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1. Introduction

The fractional calculus (FC) began to wind up exceptionally
famous in a few parts of science and engineering. Numer-
ous important event, that is, acoustics, anomalous diffusion,
chemistry, control processing, electro-magnetics, and visco-
elasticity have been expressed by FC. It is known that a sys-
tematic method for extracting the analytical solution of both
ordinary differential equations (ODEs) and partial differen-
tial equations (PDEs) was first proposed by the Norwegian
mathematician Sophus Lie in the early 19th century. The fun-
damental overview of this strategy is the estimation of vari-
able changes that can leave differential condition unchanged.
Therefore, a vital role in the field of FC is to attain the Lie
symmetries and the solutions of the equations with the FC
derivatives. There have been some properties of the frac-
tional sense that could not be found in classical sense, ow-
ing to this we feel motivated to establish the symmetries of
TFKPP equation. This equation has the following general-
ized form [1-4]

∂α
t u = uxx + λu + µu2 + γu3, λ + µ + γ = 0,

ψ2 = µ2 − 4λγ ≥ 0, (1)

where∂α
t u := Dα

t u stands for Riemann-Liouville of order
α, expressed as [5]

Dα
t u(x, t) =





1
Γ(n−α)

∂n

∂tn

t∫
0

(t− ξ)n−α−1u(x, ξ)dξ,

n− 1 < α < n
∂nu
∂tn , α = n ∈ N

(2)

The TFKPP Eq. (1), has a large application and includes
as particular cases the time fractional Fitzhugh-Nagumo

equation (λ = −c, µ = c + 1, γ = −1, 0 < c < 1), which
is used in population genetics, the time fractional Newell-
Whitehead equation (λ = 1, µ = 0, γ = −1). Recently,
the homotopy perturbation method and homotopy analysis
method have utilized to consider the TFKPP equation by
Gepreel [1] and Hariharan [2], respectly withλ = µ = 0
andγ = −2.

In FC, there are large amount of differential derivatives
were definede.g. [6-9]. In the calculus, the chain rule is a
useful and an applicable. It is also hold for conformable frac-
tional derivatives.

As far as we know, every proposed fractional derivative
has some disadvantages. Therefore, Khalilet al., [9], pro-
posed a new definitions:

Definition 1.1. Surmise thatf : [a, b] × (0,∞) → R,
then the conformable fractional derivative off is given by

tTα(f)(x, t) = lim
ε→0

f
(
x, t + εt1−α

)− f(x, t)
ε

,

α ∈ (0, 1], (3)

for all t > 0.
Theorem 1.1[9] Suppose thata, b ∈ R and α ∈ (0, 1],

then
(i) tTα(au + bv) = a tTα(u) + b tTα(v),

(ii) tTα(tλ) = λtλ−α, λ ∈ R,

(iii) tTα(uv) = u tTα(v) + v tTα(u),

(iv) tTα

(u

v

)
= u tTα(v)−v tTα(u)

v2 ,

(v) tTα(u)(t) = t1−αu′(t), u ∈ C1.

More than that, the chain rule is valid for conformable
fractional derivatives, shown by Abdeljawad [10].
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Theorem 1.2. Surmise thatf : (0,∞) → R is a real
differentiable,α−differentiable function. Assume thatg is
a function defined in the range off and also differentiable;
then, one has the following rule:

tTα(fog)(t) = t1−αg′(t)f ′(g(t)). (4)

There are many investigation about conformable frac-
tional derivatives [11-14] and also some physical interpre-
tations of this newly introduced fractional derivative are de-
scribed in [15].

The organization of the manuscript is given below: In
Sec. 2, we provide some preliminaries. Section 3, is de-
voted to the description of Lie symmetry analysis of TFKPP
Eq. (1). General similarity forms and symmetry reductions
are established. In Sec. 4, exact solutions to the TFKPP equa-
tion with conformable fractional derivative are investigated.
Finally, the last section is devoted to conclusions.

