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In this paper, the generalized exponential rational function method is used to construct exact solutions of theβ conformable-time Radhakrishnan-
Kundu-Lakshmanan equation. This model governs soliton propagation dynamics through a polarization-preserving fiber. Fractional deriva-
tives are described in theβ-conformable sense. As a result, we get new form of solitary traveling wave solutions for this model including
novel soliton, traveling waves and kink-type solutions with complex structures. Physical interpretations of some extracted solutions are also
included through taking suitable values of parameters and derivative order in them. It is proved that this method is powerful, efficient, and
can be fruitfully implemented to establish new solutions of nonlinear conformable-time partial differential equations applied in mathematical
physics.
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1. Introduction

Fractional calculus is a generalization for derivatives and in-
tegrals of integer order. This mathematical representation has
successfully been utilized to describe several problems in en-
gineering practices [1-7]. In the literature, there are many
definitions of fractional derivative, the most popular defini-
tions are of Riemann-Liouville, Liouville-Caputo, Caputo-
Fabrizio, Atangana-Baleanu, Riesz, Hilfer, among others [8-
10]. Recently, several numerical methods have been pro-
posed to obtain approximate solutions of fractional ordinary
differential equations and fractional partial differential equa-
tions, such as the fractional sub-equation method [11,12],
the Adomian decomposition method [13-15], the Homotopy
perturbation method [16,17], the variational iteration method
[18-21], homotopy perturbation transform method [22,23],
and so on.

Khalil in [24], introduced a new definition of derivative
called the “conformable derivative”, this derivative satisfied
some conventional properties, for instance, the chain rule,
product rule, quotient rule, mean value theorem and com-
position rule and so on. This derivative may not be seen
as fractional derivative but has fractional compound. This
new operator has attracted considerable attention in recent
years [25-34].

Recently a generalized definition proposed by Atangana
in [35] appeared in literature on conformable derivatives.
This conformable derivative is called theβ-derivative. This
novel derivative depends on the interval on which the func-

tion is being differentiated. Some interesting works involving
these conformable derivatives have been reported in [36-39].

Theβ-derivative is defined as [35]

A
0 Dα

x{f(x)}= lim
ε→0

f

(
x+ε

(
x+ 1

Γ(α)

)1−α
)
−f (x)

ε
. (1)

Some properties for the proposed Atangana’s-derivative
are:

I) Assuming that,a and b are real numbers,g 6= 0 and f
are two functionsα-differentiable andα ∈ (0; 1] then, the
following relation can be satisfied

A
0 Dα

x{af(x) + bg(x)} = a A
0 Dα

x f(x) + b A
0 Dα

x g(x). (2)

II) For any given constant “’c” it is satisfied that

A
0 Dα

x{c} = 0, (3)

III)

A
0 Dα

x{f(x) · g(x)} = g(x)A
0 Dα

x{f(x)}
+ f(x)A

0 Dα
x{g(x)}. (4)
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IV)

A
0 Dα

x

(
f(x)
g(x)

)
=

g(x)A
0 Dα

x{f(x)} − f(x)A
0 Dα

x{g(x)}
g(x)2

.

(5)

Consideringε = (x + (1/Γ(α)))α−1h, andh → 0, when
ε → 0, therefore we have

A
0 Dα

x{f(x)} =

(
x +

1
Γ(α)

)1−α
df(x)
dx

, (6)

with

η =
l

α

(
x +

1
Γ(α)

)α

, (7)

wherel is a constant.

V)

A
0 Dα

x f(η) = l
df(η)
dη

. (8)

The proofs of the above relations are given by Atangana
in [35].

The conformable-time nonlinear perturbed Radhakrishnan-
Kundu-Lakshmanan (RKL) equation that serves as an alter-
nate model for the propagation of light pulses and the dy-
namics of light pulses. This model has been studied since
many years by a variety of methods that led to the retrieval
of bright and dark optical solitons. This equations have the
following form

i A
0 Dα

t {φ}+ aA
0 D2α

x {φ}+ b|φ|2φ = i
[
ρ A

0 Dα
x{φ}

+ λ A
0 Dα

x{|φ|2φ}+ θ A
0 Dα

x{|φ|2}φ
− γ A

0 D3α
x {φ}], (9)

wherea, b, ρ, λ, θ, γ are coefficients, andφ(x, t) represent
the complex-valued functions of independent variablesx and
t that represents the spatial and temporal variables respec-
tively. The first, second and third terms represents the evo-
lution term, the group velocity dispersion and the nonlinear
term. Table I presents the parameters involved in Eq. (9).

