1.

Now, we can define the unit sphe$&, which is the ana-
logue of the ordinary 3-space, by using the argument dis-
cussed above in the following manner:

S? = {x€R?®:xo0x =1},

Hereafter, we consider a smooth regular curve lying fully on
theS2. In the theory of curves, one of the most efficient ways
of exploring the intrinsic feature of the curve is to consider
its orthonormal frame. It is Co.nStrUCted by a number O.f Or_FIGURE 1. Particle trajectory together with the force fields.
thonormal vectors and associated curvatures depending on

the dimension of the space. For the casBfthis orthonor-  ynere is a frictional coefficient [9]. These forces and the

mal frame was introduced by Koenderink and O'Neil [6,7]. yrajectory of the particle on the section of i can be seen
The curve satisfying the spherical frame equation is calleg, Fig. 1.

a spherical curve. Finally, we are ready to establish the or-
thonormal frame of spherical curves lying fully on t&
Let 5 : T — S® be a unit speed regular spherical 3, Magnetic Fields ofS f-magnetic curves on
curve, that is it is an arc-length parametrized and sufficiently  the Unit Sphere82
smooth. Then the spherical frame is defined along the curve
4 as follows: In flat spacetime, the motion of a charged point particle was
highly active and popular research field since the early study

Y

>

Vgd=T, of Poincare, Abrahams, and Lorentz. As such, Einstein’s
Vs T =3+ uN, (4)  study of special relativity was inspired on the electrodynam-

ics of moving objects. Poincare and Lorentz were also mo-
Vs N=—uT, tivated and guided by the equations of Maxwell to investi-

gate spacetime transformations. This gave rise to the radi-
cal unification of some special spacetime structures. In this
context, it is fairly true that Maxwell equations played a key
role to comprehend the profound connection between the dy-
S=TxN. T=Nx5. N=5xT. namics of the major physical fields and interactions. Further
’ ’ researches, in turn, led to connect the spacetime geometry
The problem on the motion of the particle on a block orwith the electromagnetic field. As a conclusion, one reaches
on a surface is well-known and it is extensively studied forthat the field equations are entirely general at the very base
the cases of circular and flat surfaces. Point particle slidingf electromagnetic theory, regardless of considering of any
on a downward concave surface under the action of a fricaffine structure or metric of spacetime, however, its compre-
tional force, a normal force, or a gravitational force can behension in spacetime by way of essential connections, admits
expressed by using the orthonormal frame, which is definedonstitutive relations between the causal framework of space-
along the trajectory of the point particle. It is shown that fortime and electrodynamics.

whereV is a Levi-Civita connection and = det (6, T, T")
is the geodesic curvature éf The following identities in-
cluding pseudo vector product also hdit

any particle sliding down on a surface with a massthe In this section, we attempt to explore the impacts of Rie-
normal force is mannian geometry on the motion of a spherical charged parti-
N=+ NN, (5)  cle under the influence of some external force fields acting on

a magnetic field derived from generalized Lorentz equations.
Followings are also useful sources to understand the back-
W=m(goT + ¢1N), (6)  ground of the study. Dynamics of the charged particles that

correspond to the trajectories of a particular type of curves in

where g;—o,1 are gravitational coefficients; the frictional electromagnetic fields has been of significance in the litera-
force is ture and it is applied to many experimental studies [10-13].
f=—-aNT, (7) Furthermore [14,15] studied the motion of charged particles

whereN = ||| ; the gravitational force is
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in homogeneous electromagnetic fields by concentrating othen it is obtained following equalities:

the invariant geometric description of their trajectories. Bear-

ing in mind, the importance of the frictional force of the dis- aN =9(f)od=—foU(§) =aN(To¥(4)),
placement of charged particles in magnetic fields, Coronel- ,
Escamillaet al. [16] focused on the fractional dynamics of — (@N) =¥(f) o T =~fo¥(T) = aN(T o ¥(T)),
charged particles in harmonic magnetic fields, ramp magnetic _ Ny = W(f) o N = —f o U(N) = aN(T o ¥(N)).
fields, and constant magnetic fieldsoginar and Demirkol

also defined frictional and graVitational magnetic curves tO‘Fina”y’ using the obvious properties of the inner product one
gether with their energy functionals and uniformity condi- has

tions on the 3D Riemannian surface [17,18].

