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In this paper, the generalized exponential rational function method is used to construct exact solutiofisohfbemable-time Radhakrishnan-
Kundu-Lakshmanan equation. This model governs soliton propagation dynamics through a polarization-preserving fiber. Fractional deriva-
tives are described in th@-conformable sense. As a result, we get new form of solitary traveling wave solutions for this model including
novel soliton, traveling waves and kink-type solutions with complex structures. Physical interpretations of some extracted solutions are also
included through taking suitable values of parameters and derivative order in them. It is proved that this method is powerful, efficient, and
can be fruitfully implemented to establish new solutions of nonlinear conformable-time partial differential equations applied in mathematical
physics.

Keywords: Optical solutions; Exponential rational function method; Traveling waves; Exact solutions; Radhakrishnan-Kundu-Lakshmanan
equation.

PACS: 02.60.-x; 02.60.Cb; 02.30.Jr DOI: https://doi.org/10.31349/RevMexFis.65.503

1. Introduction tion is being differentiated. Some interesting works involving

_ . o o _ these conformable derivatives have been reported in [36-39].
Fractional calculus is a generalization for derivatives and in-  The 3-derivative is defined as [35]

tegrals of integer order. This mathematical representation has

successfully been utilized to describe several problems in en- 1\
gineering practices [1-7]. In the literature, there are many , EEAtas (I“L@) f (@)
definitions of fractional derivative, the most popular defini- 0 Dg{f(x)}= ;1_{% c - (@)

tions are of Riemann-Liouville, Liouville-Caputo, Caputo-

Fabrizio, Atangana-Baleanu, Riesz, Hilfer, among others [8- Some properties for the proposed Atangana’s-derivative
10]. Recently, several numerical methods have been prgdl€:

posed to obtain approximate solutions of fractional ordinary

differential equations and fractional partial differential equa-!) Assuming thata andb are real numbersy # 0 and f
tions, such as the fractional sub-equation method [11,12]are two functionsx-differentiable andv € (0;1] then, the
the Adomian decomposition method [13-15], the Homotopyfollowing relation can be satisfied

perturbation method [16,17], the variational iteration method Ao Ao Ao

[18-21], homotopy perturbation transform method [22,23], 0 Pz{af(z) +bg(x)} = a5 D3 f(x) + b5 Dig(x). (2)

and so on.

Khalil in [24], introduced a new definition of derivative
called the “conformable derivative”, this derivative satisfied
some conventional properties, for instance, the chain rule,
product rule, quotient rule, mean value theorem and com-
position rule and so on. This derivative may not be seen
as fractional derivative but has fractional compound. ThisI
new operator has attracted considerable attention in recenlp
years [25-34]. Ao o Ao

Recently a generalized definition proposed by Atangana o DS () - g(x)} = g(x)g DI {f(2)}
in [35] appeared in literature on conformable derivatives. + f(x)§ DX g(z)}. (4)
This conformable derivative is called tifederivative. This
novel derivative depends on the interval on which the func-

II) For any given constant ¢” it is satisfied that

oD {c} =0, ©)
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V)
apa( f@) _g@)g Di{f(2)} - f(@)g D{g(x)}
07 g(=) g(x)? '

®)

Considering: = (x + (1/T'(«)))*'h, andh — 0, when
e — 0, therefore we have

4D {1 ()} = (w v @)Cb}? ©
with
/(i(“mla)) ™
wherel is a constant.
v)
foz s =142 ®)

The proofs of the above relations are given by Atangan

in [35].

The conformable-time nonlinear perturbed Radhakrishnan-
Kundu-Lakshmanan (RKL) equation that serves as an alter-
nate model for the propagation of light pulses and the dyi‘e
namics of light pulses. This model has been studied sin
many years by a variety of methods that led to the retrieva
of bright and dark optical solitons. This equations have th

following form
io D{{o} + ag DI {0} + blo[*e = i[pg Dy {6}
+ A0 De{|6[0} + 05 Dg{l9*}o
— 70D {0}], (9)

wherea, b, p, A, ,~ are coefficients, and(z,t) represent
the complex-valued functions of independent variablesd

BEHZAD GHANBARI, AND J.F. GOMEZ-AGUILAR

In recent years many researchers have extensively studied
different methods to obtain optical soliton solutions for RKL
equation. Consequently, several methods are reported in the
literature mainly in case of standard derivatives as:

+ A (16120), +0(16%), ¢ — Vbrzal.  (10)
For instance, in [40-41] the 1-soliton solutions of this
equation are obtained by using solitary wave ansatz. New
auxiliary equation method and extended simple equation
method are two integration schemes used in [42] to carry out
the integration of this model. The work of [43] is devoted to
extract some optical soliton solutions to the model with Kerr
and power laws of nonlinearity by means of extended trial
function scheme. Bright, dark and singular soliton solutions
of the model with two types of Kerr and power law nonlinear-
ities are derived in [44]. Their study is based on trial equation
method and modified simple equation method. Moreover,
some chirp-free bright optical soliton solutions of the model
is presented by traveling wave hypothesis in [45]. Lie group
analysis is also used in [46] to retrieve optical soliton so-
lutions of the perturbed Radhakrishnan-Kundu-Lakshmanan
equation. In [47], the authors investigated the conformable

Yime-fractional perturbed RKL equation by utilizing the ex-

tended sinh-Gordon equation expansion method.

Recently, generalized exponential rational function

method (GERFM) has been successfully used to retrieve dif-
rent types of optical soliton solutions to several nonlinear

EEﬂodels. This powerful integration scheme also provide a

uideline to classify the types of these solutions [48,49].

In this work, we will make use of the GERFM for solving
the perturbed RKL Eqg. (9) in the sense of fheonformable
derivative as given by Atangana [35]. To the best of our
knowledge RKL equation with this kind of fractional deriva-
tive has not been solved by this scheme in the recent litera-
ture.

2. Overview of GERFM

t that represents the spatial and temporal variables respec- 1. Let us take into account the nonlinear partial differen-

tively. The first, second and third terms represents the evo-

tial equation (NPDE) in the following form

lution term, the group velocity dispersion and the nonlinear

term. Table | presents the parameters involved in Eq. (9).

TABLE |. Description of parameters in Eq. (9).

Parameter Description

Coefficient of group velocity dispersion.
Nonlinear term of Kerr type.
Inter-modal dispersion.

Coefficient of self-steepening term.
Effect on nonlinear dispersion.

=2 D > D o 2

Dependent coefficient of the third order dispersion term.

L(Y, ¢ DI{Y}, 0 Di{e}, 4 D3*{a},...) = 0. (11)

Using the transformationgy = ¥(r) and 7 =
(0/a) (z+ (1/T(a))* = (/o)) (t + (1/T ()" ¢, is
possible reduce the NPDE to the following ordinary
differential equation:

LT, 0" ..)=0, (12)
where the values of and! will be found later, and

prime notation means the derivative Bfwith respect
tor.
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2. Consider Eq. (12) has solution of the form where¢(z, t) represents the phase components the fre-
M M quency of solitonsk represents the wave number antep-
U(r) = A + ZAk@(T)k + Z ByO(r)~*, (13) resents the velocity.
k=1 k=1 Substituting Eq. (15) into Eq. (9) we have the real com-
where, ponent as
o(r) = p1e®tT + poe®T

= . 14
P3eBT + pyetsT a4

(a+3k7) @" (1) — (w+ pr + ar® + v£3) (1)

The values of constanis, ¢;(1 < i < 4), Ay, A and + (b — Ar) ®3(1) =0, (16)
Bi(1 < k < M) are constants to be determined, such
that solution (13) satisfies Eq. (12). By considering the

D dthei i t
homogenous balance principle the valueldéfcan be andihe imaginary part as

determined.
37@" (1) — 3 (v + p+ 2ak + 3yx*) ®(1)
3. Substituting Eq. (13) into Eg. (12) and collecting all 5
terms, the left-hand side of Eq. (12) is converted an = (BA+20) ®°(r) = 0. 17)
algebraic equatiorP(Z1, Zs, Z3,Z4) = 0 in terms
of Z;, = e%7 fori = 1,...,4. Setting each coef-

ficient of P to zero, a system of nonlinear equations3.1. Application of GERFM
in terms ofp;,¢;(1 < ¢ < 4), ando,l, Ay, A, and
By (1 < k < M) is generated. Balancing the terms af? andu” in Egs. (16) and (17) gives

4. Solving the above algebraic equations using any symM = 1. Hence, from Eq. (13), we obtain:

bolic computation software, the values @f ¢;(1 < B

i <4), Ag, Ay, andBy(1 < k < M) are determined. () = Ao + AjA(T) + ——,
Replacing these values in Eg. (13) one can obtain the &(7)
soliton solutions of Eq. (11).