TABLE I. Description of parameters in Eq. (9).

Parameter Description

a Coefficient of group velocity dispersion.

b Nonlinear term of Kerr type.

ρ Inter-modal dispersion.

λ Coefficient of self-steepening term.

θ Effect on nonlinear dispersion.

γ Dependent coefficient of the third order dispersion term.

In recent years many researchers have extensively studied
different methods to obtain optical soliton solutions for RKL
equation. Consequently, several methods are reported in the
literature mainly in case of standard derivatives as:

iφt + aφxx + b|φ|2φ = it[ρφx

+ λ
(|φ|2φ)

x
+ θ

(|φ|2)
x

φ− γφxxx]. (10)

For instance, in [40-41] the 1-soliton solutions of this
equation are obtained by using solitary wave ansatz. New
auxiliary equation method and extended simple equation
method are two integration schemes used in [42] to carry out
the integration of this model. The work of [43] is devoted to
extract some optical soliton solutions to the model with Kerr
and power laws of nonlinearity by means of extended trial
function scheme. Bright, dark and singular soliton solutions
of the model with two types of Kerr and power law nonlinear-
ities are derived in [44]. Their study is based on trial equation
method and modified simple equation method. Moreover,
some chirp-free bright optical soliton solutions of the model
is presented by traveling wave hypothesis in [45]. Lie group
analysis is also used in [46] to retrieve optical soliton so-
lutions of the perturbed Radhakrishnan-Kundu-Lakshmanan
equation. In [47], the authors investigated the conformable
time-fractional perturbed RKL equation by utilizing the ex-
tended sinh-Gordon equation expansion method.

Recently, generalized exponential rational function
method (GERFM) has been successfully used to retrieve dif-
ferent types of optical soliton solutions to several nonlinear
models. This powerful integration scheme also provide a
guideline to classify the types of these solutions [48,49].

In this work, we will make use of the GERFM for solving
the perturbed RKL Eq. (9) in the sense of theβ-conformable
derivative as given by Atangana [35]. To the best of our
knowledge RKL equation with this kind of fractional deriva-
tive has not been solved by this scheme in the recent litera-
ture.

2. Overview of GERFM

1. Let us take into account the nonlinear partial differen-
tial equation (NPDE) in the following form

L(ψ, A
0 Dα

x{ψ}, A
0 Dα

t {φ}, A
0 D2α

x {ψ}, . . .) = 0. (11)

Using the transformationsψ = Ψ(τ) and τ =
(σ/α) (x + (1/Γ(α))α − (l/α))(t + (1/Γ(α)))α

t, is
possible reduce the NPDE to the following ordinary
differential equation:

L(Ψ, Ψ′,Ψ′′, . . .) = 0, (12)

where the values ofσ and l will be found later, and
prime notation means the derivative ofΨ with respect
to τ .
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2. Consider Eq. (12) has solution of the form

Ψ(τ) = A0 +
M∑

k=1

AkΘ(τ)k +
M∑

k=1

BkΘ(τ)−k, (13)

where,

Θ(τ) =
p1e

q1τ + p2e
q2τ

p3eq3τ + p4eq4τ
. (14)

The values of constantspi, qi(1 ≤ i ≤ 4), A0, Ak and
Bk(1 ≤ k ≤ M) are constants to be determined, such
that solution (13) satisfies Eq. (12). By considering the
homogenous balance principle the value ofM can be
determined.

3. Substituting Eq. (13) into Eq. (12) and collecting all
terms, the left-hand side of Eq. (12) is converted an
algebraic equationP (Z1, Z2, Z3, Z4) = 0 in terms
of Zi = eqiτ for i = 1, . . . , 4. Setting each coef-
ficient of P to zero, a system of nonlinear equations
in terms ofpi, qi(1 ≤ i ≤ 4), andσ, l, A0, Ak and
Bk(1 ≤ k ≤ M) is generated.

