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Using the semi-classical approximation to the Wheeler-DeWitt equation obtained via Arnowitt-Deser-Misner (ADM) formalism in the
Friedmann-Lemiire-Robertson-Walker (FLRW) model coupled to a scalar field with positive cosmological constant in the Kantowski-Sachs
(KS) Universe, we introduced a deformation on the commutation relation for the minisuperspace variables and find an explicit semiclassical
expression equivalent, in an adequate limit, to the solution with the aid of asymptotically equal functions and the thHwafiltdrs,
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1. Introduction obtain a model with a finite degrees of freedom called the
minisuperspace In this context, like in noncommutative

Perhaps the concordance &fCold Dark Matter ACDM) guantum r_nf_ech_anics [16—18],_ itis possi_ble to_introduce non-
model is the most successful via to reproduce the dynamicsommutativity in a2n-dimensional configuration space via
of our Universe [1] introducing the existence of dark entitiesth® change of variables (Boop-shift) which are often referred
known as dark matter (DM) and dark energy (DE). Despitel® @S the Seiberg-Witten map [13] and satisfy an extended
its important achievements, the model suffers from differenf1€isenberg algebra (see Appendix A). Therefore the tradi-
pathologies such as the flatness, the horizon problem (see [§pnal way to extract useful dynamical information and deal
for an excellent discussion), the current Universe acceleral/ith the difficulties associated with solving the WDW equa-
tion [3-5], among others. In particular, near or in the ini- ion in the challenging scenario of noncommutativity grav-
tial singularity and for times close to Planckian lengths and® iS through the WKB-type method, and when it is used a
energies, it is necessary a quantum gravity theory (QG) t§2 + 1)-minisuperspace model the wave function proposed
understand the universe in these regimes; in particular bd@kes the form shown in Appendix A; finding the associated
cause gravity already plays a preponderant role at this quar=nstein-Hamilton-Jacobi (EHJ) equation, that is, a coupled
tum level. In this sense, the candidates to study this energ§yStem of two non-linear ordinary differential equations. To
scale are for example string theory [6] or loop quantum gravconstruct the EHJ equation and find analytical expressions,
ity [7], being until now its predictions far from being falsifi- W& observed the behavior, in a convenient limit, of func-
able and its theoretical building far to be completely solved fions involved addressing the analysis with a functions called
These are some of the reasons of why the Wheeler-DeWigSymptotic equals (see Appendix B), selecting the appropiate
(WDW) equation is still the cornerstone to address problem&andidate of the respective equivalence class.
in QG scenarios and being also a great opportunity t0 pave  ag a demonstration of the functionality of the method, we
the way in our search to find a final quantum gravity théory .| apply it in the dynamical system derived from EHJ equa-
The noncommutativity in coordinates (NCC) were intro- tion that comes from the FLRW metric, considering the non-
duced in the late of 40’s [8], generating a great deal of in-commutativity in the space coordinates. In addition, together
terest in this area of research [9-13], impacting ho®m  with the mentioned method, we associate in the noncommu-
in the study of the effects in the phase-space of the classtative coordinate and momentum (NCCM)-KS cosmology a
cal and quantum cosmology (QC) [14, 15]. It is noticeableparticular family of subsets, called Ultrafilter, that is rele-
to mention that the second case is a simplified approach teant in some branches of mathematics, like topology where
study the very early universe, where one could assume th@a many cases are used to construct examples and counter ex-
effects of noncommutativity. As it is well known, in gen- amples [24, 25], functional analysis and dynamical systems,
eral, the configuration space in QC (superspace) is infinitewhen discrete systems are studied [26, 27]. The study of cos-
dimensional, but for the homogenous cosmologies (like oumology in some limits (asymptotic analysis) is well known
Universe), where the metric depends only on time, we camnd appears in problems related with the cosmological con-



520 J.A. ASTORGA-MORENO, E.A. MENA-BARBOZA, AND M.A. GARGA-ASPEITIA

stant [19, 20], and the behavior of some models near to an@ihus, canonical quantization in the momenta and the Hamil-
far away from an initial singularity in certain kinds of cos- tonian constraint for the ADM formulation, give us the WDW
mologies [21, 22] and in quintessence models [23]. Hencegquation coupled to a scalar field afndn the form:
the goal is support our work with the mathematical concepts