2. Lie symmetry analysis of fractional partial
differential equations

Here, some description for solving fractional partial differ-
ential equations (FPDEs) via Lie symmetry analysis will be
provided. Surmise that FPDE having as in [16-26]

∂α
t u = F (x, t, u, ux, uxx), 0 < α < 1. (5)

If (5) is invariant under a one parameter Lie group of point
transformations

t̄ = t̄(x, t, u; ε), x̄ = x̄(x, t, u; ε), ū = ū(x, t, u; ε), (6)

the vector field of an evolution type of equation is as follows:

V = ξt(x, t, u)
∂

∂t
+ ξx(x, t, u)

∂

∂x
+ φ(x, t, u)

∂

∂u
, (7)

where the coefficientsξt, ξx andφ of the vector field are to
be determined. WhenV satisfy the Lie symmetry condition,
the vector field (7) generates a symmetry of (5),

pr(α,2)V (∆)|∆=0 = 0, ∆ = ∂α
t u− F.

Thus the extension operator take the form

pr(α,2)V = V + φ0
α∂∂α

t u + φx∂ux + φxx∂uxx ,

where

φx = Dx(φ)− uxDx(ξx)− utDx(ξt),

φxx = Dx(φx)− uxtDx(ξt)− uxxDx(ξx),

φ0
α = Dα

t (φ) + ξxDα
t (ux)−Dα

t (ξxux)

+Dα
t (Dt(ξt)u)−Dα+1

t (ξtu) + ξtDα+1
t (u).

The condition of invariance

ξt(x, t, u)|t=0 = 0,

is inevitable for the (6), due to the (2).
Theαth extended infinitesimal is presented as:

φ0
α = Dα

t (φ) + ξxDα
t (ux)−Dα

t (ξxux) +Dα
t (Dt(ξt)u)

−Dα+1
t (ξtu) + ξtDα+1

t (u), (8)

whereDα
t exhibits the total fractional derivative operator.

The fractional generalized Leibnitz rule is expressed as

Dα
t

[
u(t)v(t)

]
=

∞∑
n=0

(
α
n

)
Dα−n

t u(t)Dn
t v(t), α > 0, (9)

here (
α
n

)
=

(−1)n−1αΓ(n− α)
Γ(1− α)Γ(n + 1)

.

Therefore using (9) one can represent (8) as

φ0
α = Dα

t (φ)− αDt(ξt)
∂αu

∂tα
−

∞∑
n=1

(
α
n

)
Dn

t (ξx)Dα−n
t (ux)

−
∞∑

n=1

(
α

n + 1

)
Dn+1

t (ξt)Dα−n
t (u). (10)

Using chain rule

dmf(g(t))
dtm

=
m∑

k=0

k∑
r=0

(
k
r

)

× 1
k!

[−g(t)]r
dm

dtm
[g(t)k−r]

dkf(g)
dgk

,

and settingf(t) = 1, one can get

Dα
t (φ) =

∂αφ

∂tα
+ φu

∂αu

∂tα
− u

∂αφu

∂tα

+
∞∑

n=1

(
α
n

)
∂nφu

∂tn
Dα−n

t (u) + ϑ,

where

ϑ =
∞∑

n=2

n∑
m=2

m∑

k=2

k−1∑
r=0

(
α
n

)(
n
m

)(
k
r

)
1
k!

× tn−α

Γ(n + 1− α)
[−u]r

∂m

∂tm
[uk−r]

∂n−m+kφ

∂tn−m∂uk
.

Therefore

φ0
α =

∂αφ

∂tα
+

(
φu − αDt(ξt)

) ∂αu

∂tα
− u

∂αφu

∂tα
+ ϑ

+
∞∑

n=1

[ (
α
n

)
∂αφu

∂tα
−

(
α

n + 1

)
Dn+1

t (ξt)
]Dα−n

t (u)

−
∞∑

n=1

(
α
n

)
Dn

t (ξx)Dα−n
t (ux).
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3. Symmetry representation of TFKPP equa-
tion

In view of the Lie theory, we have:

φ0
α = φxx + λφ + 2µφu + 3γφu2. (11)

Substituting (10) into (11), the determining equations for
Eq. (1) is attained,consequently, we have

ξt = 4tc3, ξx = c1 + 2αxc3,

φ = c2u + (3α− 2)uc3 + C(x, t),

wherec1, c2 andc3 are constants andC(x, t) is a solution of
Eq. (1). Therefore, the algebrag of Eq. (1) can be written as

V1 =
∂

∂x
, V2 = u

∂

∂u
,

V3 = 4t
∂

∂t
+ 2αx

∂

∂x
+ (3α− 2)u

∂

∂u
,

V4 = C(x, t)
∂

∂u
.