4. Solving the above algebraic equations using any sym-
bolic computation software, the values ofpi, qi(1 ≤
i ≤ 4), A0, Ak, andBk(1 ≤ k ≤ M) are determined.
Replacing these values in Eq. (13) one can obtain the
soliton solutions of Eq. (11).

3. Analytical solution of the nonlin-
ear Radhakrishnan-Kundu-Lakshmanan
equation with β-derivative

To solve Eq. (9), we apply the following travelling wave
transformation

φ(τ) (x, t) = Φ(τ)eiφ(x,t),

τ=
1
α

(
x+

1
Γ (α)

)α

− ν

α

(
t+

1
Γ (α)

)α

,

φ(x, t)=−κ

α

(
x +

1
Γ (α)

)α

+
ω

α

(
t+

1
Γ (α)

)α

, (15)

whereφ(x, t) represents the phase component,ω is the fre-
quency of solitons,κ represents the wave number andν rep-
resents the velocity.

Substituting Eq. (15) into Eq. (9) we have the real com-
ponent as

(a + 3κγ)Φ′′(τ)− (
ω + ρκ + aκ2 + γκ3

)
Φ(τ)

+ (b− λκ) Φ3(τ) = 0, (16)

and the imaginary part as

3γΦ′′(τ)− 3
(
ν + ρ + 2aκ + 3γκ2

)
Φ(τ)

− (3λ + 2θ)Φ3(τ) = 0. (17)

3.1. Application of GERFM

Balancing the terms ofu3 andu′′ in Eqs. (16) and (17) gives
M = 1. Hence, from Eq. (13), we obtain:

Φ(τ) = A0 + A1Λ(τ) +
B1

Φ(τ)
, (18)

whereΦ(τ) is giving by Eq. (14).

Substituting Eq. (18) into Eqs. (17) and (16), following
to method described in Section 2, we achieved the following
non-trivial solutions of Eq. (9) as:

Set 1: We obtainp = [2 − i,−2 − i,−1, 1] and q =
[i,−i, i,−i], which gives

Λ (τ) =
cos (τ)− 2 sin (τ)

sin (τ)
. (19)

We also get

κ =
(−2 θ − 3 λ) a− 3 bγ

6γ (λ + θ)
, (20)

ν=

(−9 b2+24 λ2+48λ θ+24 θ2
)
γ2+

(−12 ρ λ2+(−6 ab− 24 ρ θ)λ−12 ρ θ2
)
γ+4 (θ+3/2 λ) (θ+λ/2) a2

12γ (λ+θ)2
, (21)

ω =
1

216γ2(λ + θ)3

[
27b(b2 − 24λ2 − 48λθ − 24θ2)γ3 + (−216aλ3 + (−432aθ + 108ρb)λ2

+ (27ab2 − 216aθ2 + 216ρbθ)λ + 108bρθ2)γ2 − 36(θ + 3/2λ)a(−2ρλ2 + (1/2ab− 4ρθ)λ + abθ − 2ρθ2)γ

− 16(θ + 3/2λ)2(3/4λ + θ)a3

]
, (22)

and

A0 = −2

√
6γ

3 λ + 2 θ
, A1 = 0, B1 = −5

√
6γ

3 λ + 2 θ
. (23)
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Substituting above values into Eqs. (18) and (19), we have

Φ(τ) = −
√

6γ

3 λ + 2 θ

(5 cos (τ) sin (τ) + 2)
(5 cos2 (τ)− 4)

. (24)

Therefore an exact solution of Eq. (9) is obtained as

φ1 (x, t) =


−

√
6γ

3 λ + 2 θ

(
5 cos

(
1
α

(
x + 1

Γ(α)

)α

− ν
α

(
t + 1

Γ(α)

)α)
sin

(
1
α

(
x + 1

Γ(α)

)α

− ν
α

(
t + 1

Γ(α)

)α)
+ 2

)