. . . . . 1 82 1 32
mentioned and propose an analytical solution, unlike tradi- [7 — 9 49
tional methods studied in literature where is represented only 24 0a% 2 0¢?
in a integral form or solved numerically [28, 29]. Here we
will take a step forward which will undoubtedly be useful for

sketching the solution of the dynamical system associated to - . ) .
the EHJ equation from this approach. where N = ¢?“ is chosen in order to fit the gauge. Since

This paper is organized as follows: In Sec. 2. we stud)}he effects of the deformation will reflect only in the WDW
the asymptotic behavior of functions in a semiclassical exPotential [30], when the noncommutativity in coordinates

oo R )
pression for the FLRW model with curvatuke 0 and cos- (@' = ¢, 2% = a)is applied in Eq. (4) and also the WKB-
mological constantX # 0) in a NCC-frame. In Sec. 3. we type method (Appendix A), we finally obtain the EHJ equa-

obtain a semiclassical approach for the KS universe explort—Ion

+ 5 (28 + Bke ) |v(a, 6) =0, @)

ing a phase-space noncommutative extension and using again 1 [/ ds,~2
asymptotic analysis together with some properties of the col- B (d—Q) + 48Ae% + 144ke*
lection of subsets introduced in the Appendix B, summariz- @

ing this procedure in Appendix C. By inspection, we compare

our analytical expressions with the numerical solution of the + (10805 + 216ke4‘*9)2]

dynamical system obtained from applying the semiclassical

limit and our analysis in both models; also for the case of 2

KS cosmology, with the numerical solution of the classical _ | dS1  (12A0¢% + 24ke"0) )
dynamical system. Finally, Sec. 4. deals with the conclu- d¢ 2 '

sions and outlooks. We will henceforth use units in which

c=h=1. Hence, we deduce the equations
dS, P 6
2. Noncommutative FLRW Model a6 e (6a)

In order to use the asymptotic behavior, we first proceed to 1 (LS?)Q — P2 _ 4ASCT _ 19ketaCl (6b)
study the EHJ equation that comes from FLRW cosmology 12\ da # 0 o

with the presence of the parameter It is worth to notice with P;, a positive decoupling constant a@j, C4 also con-
that we will use FLRW model only as a laboratory to probeStants (Odepending of) satisfying e

the effectiveness of the mathematical tool of asymptotically

equal functions. lim C4 =1, lim CF = +oc. @)
We start this study using the line element in this back- 0—0 f—+o0
ground as: Therefore applying (2) in (6a)-(6b) and choosing =
ds® = —N()%de? 3000, Cf = e*Pso , the system can be written in the form
-2 dp = — Py, dt 8a
+ a(t)? [1 dvk S+ r?(dy? + sin2(19)d302)}, (@8] ¢ ot (8a)
— RT
_ _ t—to =12 /
wherea(t) = e“() is the scale factorV'(t) is the lapse func-
tion andk is the curvature constant. dov
Based in previous work, Ref. [28], we calculate the X [P2, = c60(4AcP o0 + 12ke 2020y )[1/2 (8b)
canonical momenta fax and¢ as ©
dSs do ds, do The initial conditiong(tg) = ¢o give use(t) = ¢g— Py, (t —
o " Pe= 1200 Gl =Pe= g0 (2)  ty). For Eq. (8b) defined in the interval-oo, ag) with
ap < 0, under inspection, we have for the integrand
and the classical Hamiltonian for the case# 0 andk # 0 ,
—1/2
reads G@(Oé): P¢2>0 _e6a(4Ae3«9P¢0 +12/€629P“’0€_2a):| , (9)
1
_ _ —3a| 2
H=NH=Ne {2417@ the following asymptotically equal function
1 2 (77 -2 -1
- = 2A ). o) Y2
2p¢ +e ( + 6ke )} (3) F()(Ck) — (ng _ Azeﬁ ) , (10)
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TABLE |. Error rate between’s, ¢'s commutative andv's, ¢'s NCC (numerical and analytical expressions) wigh= 0, Py, = 2/5,6 = 5,
= —4.77981 (NCC frame) andj(to) = ¢o = 10.