ForV3, one can write

dt

4t
=

dx

2αx
=

du

(3α− 2)u
,

and this give

ζ = xt
−α
2 , u(x, t) = t

3α−2
4 F(ζ). (12)

Theorem 3.1.The transformation(12) reduces(1) to the
following:

(
P−

α
4 + 1

2 ,α
2
α

F
)

(ζ) = F ′′ + λF + µF2 + γF3, (13)

with the Erd́elyi-Kober (EK) fractional differential operator
Pτ,α

β defined by

(
Pτ,α

β F
)

: =
n−1∏

j=0

(
τ + j − 1

β
ζ

d

dζ

) (
Kτ+α,n−α

β F
)

(ζ),

n =
{

[α] + 1, α /∈ N
α, α ∈ N

where

(
Kτ,α

β F
)

(ζ) :=





1
Γ(α)

∞∫
1

(u− 1)α−1u−(τ+α)F(ζu
1
β )du,

F(ζ), α = 0,

is the EK fractional integral operator.
Proof: Let n− 1 < α < n, n = 1, 2, 3, .... By means of

Reimann-Liouville, one reaches

∂αu

∂tα
=

∂n

∂tn

[
1

Γ(n− α)

×
t∫

0

(t− s)n−α−1s
3α−2

4 F
(
xs

−α
2

)
ds

]
. (14)

Letting% = t/s, one can getds = −(t/%2)d%, therefore (14)
can be written as

∂αu

∂tα
=

∂n

∂tn

[
tn−

α
4− 1

2

(
K

3α+2
4 ,n−α

2
α

F
)

(ζ)
]
.

Taking into account the relation(ζ = xt−α/2), we can obtain

t
∂

∂t
φ(ζ) = t

∂ζ

∂t

dφ(ζ)
dζ

= −α

2
ζ
dφ(ζ)

dζ
.

Therefore one can get

∂n

∂tn

[
tn−

α
4− 1

2

(
K

3α+2
4 ,n−α

2
α

F
)

(ζ)
]

=
∂n−1

∂tn−1

[
∂

∂t

(
tn−

α
4− 1

2

(
K

3α+2
4 ,n−α

2
α

F
)

(ζ)
) ]

=
∂n−1

∂tn−1

[
tn−

α
4− 3

2

(
n− α

4
− 1

2
− α

2
ζ

d

dζ

)

×
(
K

3α+2
4 ,n−α

2
α

F
)

(ζ)
]

= . . . = t−
α
4− 1

2

n−1∏

j=0

(
−α

4
+

1
2

+ j − α

2
ζ

d

dζ

)

×
(
K

3α+2
4 ,n−α

2
α

F
)

(ζ)

= t−
α
4− 1

2

(
P−

α
4 + 1

2 ,α
2
α

F
)

(ζ).

This completes the proof.

Also, for the symmetry ofV1 + V2 + V3, one can write

dt

4t
=

dx

2αx + 1
=

du

(3α− 1)u
,

which yields

ζ =
2αx + 1

2α
t
−α
2 , u(x, t) = t

3α−1
4 F(ζ). (15)

Theorem 3.2. The transformation(15) reduces(1) to
the following nonlinear ordinary differential equation of frac-
tional order:

(
P

3−α
4 ,α

2
α

F
)

(ζ) = F ′′ + λF + µF2 + γF3. (16)

Proof: Similar to the proof of previous theorem.
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4. Exact Solutions of TFKPP equation

Symmetry analysis of differential equations gives many in-
formation about geometric properties of various differential
equations. For example, it is possible to extract vector fields,
infinitesimals, conservation laws and reductions of differ-
ential equations. Reduction procedure of differential equa-
tions allows us to reduce dimension of these equations by
one less. In two dimensional partial differential equations
(PDEs), reduction procedure gives an ordinary differential
equation (ODE). So, solving this ODE concludes exact so-
lution of original PDE. However, in FPDEs with Riemann-
Liouville fractional derivatives we get ODEs with the EK
derivatives which there is not a systematic method to find
their exact solution. Therefore, after reduction of TFKPP
equation with the Riemann-Liouville fractional derivative we
obtain Eqs. (13) and (16) which it is not possible to find an-
alytical solutions. However, we can obtain exact solution of
Eq. (1) with ∂α

t u := tTα(u). In this section, we investi-
gate the exact solutions of TFKPP equation with conformable
fractional derivative.