(
5 cos2

(
1
α

(
x + 1

Γ(α)

)α

− ν
α

(
t + 1

Γ(α)

)α)
− 4

)



× ei(− κ
α (x+ 1

Γ(α) )
α
+ ω

α (t+ 1
Γ(α) )

α). (25)

whereγ (3 λ + 2 θ) > 0 for valid soliton. Figures 1a)-1d) and 2a)-2b) show the soliton surface and the 2D graph for Eq. (25),
respectively.
[Set 2:] We obtainp = [i,−i, 1, 1] andq = [i,−i, i,−i], which gives

Λ (τ) = − sin (τ)
cos (τ)

. (26)

We also get

κ =
(−2 θ − 3 λ) a− 3 bγ

6γ (λ + θ)
, (27)

FIGURE 1. 3D soliton solution for Eq. (25) for different particular cases ofρ, arbitrarily chosen.
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FIGURE 2. 2D Plot soliton solution for Eq. (25) for different particular cases ofρ, arbitrarily chosen.

ν=

(−9 b2(−48 λ2(−96 λ θ(−48 θ2
)
γ2(+

(−12 ρ λ2+ (−6 ab− 24 ρ θ)λ− 12 ρ θ2
)
γ+4 (θ+3/2 λ) (θ+λ/2) a2

12γ (λ+θ)2
, (28)

ω =
1

216γ2(λ + θ)3

[
27b(b2 + 48λ2 + 96λθ + 48θ2)γ3 + (432aλ3 + (864aθ + 108ρb)λ2

+ (27ab2 + 432aθ2 + 216ρbθ)λ + 108bρθ2)γ2 − 36(θ + 3/2λ)a(−2ρλ2 + (1/2ab− 4ρθ)λ + abθ − 2ρθ2)γ

− 16(θ + 3/2λ)2(3/4λ + θ)a3 − 216γ2(λ + θ)3
]
, (29)

and

A0 = 0, A1 = −
√

6γ

3 λ + 2 θ
, B1 = −

√
6γ

3 λ + 2 θ
. (30)

Substituting above values into Eqs. (18) and (26), we have

Φ(τ) =

√
6γ

3 λ + 2 θ

1
cos (τ) sin (τ)

. (31)

Therefore an exact solution of Eq. (9) is obtained as

φ2 (x, t) =




√
6γ

3 λ + 2 θ

1

cos
(

1
α

(
x + 1

Γ(α)

)α

− ν
α

(
t + 1

Γ(α)

)α)
sin

(
1
α

(
x + 1

Γ(α)

)α

− ν
α

(
t + 1

Γ(α)

)α)



× ei(− κ
α (x+ 1

Γ(α) )
α
+ ω

α (t+ 1
Γ(α) )

α), (32)

whereγ (3λ + 2 θ) > 0 for valid soliton. Figures 3a)-3d) and 4a)-4b) show the soliton surface and the 2D graph for Eq. (32),
respectively.

[Set 3:] We obtainp = [1− i, 1 + i, 1, 1] andq = [i,−i, i,−i], which gives

Λ (τ) =
cos (τ) + sin (τ)

cos (τ)
. (33)

We also get

κ =
(−2 θ − 3 λ) a− 3 bγ

6γ (λ + θ)
, (34)
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FIGURE 3. 3D soliton solution for Eq. (32) for different particular cases ofρ, arbitrarily chosen.

FIGURE 4. 2D Plot soliton solution for Eq. (32) for different particular cases ofρ, arbitrarily chosen.
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ν=

(−9 b2+24 λ2+48λ θ+24 θ2
)
γ2+

(−12 ρ λ2+(−6 ab− 24 ρ θ)λ−12 ρ θ2
)
γ+4 (θ+3/2 λ) (θ+λ/2) a2

12γ (λ+θ)2
, (35)

ω =
1

216γ2(λ + θ)3

[
27b(b2 − 24λ2 − 48λθ − 24θ2)γ3 + (−216aλ3 + (−432aθ + 108ρb)λ2

+ (27ab2 − 216aθ2 + 216ρbθ)λ + 108bρθ2)γ2 − 36(θ + 3/2λ)a(−2ρλ2 + (1/2ab− 4ρθ)λ + abθ − 2ρθ2)γ