A = k = 1 and the initial conditions(¢o)

See the text for more details.

= —2.30259 (commutative frame) (o)

t ER aconm’s ER ¢conm15 ERance’s ER ¢nccys
-100 2.33029% 9.94 x 107 14% 2.22202% 6.9282%
-700 0.33% 7.84 x 10714% 0.340638% 1.19452%
-800 0.29207% 6.89 x 10~ 11% 0.298513% 1.04973%
-900 0.259629% 6.14 x 107 14% 0.26566% 0.936244%
-950 0.245969% 5.83 x 107 11% 0.251804% 0.88823%
-990 0.236034% 5.60 x 10714% 0.241718% 0.853227%
-1000 0.233674% 5.54 x 10714% 0.239321% 0.844903%
-2000 0.11685% 2.80 x 10714% 0.120175% 0.427667%
with Ag = [4Ae?Po0 4 12ke?0F90]'/2, Hence using (B.1)
and (B.2), considering decreasin(g, the expression is: - :z
408 g
1 P¢ \/§A9P¢ (t - to) i g — o <
o= 3 In : SeCh( 20 ) ) (11) B e
0 ¢ 200 “‘-«-E_\_\V
where it is applied the initial condition6a(ty) = y —
In (Pq%0 /AZ). As a complement, the other variable has the
form:
—400
~1000 —800 —600 —400 —200
a t
6 = do — Pay (t — o) l
3P, (t —t T 7
- ﬁep%tanh(w). (12) >
Proceeding in the same manner we obtain the commutative . s
expressions for the general form as T .
¢(t) :¢0 _P¢o(t_t0)7 (133) ’/‘//
1. [P 3A0P, (¢t —t e S
at) = ~In [ %o sech(\[ 0P 0))}, (13b)
3 Ag 2 b) L = i % e :
t
Ap = VA + 12k. (13c)

In Table | we present, for decreasing values,dhe rela-

FIGURE 1. Plots fora, comparing in (a) the analytical expression
(13b) (dashed line) and numerical solution of Egs. (8a) and (8b)

with & = 0 (pointed line) and in (b) the analytical expression ob-

tive error that give the error rate (ER) between the numericatained in Eq. (11) (dashed line) with the solution of Egs. (8a) and

solution of the system (8a)-(8b) (with= 0 andé # 0) and

(8b) in a NCC frame{ = 5), both underty = 0, Py, = 2/5,

the respective analytical expressions (13a) and (13b) for thd = & = 1 and the initial conditionsx(to) = —2.30259 and
commutative frame and (11) and (12) for the NCC one. Therf*(fo) = —4.77981, respectively.
Fig. 1 and Fig. 2 shows the plots for valuestah the inter-

val [—1000, 0] observing that correspond tds in [—120, 0]

and ¢’s in [0,400]. In Fig. 3 the factor that measures the
evolutiort’ is analyzed, plotting this parameter with the ana-In this section we are not only going to apply an asymptotic
lytical o and the numerical one in a commutative and NCCtreatment, also we will introduce the concéptshown in

scenario, showing that whernis decreasing they are all sim-
ilar. Fora(t), when the values afare near zero, the plots in
both frames lies in the range, 1] (See the internal boxes in

Fig. 3).

equation in the KS universe.
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3. Noncommutative KS Universe

Appendix B looking for analytical expressions for the asso-
ciated dynamical system that comes for the noncommutative
space-space and momentum-momentum variables of the EHJ
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FIGURE 2. Plots for¢, comparing in (a) the analytical expression Figure 3. Plots of the scale factarxp(c) in a commutative (a)
(13a) (dashed line) and numerical solution of Egs. (8a) and (8b)and a NCC (b) frame using the numerical solution of Egs. (8a),
with § = 0 (pointed line) and in (b) the analytical expression ob- (gp) (pointed line) and the expressions (8a), (11) (dashed line). For
tained in Eq. (12) (dashed line) with the solution of Egs. (8a) and the commutative frame we make= 0 in the system and the same
(8b) in a NCC scenarid(= 5) both under the same conditions that qnditions that in Fig. 1 are considered.