Here, we assume thgt is a moving spherical charged W(8) = T+e16 4 N,
particle with a magnetic field such that it is influenced by
the frictional force on the unit sphef®. We also assume U(T) = —((aN)" /aN)T+c36 + 4N, (10)
for the rest of the manuscript that the trajectory of this par- U(N) = —uT+esd + 6N,

ticle corresponds to a unit speed sufficiently smooth regular
spherical curvé : I — S? to define and investigate frictional where ¢; (i=1,...,6) are smooth functions along with
spherical magnetic curves lying fully on the unit 2-sphere bythe Sf—rlnagnetic’ C{m}e. Here if one also uses the anti-
using the spherical orthonormal frame describing along Witr%ymmetric feature of the Lorentz force
the trajectory.
Definition 1. Let 5 be a moving spherical charged par- T(T) o T =U(N) o N =U(8) 0 5= 0
ticle under the influence of a frictional force in the mag-
netic fieldG on theS? such that its trajectory corresponds and following identities
to a unit speed sufficiently smooth regular spherical curve

§ : T — S2 Frictional spherical magnetic trajectories (5)oT = —§ oW (T)

(Sf — magnetic curve) of the charged particled are de- ’

fined via the Lorentz force formula as follows U(§)oN=—-§o¥ (N),
Ve f=9(f)=Gxf. (8) U(T)oN=-To¥ (N),

Proposition 2. Let § be an arc-length parametrized fric-
tional spherical magnetic curve together with the spherical
frame elementqs, T, N, u} on the unit sphereés?. Then,
Lorentz force¥ of the magnetic fieldG is written in the

then it is concluded that

c1 = —(aN) JaN = ¢ =0,

spherical frame as follows cg=—1,ca=p, c5=—co=c.
U(9) 0 1 —c ) If one plugs each value obtained in the Eq. (11) into the
(T =] -1 0 pu T |, (9) Eg. (10), then the proof is completed.
U (N) c —u 0 N This proposition proves that the Lorentz forde in

wherec is an arbitrary smooth function along with the mag- the spherical frame of th&f-magnetic curve and the
netic curve such that it satisfies= ¥(N) o . T—magnetic curve on th&” is the same. Some characteriza-

Proof. Let § be an arc-length parametrizeSif- tions of theT'—magnetic curve on th&> have been given by

magnetic curve on theS? together with the spherical frame Abdel-Azizet al [8]. In particular, they find a magnetic vec-

elements(s, T, N, 1.}. One knows that tor field G as the trajectory of thé'—magnetic curve on the
S2. Thus, we can apply their finding to our case and give the
{@(0), ¥(T), ¥(N)} € span{s, T,N}. following theorem due to the similarity of the Lorentz force

From the definition of thé f-magnetic curve given in the ¥ in the spherical frame of thef-magnetic curve and the
Eq. (8) together with the spherical frame equations given in —magnetic curve on thg?.

the Eq.(4) and the frictional force in the Eq. (7), one has Theorem 3. ¢ is a unit speedSf-magnetic curve of
th tic fieldg if and only if
B(f) = (aN) 6 — (aN) T— (aNu)N. e magnetic fieldg if and only i

If one also considers the following feature of the Lorentz G=ué+cT+N (11)

force tensor fieldl
along with the S f-magnetic curve, wherec = U(N) o §
and (aN)" = 0 [8]. Figure 2 demonstrates the magnetic

U(f)oT = —fo¥(T), trajectories of théf — magnetic curve on the unit sphere
S2. Itis used the charged particle tracing module of Comsol
U(f)oN = —foW¥(N), Multiphysics software to create this sample demonstration.
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- Omega(37)=720 Magnetic trajetories of the magnetic curve on the 2-sphere The angular momentum Or mechanlcal angular momen_
tum of the3 on theS? is given by

L=fxmVU(f) =m(a®?N?us + a>*N2N). (15)

- Here, one can easily induce that the magnitude of the angular
momentum of the3 on theS? is

L] = ma®N?(u? + 1)1/2. (16)

FIGURE 2. Magnetic trajectories of thBf — magnetic curve. There also exists another expression for the magnitude of the
angular momentun(||£|| = mor) that we can take into ac-
count to find out the constant functien= ¥(IN) o 6 in terms