− 16(θ + 3/2λ)2(3/4λ + θ)a3

]
, (36)

and

A0 =

√
6γ

2 θ + 3 λ
, A1 = 0, B1 = −2

√
6γ

2 θ + 3 λ
. (37)

Substituting above values into Eqs. (18) and (33), we have

Φ(τ) =

√
6γ

2 θ + 3 λ

sin (τ)− cos (τ)
(cos (τ) + sin (τ))

. (38)

FIGURE 5. 3D soliton solution for Eq. (39) for different particular cases ofρ, arbitrarily chosen.
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FIGURE 6. 2D Plot soliton solution for Eq. (39) for different particular cases ofρ, arbitrarily chosen.

Therefore an exact solution of Eq. (9) is obtained as

φ3 (x, t) =




√
6γ

2 θ + 3 λ

(
sin

(
1
α

(
x + 1

Γ(α)

)α

− ν
α

(
t + 1

Γ(α)

)α)
− cos

(
1
α

(
x + 1

Γ(α)

)α

− ν
α

(
t + 1

Γ(α)

)α))

(
cos

(
1
α

(
x + 1

Γ(α)

)α

− ν
α

(
t + 1

Γ(α)

)α)
+ sin

(
1
α

(
x + 1

Γ(α)

)α

− ν
α

(
t + 1

Γ(α)

)α))



× ei(− κ
α (x+ 1

Γ(α) )
α
+ ω

α (t+ 1
Γ(α) )

α), (39)

whereγ (3 λ + 2 θ) > 0 for valid soliton. Figures 5a)-5d) and 6a)-6b) show the soliton surface and the 2D graph for Eq. (39),
respectively.

[Set 4:]
We obtainp = [−1, 0, 1, 1] andq = [0, 0, 1, 0], which gives

Λ (τ) = − 1
1 + eτ

. (40)

We also get

κ =
(−2 θ − 3 λ) a− 3 bγ

6γ (λ + θ)
, (41)

ν =

(−9 b2 − 6 λ2 − 12 λ θ − 6 θ2
)
γ2+

(−12 ρ λ2+(−6 ab− 24 ρ θ)λ− 12 ρ θ2
)
γ+4 (θ + 3/2 λ) (θ+λ/2) a2

12γ (λ + θ)2
, (42)

ω =
1

216γ2(λ + θ)3

[
27b(b2 + 6λ2 + 12λθ + 6θ2)γ3 + (54aλ3 + (108aθ + 108ρb)λ2 + (27ab2 + 54aθ2 + 216ρbθ)λ

+ 108bρθ2)γ2 − 36(θ + 3/2λ)a(−2ρλ2 + (1/2ab− 4ρθ)λ + abθ − 2ρθ2)γ − 16(θ + 3/2λ)2(34λ + θ)a3

]
, (43)

and

A0 =
1
2

√
6γ

2 θ + 3 λ
, A1 =

√
6γ

2 θ + 3 λ
, B1 = 0. (44)

Substituting above values into Eqs. (18) and (40), we have

Φ(τ) =
1
2

√
6γ

2 θ + 3 λ

√
6
√

γ (eτ − 1)√
2 θ + 3 λ (eτ + 1)

. (45)
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FIGURE 7. 3D periodic wave solution for Eq. (46) for different particular cases ofρ, arbitrarily chosen.

FIGURE 8. 2D Plot periodic wave solution for Eq. (46) for different particular cases ofρ, arbitrarily chosen.

Therefore an exact solution of Eq. (9) is obtained as

φ4 (x, t) =
1
2




√
6γ

2 θ + 3 λ

(
e

1
α (x+ 1

Γ(α) )
α− ν

α (t+ 1
Γ(α) )

α

− 1
)

(
e

1
α (x+ 1

Γ(α) )
α− ν

α (t+ 1
Γ(α) )

α

+ 1
)


× ei(− κ

α (x+ 1
Γ(α) )

α
+ ω

α (t+ 1
Γ(α) )

α). (46)
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whereγ (3λ + 2 θ) > 0 for valid soliton. Figures 7a)-7d) and 8a)-8b) show the periodic wave surface and the 2D graph for
Eq. (46), respectively.