(18)

where®(7) is giving by Eq. (14).

Substituting Eqg. (18) into Egs. (17) and (16), following
to method described in Section 2, we achieved the following
non-trivial solutions of Eq. (9) as:

Set 1: We obtainp = [2 —i,—2 — i,—1,1) andq =
To solve Eq. (9), we apply the following travelling wave [ — @ —i], which gives

3. Analytical solution of the nonlin-
ear Radhakrishnan-Kundu-Lakshmanan
equation with g-derivative

transformation ") )
o cos (1) — 2 sin (7
5(r) (2,1) = D)), A== )
e PN v LY
o \""T(a) o T(a)) ' We also get
Mxn”(x+1)a+w(ul)a (15)
o« M)/ a\ T()) ' (=20 -3X) a—3by (20)
| T (e
(=902 +24 \2+48 X 0+2462) v+ (=12 p X2+ (—6.ab — 24 pO) A—12 p6?) y+4 (6+3/2\) (6-+)/2) a® 21)
V= s
12y (A 46)*
e 27b(b? — 2477 — 48X — 2462)® + (—216a)\> + (—432a0 + 108pb)\?
21672(\ + 0)3
+ (27ab* — 216a6” + 216pb0) X + 108bp0* )y — 36(6 + 3/2\)a(—2pA? + (1/2ab — 4pO)\ + abd — 2p0?)
—16(0 4 3/20)%(3/4X + 0)a®|, (22)

and
[ 6y [ 6y
Ay = -2 ST A1 =0, B, =-5 INT 90 (23)
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Substituting above values into Egs. (18) and (19), we have

| 6y (5cos(r)sin(T)+2)
(r) = - 3A+260  (5cos?(r)—4) (24)

Therefore an exact solution of Eq. (9) is obtained as

5cos (£ (2 + iy t
o1 (z,1) = (_m( ( ( I Ez cos2 (i

«

QI

+ ﬁ)a) sin (g (x+ ﬁ)a y <t+ ﬁ)a) +2))
(el 4 (eorie) )
w (& (et )"+ (t+v)") (25)

wherey (3 X + 26) > 0 for valid soliton. Figures 1a)-1d) and 2a)-2b) show the soliton surface and the 2D graph for Eq. (25),
respectively.
[Set 2] We obtainp = [, —i, 1, 1] andq = [i, —i, 4, —i], which gives
__sin(7)
A1) cos (1) (26)

We also get

(=260 —3X)a—3by
6y (A +0) ’ @7)

Real|dy bti] for @=0.95

Real[ ¢ () for ¢=0.90

(a) (b)

Imag|ay ety for @=0.90

(d)

FIGURE 1. 3D soliton solution for Eq. (25) for different particular casegppérbitrarily chosen.
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Real[gs (x.1)] Imag[¢ (x.4)]
E —_— =095

— =0,90
— =085

a=0.80
—

(a) (b)

FIGURE 2. 2D Plot soliton solution for Eq. (25) for different particular caseg cdrbitrarily chosen.

(—9b2(—48A2(—96 A O(—4862) 4% (+ (—12p N2+ (—6ab — 24 pO) A — 12 p62) v+4 (6+3/2 \) (0+)/2) a

v= , (28
12y (A+0)° (8)
— 1 2 2 2\~ 3 3 2
“ = AT OR 27b(b* + 48A\% + 9670 + 4807)~* + (432a\® + (864af + 108pb) A
+ (27ab? + 432a6? + 216pb0) X + 108bph?)7? — 36(0 + 3/2)\)a(—2p % + (1/2ab — 4pO) X\ + abh — 2p0?)y
—16(0 + 3/20)%(3/4) + 0)a® — 2167% (N + )3 |, (29)

and

B _ 6y _ 6y
Ao =0, A= V 3x+20 By = V3Xx126° (30)

Substituting above values into Egs. (18) and (26), we have

o(r) = \/3)\7—#29(:03 (7)sin (1) -

Therefore an exact solution of Eq. (9) is obtained as

asz(z,t)—( o e ~— g s )
3)‘+2ecos(é(x+%a)> —%(t—&-ﬁ) )sm(é(m—i—ﬁ) —g(t-ﬁ-ﬁ) )
x il () + (b)) (32)
wherey (3 IA +26) > 0 for valid soliton. Figures 3a)-3d) and 4a)-4b) show the soliton surface and the 2D graph for Eq. (32),
respectively.