Fig. 1. The initial condition ig)(to) = ¢o = 10.

We start with the line element in the Misner parametriza—bemga as in the first appendix.

tion [31]; In addition, noticing thatxp(—2v/3Q) = o(1)™ when
) ) 5 ) ) s s ) Q) — 400, we consider that for larg@’s the first expression
ds® = —N7dt + X*(t)dr® + Y*(¢)(d9° +sin®(9)de®),  in Eq. (17) can be written in the form
X(t)=e V¥, Y(t)=e Ve V3Y (14) ,
, (d—sz —~ @) +48¢7 23 4 R(Q)
where X andY are the scale factors. Following the same \ 40 2
recipe as in Sec. 2, the WDW equation [15] is:
dSa\2 - 2
o (V) s asemsvon s o= 2) 09
As the authors of Ref. [28] find, the momenta are hence using the last approximation in (17) can be derived the
system of equations:
d 1dQ  d 1d
é:Psz:—**, i:}?ﬁ:*ﬁa (16)
aQ 2 dt ag 2 dt s, 3
and remembering Appendix A, with the presence of the pa- dB = Ps, — 9 (20a)
rameters) andn (! = 3, 2% = ), give the equation dSon 2 O 2
o2 \" _ mEN —2v30Q
(@ - @>2 483 4 R(Q) (dQ ) (Pﬁ0 +5 ) 48e Ey. (20b)
dQQ 2
dSy (9 + 48y/30e—2V3%) 2 where Pg, is like in Sec. 2 andt is a constant with the
~ [% + 3 } ; (17)  property
whereR(€) is defined as: Bp=1, 0—0
_ (481/30e=2V32)2 (21)
R(2) = 96/30e™ 23 ¢ 1 ., (18 Fop>1. 60— +oo.
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FIGURE 4. Plots ofQ4 and 34 (dashed line) comparing with nu- b e - n e -
merical solutions of (22a), (22b) (pointed line), whege= —100, )
Ps, = 2/5,60 = 5,7 = 0.1, C = 1.5 x 107° also consid-
ering the initial conditions(ty) = Qo = 2.20265 x 10* and
B(to) = Bo = 4.68142 x 10*.
With the relations (16) and taking, = e~ v3¢P% we obtain
the dynamical system —
dp = (2P, — np)dt, (22a)
0N 2
dQ) = _2[(13,30 + 7]2 ) 450
v3Q, —v3oprs, ] ?
— 486_2 3 e~ 3 ﬂoi| dt (22b) C) ~3000 ~2800 ~2600 2400 —220

The solution of Eq. (22a) witl¥(ty) = 5o, give us

t—up:m(§EL:ﬂE)Uﬁ

2P[30 —nB 3)

FIGURE 5. Plots of )y (dotted line) and24 (dashed line) in the
intervals [-1000, —200] with ¢, = 1.80811, [—2000, —1200]

with ¢, = 1.90406 and[—3000, —2200] with ¢, = 1.93604,
and for the parameteiit is possible to express in quadratures wheret,

100,60 = 5,7 = 0.1, C = 1.5 x 107> also con-

as sidering the initial condition$(to) = Qo = 2.20265 x 10* and
) N 2 ~1/2 B(to) = Bo = 4.68142 x 10*, Pa(to) = 0, Ps(to) = 2/5.
t= —5/ {(PBU + %) - 4862\/§S2€\/§0Pﬂ0:| s,
considering(to) = Qo give C = (In() + nte)n~* and
1
= / Glo.ndQ. (24)
1
In the case where — 0, Egs. (23) and (24) are reported ~ Ba(t) = ;][QPBO
in literature (see [28] for details). To extract an analytical

representation for the minisuperspace variables, in Appendix
C we suggest a mathematical procedure to obtain an asymp-

totically equal function foiGGy ,,. Therefore, using (B.2) and
(C.6), we find the expression