[Set 5:] We obtainp = [−3,−1,−1, 1] andq = [−1, 1,−1, 1], which gives

Λ (τ) =
cosh (τ)− 2 sinh (τ)

sinh (τ)
. (47)

We also get

κ =
(−2 θ − 3 λ) a− 3 bγ

6γ (λ + θ)
, (48)

ν=

(−9 b2−24 λ2−48 λ θ−24 θ2
)
γ2+

(−12 ρ λ2+(−6 ab− 24 ρ θ)λ− 12 ρ θ2
)
γ+4 (θ+3/2 λ) (θ+λ/2) a2

12γ (λ+θ)2
, (49)

ω =
1

216γ2(λ + θ)3

[
27b(b2 + 24λ2 + 48λθ + 24θ2)γ3 + (216aλ3 + (432aθ + 108ρb)λ2

+ (27ab2 + 216aθ2 + 216ρbθ)λ + 108bρθ2)γ2 − 36(θ + 3/2λ)a(−2ρλ2 + (1/2ab− 4ρθ)λ + abθ − 2ρθ2)γ

− 16(θ + 3/2λ)2(3/4λ + θ)a3 − 216γ2(λ + θ)3
]
, (50)

FIGURE 9. 3D periodic wave solution for Eq. (53) for different particular cases ofρ, arbitrarily chosen.
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FIGURE 10. 2D Plot periodic wave solution for Eq. (53) for different particular cases ofρ, arbitrarily chosen.

and

A0 = −2

√
6γ

2 θ + 3 λ
, A1 = 0, B1 = −3

√
6γ

2 θ + 3 λ
. (51)

Substituting above values into Eqs. (18) and (47), we have

Φ(τ) =

√
6γ

2 θ + 3 λ

(sinh (τ)− 2 cosh (τ))
(cosh (τ)− 2 sinh (τ))

. (52)

Therefore an exact solution of Eq. (9) is obtained as

φ5 (x, t) =




√
6γ

2 θ + 3 λ

(
sinh

(
1
α

(
x + 1

Γ(α)

)α

− ν
α

(
t + 1

Γ(α)

)α)
− 2 cosh

(
1
α

(
x + 1

Γ(α)

)α

− ν
α

(
t + 1

Γ(α)

)α))

(
cosh

(
1
α

(
x + 1

Γ(α)

)α

− ν
α

(
t + 1

Γ(α)

)α)
− 2 sinh

(
1
α

(
x + 1

Γ(α)

)α

− ν
α

(
t + 1

Γ(α)

)α))



× ei(− κ
α (x+ 1

Γ(α) )
α
+ ω

α (t+ 1
Γ(α) )

α), (53)

whereγ (3λ + 2 θ) > 0 for valid soliton. Figures 9a)-9d) and 10a)-10b) show the periodic wave surface and the 2D graph for
Eq. (53), respectively.

[Set 6:] We obtainp = [1− i, 1 + i, 1, 1] andq = [−i, i,−i, i], which gives

Λ (τ) =
cos (τ)− sin (τ)

cos (τ)
. (54)

We also get

κ =
(−2 θ − 3 λ) a− 3 bγ

6γ (λ + θ)
, (55)

ν=

(−9 b2−96 λ2−192 λ θ−96 θ2
)
γ2+

(−12 ρ λ2+(−6 ab−24 ρ θ)λ−12 ρ θ2
)
γ+4 (θ+3/2 λ) (θ+λ/2) a2

12γ (λ + θ)2
, (56)

ω =
1

216γ2(λ + θ)3

[
27b(b2 + 96λ2 + 192λθ + 96θ2)γ3 + (864aλ3 + (1728aθ + 108ρb)λ2 + (27ab2 + 864aθ2

+ 216ρbθ)λ + 108bρθ2)γ2 − 36(θ + 3/2λ)a(−2ρλ2 + (1/2ab− 4ρθ)λ + abθ − 2ρθ2)γ

− 16(θ + 3/2λ)2(3/4λ + θ)a3

]
, (57)
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FIGURE 11. 3D periodic wave solution for Eq. (60) for different particular cases ofρ, arbitrarily chosen.