4. Magnetic Motion of the 3 on the Unit ©f the geodesic curvature of the § and coefficients of the

SphereS? force fieldsa, N. If one uses that definition together with
Egs. (15,17), itis yielded that
In this section, we define the non-relativistic magnetic mo-

tion for the spherical charged partigtewith a charge; and L] = mor = #1 = ma®N?(p? + 1)1/2.
massmn, which acts under the frictional force, in the presence (u2+c2+1)2
of magnetic fieldg on theS2. The Newton second law for
the Lorentz force is readily computed by Thus, we get
1/2
4(T x )= F = mVs T, (12) _— (_uz I )
whereT is the velocity vector [19]. If one considers Egs. at N4 (p? +1)

(4,12,13) , then it is obtained that charge to mass ratio of the
3 on theS? is equal to— 1. The ratio of the charge to mass is
intensely used in the electrodynamics of the charged particl
particularly in electron optics, cathode ray tubes, electron mi-

croscopy, accelerator, nuclear physics, and mass spectrome- 6§ = Iy -
try. The significance of the ratio of charge to mass regarding 2m 2 2
electrodynamics is released on the fact that two particles ha\{q" these results include the behavior of then theS? with

ing the same ratio move in the same trajectory in a vacuurgpin in a magnetic fiel@ on theS?. Hence,3 experiences a
when they are subjected to the magnetic fields. Howeven:[,Orque given by the following identity:

we rather choose to focus on some mathematical equalities

mcludmg this ratio to obtain new characterizations §i- ma2N2¢

magnetic curves. T=0xG :T@ — pN),
It is known that the magnetic force causes the centripetal

force, thus cyclotron radius or gyroradiuds described by \here;; is the geodesic curvature aad= +(—p2 — 1 +
the radius of the curvature of the trajectory of the unit speeql/a4N4(u2 +1))Y/2. In Fig. 3, it is given relation be-

magnetic curve whose chargedsmass ism, speed isv,  tween the angular velocity and magnitude of the torque of
and the strength of the magnetic fieldGsas the following  the charged particle.
equality:

Finally, we reach to the point where the magnetic moment of
etgeﬂ on theS? is written as a vector field:

—£_-m

(@®*N?us + o> N2N).

muv
= —. 13
" qG ( ) Torque (N*m)
In this case, since the ratio of charge to mass is -1,
the radius of gyration and the gyro-frequency of thg-
magnetic curve are computed respectively as follows:
—1 9 9 1/2
r=——""—""> Kk=—(p"+c" +1 , (14) |

(,LL2+02+1)1/2 ( ) : =

wherey is the geodesic curvature éfandc = U(IN) o 4. In :
the theory of a classical electromagnetism, Larmor theorem -
states that a rotating charged particle has a magnetic momer = &
such that it is proportional to its angular momentum. Thus,

we can present the following consequences. FIGURE 3. The torque of thes on theS?.

Y
T

200 500 1000
Angular Velocity (rad/s)
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Now, we are able to investigate the potential endrgy
of the 3 on theS? by only using the geometrical coefficients
that are presented along with the paper:

(P) = ~00G =T a?N?(1 4 ). -

Generalization of the angular momentum is constructed by
the magnetic force-torque and the mechanical angular mo- . —
mentum: o e S

Lo =FxmU(f)+36(ff)
=m(a®N?ué — o> N?N)
q

+ 2(—=a?N?)(ué — T — N). In Fig. 4, it is shown the variation of the potential energy of
2 each Lorentz force field with respect to time.

FIGURE 4. The potential energy of Lorentz fordeof G on theS?.

Gauge invariance is guaranteed due to this structurg.olf
G =U(f)oG =0, thenitis found that = 0 and

Lo = a’N? (m—i— %) g,
whereG =ué—N. As a result,Ls andG are parallel and it
implies that the motion of th& on theS? is invariant with
respect to rotations.