Qa(t) = e "9, (25

— e ) (2Pﬁo - 7750)} +oe =9 (26)

The behavior of the above expressions versus the numerical
solution of the system (22a)-(22b) fore [—1000, —100]
(or values of2 in the interval[22026.5, 1037]) are in Fig. 4,

Rev. Mex. Fis65 (5) 519-528
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FIGURE 7. Plots of Q2 (dotted line) and) 4 (dashed line) in the
FIGURE 6. Plots ofQy (dotted line) and24 (dashed line) in the  intervals[—1000, —200] with ¢, ; = 1.80811, [—2000, —1200]
intervals [—1000, —200] with ¢,,,; = 1.80811, [—2000, —1200] with g, = 1.90406 and [—3000, —2200] with g, ; = 1.93604,
with ¢, + = 1.90406 and[—3000, —2200] with g, : = 1.93604, wheret, = —100, 6 = 5, = 0.1, C = 1.5 x 10° also con-
wherety = —100,6 = 5,7 = 0.1, C = 1.5 x 107° also con- sidering the initial condition§(to) = Qo = 2.20265 x 10* and
sidering the initial condition§(to) = Qo = 2.20265 x 10* and ~ B(to) = fo = 4.68142 x 10%, Po(to) = 0, Ps(to) = 2/5.
B(to) = Bo = 4.68142 x 10*, Pa(to) = 0, Ps(to) = 2/5.

where similarities for smalt’s are notorious. For example,

takingt = —1000, —990, —950, —900. — 800, we have for) 15,9} =0, {ps,pat =1, (272)
thgt the quotie.nt b.etween the numericgl solution ar_1d the ana- {Qpay={6,p3} =1+0, (27b)
lytical expression ig.00038 corresponding to a relative error

(or ER) 0of0.037%. Making the same fop we get that the  giving the classical equations of motion:

quotients ar®.94444 and the error rate producedist824%.

From the above we can consider that the numerical solution Q = {Q, H} = —2(1 + ¢)pq, (28a)
and(2 4 are asymptotically equivalent wheén— —oo, find- . 2v/30
ing a similar behavior fof 4. B={B,H} =2(1+0)ps + 96v30e >V, (28b)

Now, the noncommutative relations imposing between ;g = {pg, H} = —(1 + 0)96\/396‘2\/59 — 2nps, (28c)
the coordinates and their momenta in the modified Poisson
algebra are: pp = {ps, H} = —2npq. (28d)
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An analytical solution of this system is beyond reach given  Finally, in Fig. 6 and 7 we present plots Qfy, 24 and

the distributions of the variables involved; hence, in Fig. 63y, —34 showing the similarities with the numerical solu-

and 7 we present the numerical solutiofsy, Gy for  tions.

Egs. (28a)-(28d). Lefiy = In(Qy) andQy = In(Qy),

we observe that the quotients of this functions, using the data

in Fig. 4, approximately satisfy .
. 4. Conclusions and Outlooks

Q
dn,t = AN(t) %1+7An7 n €N (29)
Qa(t) In this paper we have presented noncommutative quantum
fort € I,, = [-200 — 25n, —200 — 25(n — 1)), where cosmology through the help of the WKB-type method for the