FIGURE 12. 2D Plot periodic wave solution for Eq. (60) for different particular cases ofρ, arbitrarily chosen.

and

A0 = 0, A1 = −
√

6γ

2 θ + 3 λ
, B1 =

√
6γ

2 θ + 3 λ
. (58)
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Substituting above values into Eqs. (18) and (54), we have

Φ(τ) =

√
6γ

2 θ + 3 λ

(
coth2 (τ) + 1

)

coth (τ)
. (59)

Therefore an exact solution of Eq. (9) is obtained as

φ6 (x, t) =
(√

6γ
2 θ+3 λ

(coth2( 1
α (x+ 1

Γ(α) )
α− ν

α (t+ 1
Γ(α) )

α)+1)
coth( 1

α (x+ 1
Γ(α) )

α− ν
α (t+ 1

Γ(α) )
α)

)
ei(− κ

α (x+ 1
Γ(α) )

α
+ ω

α (t+ 1
Γ(α) )

α). (60)

whereγ (3 λ + 2 θ) > 0 for valid soliton. Figures 11a)-11d) and 12a)-12b) show the periodic wave surface and the 2D graph
for Eq. (60), respectively.

[Set 7:] We obtainp = [2, 0, 1,−1] andq = [1, 0, 1,−1], which gives

Λ (τ) =
cosh (τ) + sinh (τ)

sinh (τ)
. (61)

We also get

κ =
(−2 θ − 3 λ) a− 3 bγ

6γ (λ + θ)
, (62)

FIGURE 13. 3D soliton surface for Eq. (67) for different particular cases ofρ, arbitrarily chosen.
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FIGURE 14. 2D Plot soliton surface for Eq. (67) for different particular cases ofρ, arbitrarily chosen.

ν=

(−9 b2−24 λ2−48 λ θ − 24 θ2
)
γ2+

(−12 ρ λ2+(−6 ab− 24 ρ θ)λ− 12 ρ θ2
)
γ+4 (θ+3/2 λ) (θ+λ/2) a2

12γ (λ+θ)2
, (63)

ω =
1

216γ2(λ + θ)3

[
27b(b2 + 24λ2 + 48λθ + 24θ2)γ3 + (216aλ3 + (432aθ + 108ρb)λ2

+ (27ab2 + 216aθ2 + 216ρbθ)λ + 108bρθ2)γ2 − 36(θ + 3/2λ)a(−2ρλ2 + (1/2ab− 4ρθ)λ + abθ − 2ρθ2)γ

− 16(θ + 3/2λ)2(3/4λ + θ)a3

]
, (64)

and

A0 = −
√

6γ

2 θ + 3 λ
, A1 =

√
6γ

2 θ + 3 λ
, B1 = 0. (65)

Substituting above values into Eqs. (18) and (61), we have

Φ(τ) =

√
6γ

2 θ + 3 λ

cosh (τ)
sinh (τ)

. (66)

Therefore an exact solution of Eq. (9) is obtained as

φ7 (x, t) =




√
6γ

2 θ + 3 λ

cosh
(

1
α

(
x + 1

Γ(α)

)α

− ν
α

(
t + 1

Γ(α)

)α)

sinh
(

1
α

(
x + 1

Γ(α)

)α

− ν
α

(
t + 1

Γ(α)

)α)

 ei(− κ

α (x+ 1
Γ(α) )

α
+ ω

α (t+ 1
Γ(α) )

α), (67)

whereγ (3 λ + 2 θ) > 0 for valid soliton. Figures 13a)-13d) and 14a)-14b) show the soliton surface and the 2D graph for Eq.
(67), respectively.