[Set 3] We obtainp = [1 — 4,1 +14,1,1] andg = [i, —i, i, —i], which gives

A(r) = cos (1) + sin (1) (33)

cos (1)
We also get

_ (=20-3X)a—3by
S Y N R (34)
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Realldy (1) for ¢=0.95 Real| ¢zt for =080

(b)
Imad| gy (2.1} for @=0.90

FIGURE 3. 3D soliton solution for Eq. (32) for different particular casegppérbitrarily chosen.

Real[¢,(x.1)] Imag[¢:(x,)]

=

FIGURE 4. 2D Plot soliton solution for Eq. (32) for different particular caseg ddrbitrarily chosen.
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(=902 +24 \2+48 X 0+2462) v+ (=12 p X2+ (=6 ab — 24 pO) A—12 p6?) y+4 (6+3/2\) (6-+)/2) a?

V=

12y (A+6)?

1
YT 2162\ 1 0)°

+ (27ab* — 216a6” + 216pb0) X + 108bp0* )y — 36(6 + 3/2\)a(—2pA? + (1/2ab — 4pO)\ + abd — 2p0°)

—16(0 4 3/20)2(3/4) + 0)a®

)

and

6y 6y
Ag= )"t Ay = By = —2y/ 1.
0 20+ 3\ 1=0 1= 72\ 5553

Substituting above values into Egs. (18) and (33), we have

B 6y  sin(7) — cos(7)
®(r) = \/29+73)\(c0s (1) +sin (7))’

Reallds (i) for =095 Reallds i) for a=0.90

(a)

FIGURE 5. 3D soliton solution for Eq. (39) for different particular casegppérbitrarily chosen.
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b
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Real[¢s(x.1)] Imagles(x,t)]

=

FIGURE 6. 2D Plot soliton solution for Eq. (39) for different particular caseg cdrbitrarily chosen.

Therefore an exact solution of Eq. (9) is obtained as

o ([ e ) (i) e () o )')
e (M@m(;( BTt )

1 a

w (& (e ) e ( (39)

7

wherey (3 A 4+ 20) > 0 for valid soliton. Figures 5a)-5d) and 6a)-6b) show the soliton surface and the 2D graph for Eq. (39),
respectively.

[Set 4]
We obtainp = [-1,0, 1, 1] andg = [0, 0, 1, 0], which gives
A(r) =~ (40)
4 1+e”
We also get
(=20 —3X)a—3by
= 41
6y (A+0) ’ (41)
(=962 — 622 — 1200 — 66%) 72+ (=12 p X2+ (—6ab — 24 pO) A — 12 p62) v+4 (0 + 3/2 \) (0+1/2) a® “2)
V= )

129 (A +6)°

1

= 6200 1 0) 27b(b2 + 6A2 + 1200 + 662)7° + (54ar® + (108af + 108pb)A2 + (27ab? + 54ah? + 216pb0) A\

+ 108bph*)y2 — 36(0 + 3/2X)a(—2p\> + (1/2ab — 4pH)\ + abf — 2p62)y — 16(6 4+ 3/2X0)% (34X + 0)a® |, (43)

1 6y 6y
_ = Ay = 4/ —1 B, =0. 44
2V 20+3\ TV 20+3N 1=0 (44)

Substituting above values into Egs. (18) and (40), we have

and

1 6 V6yA (e™ — 1)

) =3 20+3Xv20+3X(e7 +1) (49)

Rev. Mex. Fis65 (5) 503-518
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Reall gy t)] for ¢=0.95 Real[guint)) for @=090

Reallgq(x.t)] Imag¢s(x.t)]

(a)
FIGURE 8. 2D Plot periodic wave solution for Eq. (46) for different particular cases, afbitrarily chosen.