Main Result: This approach can also be extended toThe fundamental of electrodynamics is constructed upon
characterize the torque and the potential energy of eacthe theory of Maxwell together with electromagnetic field
Lorentz force¥ of the magnetic fieldj on theS?. Namely, (EMF), energy, force, and momentum, which are closely con-
if one considers each Lorentz force equation of the sphericalected each other by the Lorentz force law and the theory of

5. Electrodynamics of the 5 on the Unit
SphereS?

frame at the Eq. (9) and following formulae the Poynting vector. This theory governs the electromagnetic
—-m energy flow and its exchange between magnetic and electric
Tw(s) = 7(‘1’(5) x Vg ¥()) x G, fields. EMF transports both momentum and energy. In this
—m section, we aim to explore the chance of angular momentum
Ty(T) = T(W(T) x Vg ¥(T)) x G, being associated with EMF.
—-m Generalizing the Lorentz force law given at the Etg) ,
To) = — (Y(N) x Vg ¥(N)) x G, one obtains that
then it is obtained a magnetic torque of each Lorentz force as
follows: F =¢(E+T x G)=mV T, a7)
Tq,((g) m w 0 0 \11(5)
Tor) | =5 | 0 p 0 v(T) |, which is the force exerted on a moving spherical charged par-
Tw(N) 0 0 ¢ Y(N) ticle 3 with a velocity vector fieldTI' in the electromagnetic
where fieldsG and& [19]. If one considers Eqsi4, 12) , it is easy
@ = (uc® — ), to get that
p=u —c(l+p?),
) | ), , 5<1+m)5+u(1+m>N, (18)
¢=—p"+pp+c)+clc—pu), q q

1
atN4(pu? +1)
Finally, the potential energy of each Lorentz forgeof the
magnetic field7 on theS? are given by

c=F(—p? -1+ )1/2- wherey is the geodesic curvature of the curve. Thus, one can
compute the Poynting vectdt, which represents the direc-
tion of propagation of trajectories of t&gf -magnetic curve

on theS? as well as the density of energy flux. From Egs.

(Plags) = 5 (1 =@+ +1), (12,19), one has
Py _m((r=H L m
( )W(T)*E - tucl, S=—uc 1+; )
m 2
(Plege = 5 W2 (1* + ¢ +1) + ¢). + (1 + 7;) (1+ )T —c <1 + :’;) N,

Rev. Mex. 5. 65 (5) 496-502
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Radial position of the magnetic curve on the z-sphere
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FIGURE 5. Magnetic trajectories and total energy®bn theS?.

wherec = ¥(IN) o §. Based on this definition the density of
the angular momentum of the EMF is defined by

m) 5.
q
Thus, the angular momentum of the EMF is defined by

S
,CEMpz/—ozNuc <1 + 7:;) N+aNe <1 + 7:;) dds.
0

Lp =—aNuc <1—|—m>N+aNc (1+
q

Since EMF also stores energy then we can discuss the ener
density of the electromagnetic trajectories of then theS?.
The total energy/ contained in a section of tH## with both
magnetic and electric field is

1 2
uz2(y+?)(1+ﬁ)+u+u?+8y

In Fig. 5, it is seen magnetic trajectoriesfinder the elec-
tromagnetic fields and total energy density on$he

6. Conclusion
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Radial total energy of the magnetic curve
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topics for a long time. The aim of the paper has not been
to report new discoveries nor to break new ground. Rather, it
has been our goal to show how the findings obtained through-
out the manuscript are useful and applicable to clarify some
of the fundamental features of the electromagnetic force,
energy-exchanges rate, optical angular and linear momen-
tum, and optical magnetic-torque experienced by the spher-
ical frictional magnetic curvéSf — magnetic curve) of
spherical vector fields on the sphé&re

It is desired that our meticulous debate of the principles

nsidering the Serret-Frenet law and Lorentz force law in
ggnjunction with a coherent practice of the statement of some
special magnetic curves, electromagnetic force, optical an-
gular momentum, torque, magnetic-force torque, has been
beneficial in clarifying some of the aspect of the spherical
charged particle in a continuous motion with a magnetic field
on the spher&? while it is exposed to a frictional force, on
the unit spheré&?.

This study will also lead up to further research on the
investigation of the electrodynamics of the moving spherical
charged particles when they are experienced some other well-
known external forces beside the the frictional force such as
the gravitational force, the normal force, and the resultant
force. Consequently, we aim to obtain more applicable and

The subject of electromagnetic force and optical angular mowidely acceptable results to comprehend the exact movement
mentum is highly broad and many distinguished research paf the spherical charged particle in a given geometric and

pers, reviews, and monographs have been devoted to the)

physical spacetime structure.
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