4. Results and discussion

We discuss the results to Eq. (9) obtained by using the gen-
eralized exponential rational function method. As a result,
we get new form of solitary traveling wave solutions for this
model including novel soliton, traveling waves and kink-type
solutions with complex structures. In this work, by using the
GERFM, we successfully constructed some exponential and
rational function solutions to Eq. (9). When we compare
our results with the results reported in [40-47], we observed
that, all the results obtained in this study by using the above

method are newly structured solutions. These soliton solu-
tions are located throughout parameter restrictions that pro-
vide their existence and novel soliton, traveling waves and
kink-type solutions with complex structures while other so-
lutions that emerged from the Laplace-Adomian decomposi-
tion method, traveling wave hypothesis, extended trial func-
tion scheme, among others. These soliton solutions are be-
ing reported for the first time in this paper. It shows that the
GERFM give an effective and credible mathematical tool for
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various nonlinear evolution equations to obtain a variety of
wave solutions. All solutions are satisfied with their corre-
sponding original equations.

5. Conclusion

In this work, we have obtain exact analytical solutions includ-
ing novel soliton, traveling waves and kink-type solutions
with complex structures for the perturbedβ-conformable-
time Radhakrishnan-Kundu-Lakshmanan equation. The gen-
eralized exponential rational function method is successfully
applied to obtain soliton solutions. It is worth mentioning
that whole solutions ofφ1 − φ9 in this article are new and
being reported for the first time. From our results obtained in
this paper, we conclude that the generalized exponential ra-
tional function method is powerful, effective and convenient
for the analysis of nonlinear conformable-time partial differ-
ential equations involvingβ-conformable derivative. The ob-
tained results may be utilized to understand the certain phys-

ical phenomenons in science and engineering in general and
in fiber optics in particular.
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12. H. Yépez-Mart́ınez, J.F. Ǵomez-Aguilar and D. Baleanu,
Optik-International Journal for Light and Electron Optics155
(2018) 357-365.

13. M. Ahmad, A.A. Bhat and R. Jain,Journal of New Theory(22)
(2018) 73-81.

14. A. Alizadeh and S. Effati,Transactions of the Institute of Mea-
surement and Control40 (2018) 2054-2061.

15. D. Rani and V. Mishra,European Journal of Pure and Applied
Mathematics,11 (2018) 202-214.

16. D. Kumar, R.P. Agarwal and J. Singh,Journal of Computa-
tional and Applied Mathematics339(2018) 405-413.

17. B.K. Singh, P. Kumar and V. Kumar,International Journal of
Applied and Computational Mathematics,4 (2018) 1-19.

18. N. Das, R. Singh, A.M. Wazwaz, and J. Kumar,Journal of
Mathematical Chemistry54 (2016) 527-551.

19. G.C. Wu, D. Baleanu, and Z.G. Deng,Applied Mathematical
Modelling39 (2015) 4378-4384.

20. G.C. Wu and D. Baleanu,Applied Mathematical Modelling, 37
(2013) 6183-6190.

21. J.S. Duan, R. Rach and A.M. Wazwaz,International Journal
of Computer Mathematics1 (2015) 1-19.

22. D. Kumar, J. Singh and S. Kumar,Walailak Journal of Science
and Technology (WJST)11 (2013) 711-728.

23. D. Kumar, J. Singh and S. Kumar,Journal of the Egyptian
Mathematical Society, 22 (2014) 373-378.

24. R. Khalil, M. Al Horani, A. Yousef, and M. Sababheh,Journal
of Computational and Applied Mathematics, 264(2014) 65-70.

25. A. Yusuf, A.I. Aliyu and D. Baleanu,Optical and Quantum
Electronics, 50 (2018) 1-20.

26. A. Akbulut, and M. Kaplan,Computers & Mathematics with
Applications, 75 (2018) 876-882.

27. H.W. Zhou, S. Yang, and S.Q. Zhang,Physica A: Statistical
Mechanics and its Applications, 491(2018) 1001-1013.

28. C. Chen and Y.L. Jiang,Computers & Mathematics with Appli-
cations, 75 (2018) 2978-2988.

29. O. Acan, O. Firat and Y. Keskin,Waves in Random and Com-
plex Media1 (2018) 1-19.

Rev. Mex. Fis.65 (5) 503–518



518 BEHZAD GHANBARI, AND J.F. GÓMEZ-AGUILAR
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