4.1. Simplest equation method and its applications to
time fractional differential equations

This approach was proposed in [27,28]. The steps for the
approach is stated as follows:

Let the TFDE is given by

P (u, tTα(u), ux, uxx, ...) = 0. 0 < α ≤ 1, (17)

Then the modified version of simplest equation method pro-
cedure have the following steps:

Step 1: We utilize the following

u(x, t) = Θ(ξ), ξ = A

(
x− ν

tα

α

)
, (18)

whereA andν are nonzero constants to be determined later.
Consequently we attain with parametersA andν the fol-

lowing

P
(
Θ,−AνΘ′, AΘ′, A2Θ′′, ...

)
= 0. (19)

Step 2: Suppose that Eq. (19) possesses

Θ(ξ) =
N∑

i=0

ai[z(ξ)]i, (20)

whereai, i = 0, 1, ..., N , are constants to be determined
later. The positive value ofN in (20), which the pole order
for the general solution of Eq. (19), can be determined by
substitutingΘ(ξ) = ξ−m, (m > 0).

In the present paper, we use the Bernoulli and Riccati
equations which their solutions can be expressed by elemen-
tary functions. For the Bernoulli equation:i

dz

dξ
= az(ξ) + b[z(ξ)]k, k ∈ N\{1},

we use the solutions

z(ξ) = k−1

√
a exp

[
a(k − 1)(ξ + ξ0)

]

1− b exp
[
a(k − 1)(ξ + ξ0)

] ,

for the casea > 0, b < 0 and

z(ξ) = k−1

√
− a exp

[
a(k − 1)(ξ + ξ0)

]

1 + b exp
[
a(k − 1)(ξ + ξ0)

] ,

for the casea < 0, b > 0 andξ0 is a constant of integration.
For the Riccati equation

dz

dξ
= a + b[z(ξ)]2,

which admits the following exact solutions:

z(ξ) = −
√−ab

b
tanh

[√
−abξ−ε ln(ξ0)

2

]
, ξ0 > 0, ε = ±1,

whenab < 0 and

z(ξ) =

√
ab

b
tan

[√
abξ + ξ0

]
, ξ0 = Const.,

whenab > 0.
Step 3: Plugging (20) into (19) and equating the coef-

ficients ofzi to zero, one can obtain an algebraic system in
A, ν andai, i = 0, ..., N .

4.2. Application to the TFKPP equation

The transformation

u(x, t) = Θ(ξ), ξ = A

(
x− ν

tα

α

)
, (21)

changes Eq. (1) with∂α
t u = tTα(u) to:

A2Θ′′ + νAΘ′ + λΘ + µΘ2 + γΘ3 = 0. (22)

We suppose that Eq. (22) has solution of the form (20).
Balancing the highest order derivative terms with nonlinear
terms in Eq. (22), we getN = 1, and hence

Θ(ξ) = a0 + a1z(ξ), a1 6= 0. (23)

Substituting (23) along with (21) into Eq. (22) and then van-
ishing the coefficients ofzi, one can get some algebraic equa-
tions abouta0, a1, A andν, which solving them byMaple,
concludes:

• Case 1:

a0 = 0, a1 =
b
(
µ2 ∓ |µ|ψ)

2aµγ
,

A =

√
−µ2 + 2λγ ± |µ|ψ

2a
√

γ
,

ν =
µ2 − 6λγ ∓ |µ|ψ

2
√

γ (−µ2 + 2λγ ± |µ|ψ)
,
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whereψ =
√

µ2 − 4λγ. In this case, the exact solutions of
Eq. (22) are:

Θ(ξ) =
b(−µ2 ± |µ|ψ) exp

[
a(ξ + ξ0)

]

2γµ
(−1 + b exp

[
a(ξ + ξ0)

]) , a > 0, b < 0,

Θ(ξ) =
b(−µ2 ± |µ|ψ) exp

[
a(ξ + ξ0)

]

2γµ
(
1 + b exp

[
a(ξ + ξ0)

]) , a < 0, b > 0,

and using the substitution in (18) we get the final solutions:

u(x, t) =
b(−µ2 ± |µ|ψ exp

[
η(x, t)

]
)

2γµ
(−1 + b exp

[
η(x, t)

]) , a > 0, b < 0,

u(x, t) =
b(−µ2 ± |µ|ψ) exp

[
η(x, t)

]

2γµ
(
1 + b exp

[
η(x, t)

]) , a < 0, b > 0,

where

η(x, t) =
2x

√
γ(−µ2 + 2γλ± |µ|ψ)

4γ

+
(−µ2 + 6γλ± |µ|ψ)tα + 4ξ0γaα

4γα
.

• Case 2:

a0 =
ψ − µ

2γ
, a1 =

b(3µ2 − 12λγ − µψ)
γa(3ψ − µ)

,

A =
√

2ψ

2a
√−γ

, ν =
√

2µ

2
√−γ

.

In this case, the exact solutions of Eq. (22) are:

Θ(ξ) =
−2µ2 + 2µψ + 6λγ + b

(
6λγ − µ2 − µψ

)
exp

[
a(ξ + ξ0)

]

γ(3ψ − µ)
(−1 + b exp

[
a(ξ + ξ0)

]) , a > 0, b < 0,

Θ(ξ) =
2µ2 + 2µψ − 6λγ + b

(
6λγ − µ2 − µψ

)
exp

[
a(ξ + ξ0)

]

γ(3ψ − µ)
(
1 + b exp

[
a(ξ + ξ0)

]) , a < 0, b > 0,

or equivalently

u(x, t) =
−2µ2 + 2µψ + 6λγ + b

(
6λγ − µ2 − µψ

)
exp

[
η(x, t)

]

γ(3ψ − µ)
(−1 + b exp

[
η(x, t)

]) , a > 0, b < 0,

u(x, t) =
2µ2 + 2µψ − 6λγ + b

(
6λγ − µ2 − µψ

)
exp

[
η(x, t)

]

γ(3ψ − µ)
(
1 + b exp

[
η(x, t)

]) , a < 0, b > 0,

where

η(x, t) = ξ0a +
xψ
√−2γ

2γ
− µψtα

2γα
.

• Case 3:

a0 =
ψ − µ

2γ
, a1 =

2b(µ2 − 3λγ − µψ)
γa(3ψ − µ)

,

A =

√
2λγ − µ2 + µψ

2a
√

γ
, ν =

6λγ − µ2 + µψ

2
√

γ (2λγ − µ2 + µψ)
.

In this case, we can obtain

Θ(ξ) =
2

(−µ2 + 3λγ + µψ
)

γ(3ψ − µ)
(−1 + b exp

[
a(ξ + ξ0)

]) ,

a > 0, b < 0,

Θ(ξ) =
2

(
µ2 − 3λγ − µψ

)

γ(3ψ − µ)
(
1 + b exp

[
a(ξ + ξ0)

]) ,

a < 0, b > 0,

and using the substitution in (18) we have

u(x, t) =
2

(−µ2 + 3λγ + µψ
)

γ(3ψ − µ)
(−1 + b exp

[
η(x, t)

]) ,

a > 0, b < 0,

u(x, t) =
2

(
µ2 − 3λγ − µψ

)

γ(3ψ − µ)
(
1 + b exp

[
η(x, t)

]) ,

a < 0, b > 0, (24)

where

η(x, t) = ξ0a +
x
√
−µ2 + µψ + 2γλ

2
√

γ

− −µ2 + µψ + 6γλ

4γα
tα.