. WDW equation. Here, the homogeneous cosmologies in a
n = Z (@i x1077), air, €{0,1}, (30)  NCC and NCCM frame are investigated. Although in both
isntils models the behavior of the functions (see the integrands in
andt,, = t. The sequencéu; ., } is divergent but have a no- (8b) and (24) in the respective limit) are similar, we observe
torious property: if{| Z;|} is the sequence of cardinalities of that there are many possibilities for an asymptotic function
the setsZ; of consecutive zeros (or the significative number(see Appendix C) and the selection of the function in the
is the same), we note that it also diverges since the number @quivalence class vary, being more natural for the FLRW
consecutive zeros increases @ecreasesand it is possible model. The element chosen in the KS metric is relevant in
to treatg,, ; as a constant when— —oov?, then under these the analysis, since it generates the associated ultrafilter and is
assumptions we have not always possible to know it in an explicit way, given the
QN(t) ~ Qn,tQA(t) or Qn(t) ~ e~ (t=C) (37) maximality of this family. .
. . In the FLRW model, whed — 0 in o and ¢, we ob-
In Table Il we check the error rate (ER) betweeg and(24  tain the commutative expressions for the general form and
for values in—6000 < ¢ < —200. Also for everyq,; we if k¥ = 0in Egs. (11) and (12) we have the commutative
consider that is the minimum value in the intervdl, and  and NCC solutions in the cage= 0, A # 0 reported previ-
observing that as decreases so does the relative éffoin  ously in literature (see Ref. [28]). In addition, making= 0
addition, the plots fof2y and(24 are shown in Fig. 5, con- together withd — 3a/2, t — to — 2(7 — 79)/3 we re-
sidering for the analytical expression the refinementfor,  turn to the results shown previously in Ref. [28] for the case
observing that for larg€ the curves become similar, thatis, k £ 0, A = 0.
if ¢ — —oo the relative error is getting smaller and notic-
ing that for the valuey, ; = 1.95203 defined in the interval
J = [—-4000, —3025] when we extend the application to the
region[—6000, —3025] the error rate is still acceptable, allow
us to consider this quantity, in this interval, constant.

In the KS universe this significance is reflected when
the classical system is considered, since in previous works
the noncommutativity extension of this model is studied
[29, 32—34], extending our analysis and using the analytical
form for 2 we get proposals that fits, in the limit imposed,
= = with the numerical solution of the classical system. In the
TABLA II. Error rate betweely and 24 whereto = —100,  expression foK) we take care to preserve the asymptotical
Pop =2/5,0 = 5,1 =0.1,0 = 15 x 10" andQ(to) = % = pehavior that is reflected in the refinement of the valyes
2.20265 x 10°, B(to) = Bo = 4.68142 x 10°. but remembering that when — —oo (large 2) this value

t n Gt ERQ's can have a constant treatment. Here, it is important to bear in
-200 1 1.80811 73.7653% mind that the presence of the parameter of noncommutativity
295 1 1.80811 57.6173% in momenta gould be of releyance for the selection _of p055|k_)le

initial states in the early Universe [29]. The equation (30) is
-1000 32 1.80811 0.0000389% a divergent sum and we use only one significative number to
-1025 33 1.90406 5.03481% estimate the quotient, this leave the chance to study another
-1200 40 1.90406 3.4769% expression for,,. For example, the equation:
-2000 72 1.90406 0.00038%
-2025 73 1.93604 1.61664% rn = (ag x 1071) + Z (844, x 1079, (32)
-2200 80 1.93604 1.2169% 2<isn
-3000 112 1.93603 0.0001836% i . i
3095 113 195203 0.798575% whereqy is treated like a constant numb_er in the regid(re-
member that the sets; become to get bigger aslecrease),
-3200 120 1.95203 0.618331% t; € I; € Rand{s,,,} is a convenient increasing sequence.
~4000 152 1.95203 0.0001362% When we deal with asymptotic equivalent functions, we
-5000 192 1.95203 0.488977% have to consider that their relative error is zero as Tables |,
-6000 232 1.95203 0.812403% Il and Figs. 6, 7 show. Indeed, in the comparison between
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the analytic proposals versus the numerical solutions, the ewith 6, € R parameters of noncommutativity in coordinates
ror remains sufficiently small to be able to consider them as and momentumg = (6n/4), (é;;) the identity matrix, and
good approximation (the analytical expression and numericat?, p; operates in the algebra already known:
solution can be treated like asymptotically equal). Indeed, we o
notice that on a complete deformed space it is possible to ob- [ﬂ’ xj] =0, [pi,p;] =0, (A.4a)
tair_1 an expressi_on for the FLRW model, proceeding similarly [!Ei,pi] — i (A.4b)
as in the KS universe.
Since it have been shown an unexpected connection dfor the semiclassical scenario the proposed wave function,