Therefore an exact solution of Eq. (9) is obtained as
3o+ mm) £ (i)
¢4 (I,t) = l 67 (e 1 1 @ 1 @ 1) X ei(—g(z—&-ﬁ)aﬁ-%(t—i—ﬁ)a). (46)
2\ V20+3) (ea(ﬁw) —&(tets)” 4 1)

Rev. Mex. Fis65 (5) 503-518
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where~y (3 A+ 26) > 0 for valid soliton. Figures 7a)-7d) and 8a)-8b) show the periodic wave surface and the 2D graph for
Eq. (46), respectively.

[Set 5] We obtainp = [-3,—1,—1,1] andg = [-1, 1, —1, 1], which gives
cosh (1) — 2 sinh (1)

A(r) = 47
(7) sinh (7) (“7)
We also get
(=20 —3)X)a—3by
= 48
" 6y (A+0) (48)
(96224 X2—48 X 0—2462) v+ (=12 p A%+ (—6.ab — 24 pO) A — 12 p6?) y+4 (0+3/2A) (6+)/2) a® 49)
V= )
12y (A+0)°
— 1 2 2 2\~ 3 3 2
b T T e 27b(b? + 2477 + 48X0 + 2462)~® + (216a)\® + (432a6 + 108pb) A
+ (27ab? + 216a6* + 216pb0) X + 108bph? )72 — 36(0 + 3/2\)a(—2pA\* + (1/2ab — 4pO) X\ + abh — 2p6?)y
—16(0 + 3/20)%(3/4) + 0)a® — 216+4%(\ + 6)3| (50)

Real| g xti for @=0.95 Reallds ot for @=0.90

(a) (b)

(d)

FIGURE 9. 3D periodic wave solution for Eq. (53) for different particular caseg, @rbitrarily chosen.
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Real[s(x.t)] Imag|[¢s(x.t)]

5 .
— =095 s 7
4 _—
= a=0.90 = LT \ A L i L ey
/- -2 \ /1 4
) \\1\, / — 0=0.95
/ ok — =090
e 0=0.80

X =3+

— 0=0,85
4l

5[

(b)

FIGURE 10. 2D Plot periodic wave solution for Eq. (53) for different particular cases, afbitrarily chosen.

6y 6y
Ag =24/ —"1— Ay = By = -3/ —"—. 51
0 20+ 3\ 1=0 1=-3 20+ 3\ (51)

Substituting above values into Egs. (18) and (47), we have
inh (1) — h
*0) = |/ 3923 ot (50 () ©2
Therefore an exact solution of Eq. (9) is obtained as
b (.8) = 6y (sinh(é (erﬁ)afi(tJr ﬁ)a) 72cosh(é (x ﬁ)a))
T 26’—’_3)‘(cosh(é (:c—l—ﬁ)a—i(t—l—ﬁ)a)—Qsinh(é (m ﬁ)a)>

X ei(_§($+r<la>)a+§(t+ﬁ>a), (53)

and

+
t+

wherey (3 A 4+ 20) > 0 for valid soliton. Figures 9a)-9d) and 10a)-10b) show the periodic wave surface and the 2D graph for
Eq. (53), respectively.

[Set 6] We obtainp = [1 — 4,1 +14,1,1] andg = [—4, i, —i, 7], which gives

A(r) = cos (7) — sin (7') (54)
cos (7)
We also get
(=260 —3)X)a—3by
— 55
" 6y (A +0) (55)
(—962—96 A2—192 X —-96 6?) v2+ (=12 p A2+ (—6 ab—24 p6) A\—12 p6?) y+4 (0+3/2 X) (0+)/2) a? (56)
V= s
129 (A +6)°
— 1 2 2 2\~ 3 3 2 2 2
“ = 6RO 27b(b* + 9627 + 19200 + 960%)7* + (864ar* + (1728a6 + 108pb)\* + (27ab” + 864af
+ 216pb0) X + 108bph?)7* — 36(0 + 3/2)\)a(—2pA\% + (1/2ab — 4pO) X\ + abd — 2p0?)y
—16(0 4 3/20)%(3/4X + 0)a®|, (57)

Rev. Mex. Fis65 (5) 503-518
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Real| g (xt)] for @=0.95 Real[dg(x 1) for @=0.90

FIGURE 11. 3D periodic wave solution for Eq. (60) for different particular caseg, @rbitrarily chosen.