Also, in the use of Riccati equation, substituting (23)
along with (21) into Eq. (22) and then vanishing the coeffi-
cients ofzi, we can obtain some algebraic equations about
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a0, a1, A andν, that solving them by Computer algebra tech-
nique , concludes:

• Case 1:

a0 = − µ

2γ
, a1 = ± ibψ

2γ
√

ab
,

A = ±
√

2ψ

4
√

γab
, ν =

i
√

2µ

2
√

γ
.

In this case, the exact solutions of Eq. (22) are:

Θ(ξ) =
−µ± iψ tan

[√
abξ + ξ0

]

2γ
,

ab > 0,

Θ(ξ) =
−µ± ψ tanh

[√−abξ − ε ln(ξ0)
2

]

2γ
,

ab < 0,

and using the substitution in (18) we get the following final
solutions:

u(x, t) = − 1
2γ

(
µ

+ iψ tan
[−√2γψxα∓ 4γξ0α + iµψtα

4γα

])
,

whenab > 0 and

u(x, t) = − 1
2γ

(
µ

+ ψ tanh
[−i

√
2γψxα± 2γε ln(ξ0)α− µψtα

4γα

])
,

whenab < 0.
• Case 2:

a0 = − µ

2γ
, a1 = ∓ ibψ

2γ
√

ab
,

A = ±
√

2ψ

4
√

γab
, ν = − i

√
2µ

2
√

γ
,

Exact solutions of Eq. (22) extracted from this case are:

Θ(ξ) =
−µ∓ iψ tan

[√
abξ + ξ0

]

2γ
, ab > 0,

Θ(ξ) =
−µ∓ ψ tanh

[√−abξ − ε ln(ξ0)
2

]

2γ
, ab < 0,

or equivalently

u(x, t) = − 1
2γ

(
µ

+ iψ tan
[√

2γψxα± 4γξ0α + iµψtα

4γα

])
,

whenab > 0 and

u(x, t) = − 1
2γ

(
µ

+ ψ tanh
[
i
√

2γψxα∓ 2γε ln(ξ0)α− µψtα

4γα

])
,

whenab < 0.

5. Conclusion

In this study, the Lie group analysis method was successfully
applied to investigate the reduction and symmetry properties
of the TFKPP equation. Moreover, we have arrived to some
exact solutions of the conformable TFKPP equation, thanks
to the application of simplest equation method. The results
of this study undoubtedly offer helpful information about the
TFKPP equation.

Acknowledgments

The authors would like to thank the referees for the helpful
suggestions.

i. In this paper, the casek = 2 has been used to find solutions.

1. K. A. Gepreel, Applied Mathematics Letters, 24 (2011) 1428-
1434.

2. G. Hariharan,Journal of Mathematical Chemistry51 (2013)
992-1000.

3. S. Li-Na, and W. Wei-Guo,Communications in Theoretical
Physics, 58 (2012) 182.

4. A. G. Nikitin, and T. A. Barannyk,Central European Journal
of Mathematics, 2 (2004) 840-858.

5. D. Baleanu, K. Diethelm, E. Scalas, and J. Trujillo,Fractional

Calculus Models and Numerical Methods (Series on Complex-
ity, Nonlinearity and Chaos). World Scientiffic (2012).

6. I. Podlubny,Fractional differential equations: an introduction
to fractional derivatives, fractional differential equations, to
methods of their solution and some of their applications, Vol.
198. Academic press (1998).

7. M. Caputo, and M. Fabrizio,Progr. Fract. Differ. Appl, 1 (2015)
1-13.

8. A. Atangana, and I. Koca, Chaos,Solitons & Fractals89(2016)
447-454.

Rev. Mex. Fis.65 (5) 529–535



SYMMETRY PROPERTIES AND EXACT SOLUTIONS OF THE TIME FRACTIONAL. . . 535

9. R. Khalil, M. A. Horani, A. Yousef, and M. Sababheh,Journal
of Computational and Applied Mathematics, 264(2014) 65-70.

10. T. Abdeljawad,Journal of Computational and Applied Mathe-
matics, 279(2015) 57-66.

11. M. Eslami, and H. Rezazadeh,Calcolo, 53 (2016) 475-485.

12. K. Hosseini, P. Mayeli, and R. Ansari,Optik - International
Journal for Light and Electron Optics, 130(2017) 737-742.
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