some set of theoretical concepts with quantum mechanics agith the coordinates!, 2, is
well as with cosmology [35,36], the treatment in this scenario
via this ideas is the following steps to explore, taking the P(zt, 2?) = eXpi{SH(xl) + Sy(2?), (A.5)
formal models in ZFC (Zermelo-Fraenkel-Axiom of Choice) ) ) ) ]
and hence forcing that special tool to make the shift from theVheresi, S: takes the dimension of an action for each min-
micro to macro scale. Finally, others scenarios in quanturfSUPerspace variable and both satisfy
cosmology can be analyzed in order to explore the feasibility 225, ds\ 2

_ <<( ?) , =12 (A.6)

of the mathematical methods presented in this paper; how- -
. . dx? dxt
ever this is work that will be done elsewhere.

To reach the semiclassical limit [37, 38] and with (A.5) we

find the following approximations, for = 1,2, £ € R and
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Appendix B. Mathematical background

For our purposes we make use of a particular function and
family of subsets described in the following definitions.

In the following, we extend operationally some concepts L€t f(2);g(z) two functions which are positive when
treated in Sec. 1 to give completeness to our work. First?| — 100. They are said to basymptotically equef ~ g)

the noncommutative transformations for the coordinates an

their momenta that allow us to convert a noncommutative lim S 1 (B.1)
system into a commutative one depending of the parameters |#|—+oo g ' '

of no commutatioff are:

A. Complementary notions

This is an equivalence relation and férand g, belonging

= gt lgijp, to the same class, satisfy the next property derived from the
= 50"p;,

L'H opital rule.
_ 1 i If f~gand
p; =p; + gMig®'s 5= 1,2, (A1)
“+o0
and satisfy the algebra / g(t)dt = +o0
[.fil, .fj} = Z'tgij, []Z,ﬁJ] = Z'T]ij, (A2a) then
[z, pi] = i(0s; + 04j), (A.2b) x z
wherep; = p,: and /f(t)dt ~ /g(t)dt' (B.2)
(07) = < 0 ¢ ) , A similar result is obtained when — —oc.
=0 0 Let X a nonempty set withX| > w, and.A a Boolean
0 7 algebra inX. The collectionF C X satisfying
(mij) = < —n 0 ) o (0i5) = 0(045), (A.3)
N o )¢ F.
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e ForA,B € Fwehavethad N B € F.
e If Ac FandB € Asuchthatd C B, thenB € F.

is afilter in X. In this work we suppose that = P(X). A
filter F is fixedif (| F # 0 and is calledreein other case.
The filter generated byl € A,isFa ={F € F: AC F}
and a particular case is wheh= {z} obtaining aprincipal
filter, denoted asF,,.

An Ultrafilter in X is a maximal filterF in the sense that

if we consider any other filtef; in X we have that is not
finer thanF.

A netover X isamapp : D — K whereD is a directed
set with a relatior< and if 7 is a topology inX we say that
o converges ta € X (¢ — x) if for every N € N, the set
of neighborhoods of;, there is ady € D with p(d) € N

if d > dy. The following property, related with Ultrafilters,

will be of our interest (to check the proof see [39]).
Property of finite intersection: Let C a collection of

X. If for every finite sub-collectioq A; : i < wp} we have

Nicw, Ai # 0, thenthere is a fixed UltrafilteF with C' C F.

C. Asymptotical analysis and Ultrafilters in KS
cosmology

thatANn Ay = 0 Showing tha(VA S .7:\6 — F070,070 S A)
and finally the equality” = Fg,,,,. Now, if we give
the setK the topologyr induced by the metrigp(f,g) =
SUPe (), 4+00) 1 (f — 9)[} the netd : N — K given by
Uy = F1 10,0 € B converges (uniformly) td o.,0. More-
over,the magp : Dg,, . — K defined by(f,F) — f,
where the family o