Reallghs (x.1)] Imag(ds (x.1)]

FIGURE 12. 2D Plot periodic wave solution for Eqg. (60) for different particular cases, afbitrarily chosen.

6y 6y
Ay = Ay = ) By =4/—1—. 58
0=0, ! 20+ 3\ ! 20+ 3\ (58)

Rev. Mex. Fis65 (5) 503-518
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Substituting above values into Egs. (18) and (54), we have

[ 6y (coth®(r)+1)
O(1) = . 59
(7) 20+3X  coth(r) (59)
Therefore an exact solution of Eq. (9) is obtained as
(o (ot (e ) =2 (i) V) | i (k) ()
00 2.0 = (/ioen oA ) ) R et (o)), (60)

wherey (3 +26) > 0 for valid soliton. Figures 11a)-11d) and 12a)-12b) show the periodic wave surface and the 2D graph
for Eq. (60), respectively.

[Set 7] We obtainp = [2,0, 1, —1] andg = [1,0, 1, —1], which gives

_cosh (1) +sinh (1)

A = 1
(7) sinh (1) (61)
We also get
(=260 —3X)a—3by
& 6y (A +0) ’ (62)
Real[ gz (%t} for a=0.95 Real @7 xt) for @=0.90

FIGURE 13. 3D soliton surface for Eq. (67) for different particular casep,ddrbitrarily chosen.

Rev. Mex. Fis65 (5) 503-518
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Real[¢; (x.1)] Imag(¢(x.1)]

FIGURE 14. 2D Plot soliton surface for Eq. (67) for different particular caseg,@rbitrarily chosen.

(—9b2—24 X248 X0 — 24602) >+ (=12 p X*+ (—6ab — 24 pO) X — 12 p6?) y+4 (043/2X) (6+)/2) a® (63)
V= 5
12y (A+6)?

1

= |97h(b% + 242% + 480 + 240%)~3 + (216a)\® + (432a0 + 108pb) A2
w 216200 1 0)° 7b(b* + + 4800 + )Y + (216aAX” + (432a6 + 108pb)

+ (27ab® 4 216a6? + 216pb0) X + 108bpH%)7* — 36(0 + 3/2X\)a(—2pA* + (1/2ab — 4pO) X\ + abl) — 2p6?)y

—16(6 + 3/20)%(3/4\ + 0)a®|, (64)

6y 6y
Ag= |t A=/—T— B =0. 65
0 20+3A’ 1 20+3A’ 1 0 ( )

Substituting above values into Egs. (18) and (61), we have

B 6y cosh ()
M) =\ 264 3 x50 (n)° (66)

Therefore an exact solution of Eq. (9) is obtained as

and

1 1\ v 1\
&7 _eoh (2 (o ) —#(t+ i) ) (5 () 42 (0 )"
2043 sinh (L (o4 15) — £ (t+ 1))

wherey (3 +26) > 0 for valid soliton. Figures 13a)-13d) and 14a)-14b) show the soliton surface and the 2D graph for Eq.
(67), respectively.

¢7 ($7 t) =

(67)

4. Results and discussion

We discuss the results to Eqg. (9) obtained by using the germethod are newly structured solutions. These soliton solu-
eralized exponential rational function method. As a resulttions are located throughout parameter restrictions that pro-
we get new form of solitary traveling wave solutions for this vide their existence and novel soliton, traveling waves and
model including novel soliton, traveling waves and kink-typekink-type solutions with complex structures while other so-
solutions with complex structures. In this work, by using thelutions that emerged from the Laplace-Adomian decomposi-
GERFM, we successfully constructed some exponential antion method, traveling wave hypothesis, extended trial func-
rational function solutions to Eq. (9). When we comparetion scheme, among others. These soliton solutions are be-
our results with the results reported in [40-47], we observedng reported for the first time in this paper. It shows that the
that, all the results obtained in this study by using the abov&ERFM give an effective and credible mathematical tool for
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various nonlinear evolution equations to obtain a variety ofical phenomenons in science and engineering in general and
wave solutions. All solutions are satisfied with their corre-in fiber optics in particular.
sponding original equations.

5.

In this work, we have obtain exact analytical solutions includ-
ing novel soliton, traveling waves and kink-type solutions
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