D]:Fo,o,o,o = {D = (fa F) cfeFC fFo,o,o.o}’ (C.4)

is a directed set with the relatidtf;, 1) < (f2, F2) if F» C
Fy, is a net overK associated to the UltrafilteFp, ,, .
First, we observe that for every C K we have thatd €
FFoo00 OF X\A € Fry ., denotingDy = (fa,A), we
have that ifA € Fg, ,,, (in the other case, the treatment is
similar) whenD 4 < D implies f € A and is residually
in this set (Except, possibly, the constant péD) = f,, for

all D in the directed set andiy ¢ A.), then for every ball
B(FO,O,O,Oa 6) when

U (fec) <, (C5)
with ¢ = B(Fp0,00,€) N F and F in the filter, we get
f S B(F070,070,€) and<p — F0,07070. In addition, sincek
is aT, space, this limit is unique. Then, applying the fién

In the following lines we present the mathematical develop(24) and making: — +oc, it is possible to obtain
ment to deal with the problem presented previously. Notic-

ing that one way to extract an adequate asymptotically equal
function for the integrand in (24) defined in the interval
(Qo, +00), Qo € R, is considering the nonempty infinite set

K={f(Q):f~Gon}, (C.1)
therefore, let the collections iR
An = {F/\n,clm,m,c;n : )\na Cl,n,Con € (—’I’L,TL),
m=0,1,...,n}, (C.2)

Wlth nec N+ = NU{O}’ AO = {F070707O} andF/\rucl,nam7c2,n
is
nsd

2
7) + Cln

{(A”Pﬁo T

/2
X e~ 2mV32e=V30P | 62,4 , (C3)

with (A, €10, m, €2.0) € RXRXNTXR. I B =, e+ An
and if we extract a finite sub-collectidi,,, }r<., it satisfies

A (=g [ o] =g [ (o)

[€0,9] [€0,9]
1 1 Qo
=3 / Foooode = - n (ﬁ)
[QOxQ]
ool (Q) (C.6)
n

On the other hand, considering the functi¢d;Q* —

144 exp(—V/30Pg,))~1/2 where A, = V3P3, + (n/2),

Pg, < 1inthe final expression, after making an e-folding to
Q) and taking an adequate limiy (— 0, orn,6 — 0) we re-
cover the noncommutative and commutative expressions al-
ready known. We remark, for this part, that the commutative
solution solve the Einstein’s field equations and the noncom-
mutative one can be derived deforming the symplectic struc-
ture at a classical level [34], inferring the same in the FLRW
model for the mentioned cases. The above leaves the oppor-
tunity, applying an appropriate analysis, to find an expression

the property of finite intersection, then there exists an Ultrathat satisfy another characteristics that could be mathemati-

filterin K such tha#3 C F. Forall A € F\ Bis not possible

cally or physically relevant.
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. P. A. R. Adeet al. (Planck),Astron. Astrophy594(2016) A13.

J.A. ASTORGA-MORENO, E.A. MENA-BARBOZA, AND M.A. GARGA-ASPEITIA

It is important to notice that the WDW equation and its conse-17.

guences are a limit case of the string theory.
This is the scale factar(t) = e”.
In this case we need an additional argument to pick the corre-

sponding asymptotically equal function. 19.
The notationo(1) representslimo_. 1o exp(—2v3Q)/1 = 90.
0, then takinge = 1 x 10~™ with n > 2 a natural number,

we have tha? > (1/2v/3)In((1/1 x 10~™)). For example, 21

if n=>5we gete”‘/gQ < 1 x 1075 whenQ > 3.3235.

For the established values we have that in the inter-
val [—4000,—200] the cardinalities of the setsZ; are
{1,2,3,5,12,37,83}.

The difference betweef. ., , gn.i, is equal or less thah0~*,
whent; € J; andJ; are consecutive intervals with;|= 975.

Here we consider a refined value @f : (this value is re-
calculated in each interval of length975).

We have to be careful with the changes that the Moyal prod-
uct of functions in the minisuperspagéz', 2*) » g(z!, z?) =
f(z!, z?) exp [(19/2) <811 Op2 — 812811>lg(x1,1’2) repre-
sented in the transformations, makes in the quantum equation.
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