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In this paper, the time fractional Kolmogorov-Petrovskii-Piskunov (TFKPP) equation is analyzed by means of Lie symmetry approach. The
TFKPP is reduced to ordinary differential equation of fractional order via the attained point symmetries. Moreover, the simplest equation
method is used in construct the exact solutions of underlying equation with recently introduced conformable fractional derivative.
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1. Introduction equationp = —¢, p=c+1, v = —1, 0 < ¢ < 1), which

_ ) _ is used in population genetics, the time fractional Newell-
The fractional calculus (FC) began to wind up exceptionallyhitehead equation\(= 1, 4 = 0, v = —1). Recently,
famous in a few parts of science and engineering. Numefhe homotopy perturbation method and homotopy analysis
ous important event, that is, acoustics, anomalous diffusionyethod have utilized to consider the TFKPP equation by
chemistry, control processing, electro-magnetics, and ViSCOGepreeI [1] and Hariharan [2], respectly with= p = 0
elasticity have been expressed by FC. It is known that a SYSindy = —2.
tematic method for extracting the analytical solution of both |, Ec there are large amount of differential derivatives
ordinary differential equations (ODEs) and partial differen-\yere gefinece.g [6-9]. In the calculus, the chain rule is a
tial equations (PDEs) was first proposed by the Norwegian,sefy| and an applicable. It is also hold for conformable frac-
mathematician Sophus Lie in the early 19th century. The fungional derivatives.
damental overview of this strategy is the estimation of vari- As far as we know, every proposed fractional derivative

able changes that can leave differential condition unchangeql.< some disadvantages. Therefore, Krelial., [9], pro-
Therefore, a vital role in the field of FC is to attain the Lie osed a new definitions: ' b

symmetries and the solutions of the equations with the F(? Definition 1.1. Surmise thatf : [a.b] x (0,00) — R
derivatives. There have been some properties of the frac; - - ’ '

tional sense that could not be found in classical sense, ov(\;hen the conformable fractional derivative bfs given by

ing to this we feel motivated to establish the symmetries of (@ t+ et =) — f(x,t)
TFKPP equation. This equation has the following general- tTo(f)(x,t) = liII(l) ’ -,
ized form [1-4] - €
a € (0,1], 3)
OPU = Ugy + M+ pu® +yu, N+ 4+ =0,
forall t > 0.
2 _ 2
Vi= -4y 20, (1) Theorem 1.1[9] Suppose that,b € R anda € (0, 1],
wheredfu := Dgu stands for Riemann-Liouville of order then.
a, expressed as [5] (i) :Ta(au + bv) = a ¢Ta(u) + b Ta(v),
ot (i) (To(t*) = M 2, A eR,
1 " n—a—1
S J (= ule, s, (i) Ta(uv) = uTo(v) + v Ta(u),
L u(x,t) =
n—1<a<n . U\ u Ta(v)—v ¢ To(u)
&u a=neN (iv) ¢Tq (U)——Uz :
) (V) ¢ To (u)(t) = '~/ (1), ue O

The TFKPP Eg. (1), has a large application and includes More than that, the chain rule is valid for conformable
as particular cases the time fractional Fitzhugh-Nagumdractional derivatives, shown by Abdeljawad [10].
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Theorem 1.2. Surmise thatf : (0,00) — R is areal isinevitable for the (6), due to the (2).
differentiable, o —differentiable function. Assume thatis  Thea!” extended infinitesimal is presented as:
a function defined in the range g¢f and also differentiable;
then, one has the following rule: 09 = D () + "Dy (ug) — DJ (% us) + D (D (") u)

Ta(fog)(t) = 1=/ (t) f' (g(1)). (4) — Dt (') + D (w), ®)

There are many investigation about conformable fracwhere Df* exhibits the total fractional derivative operator.
tional derivatives [11-14] and also some physical interpre-The fractional generalized Leibnitz rule is expressed as
tations of this newly introduced fractional derivative are de- -
scribed in [15]. o _ o a—n n

The organization of the manuscript is given below: In DE [utye(®)]=2_ (n) D tut)Prv(®), o >0, (9)
Sec. 2, we provide some preliminaries. Section 3, is de-
voted to the description of Lie symmetry analysis of TFKPPhere .

Eqg. (1). General similarity forms and symmetry reductions <a> _ (=D)""al(n - O‘).
are established. In Sec. 4, exact solutions to the TFKPP equa- n (1 —a)l(n+1)
tion with conformable fractional derivative are investigated. Therefore using (9) one can represent (8) as
Finally, the last section is devoted to conclusions.

n=0

u &
8 =D50) - D) Gt - 3 () DHEDE T w)

n=1

2. Lie symmetry analysis of fractional partial

differential equations ~ N

- DL ENDE ™ (u). 10

Here, some description for solving fractional partial differ- 772::1 (n + 1) ¢ E)DT ) (10)
ential equations (FPDES) via Lie symmetry analysis will be

provided. Surmise that FPDE having as in [16-26] Using chain rule
Ofu = F(x,t,u,ug, Ugy), 0<a<l. (5) d™f(g(t)) iz( k )
If (5) is invariant under a one parameter Lie group of point dtr imor=o \
transformations 1 am d* f(
il r k—r g)
X @ S le@)™ ] s

t=t(x,t,use), T==(x,t,use), u=u(x,t ue), (6)

the vector field of an evolution type of equation is as foIIows:and settingf(¢) = 1, one can get

o d d g gy 9% % 0%y
V:é-t(fﬂ,t,u)g—f—f (x,t7u)%+¢($7t,u)£, (7) Dt (d))_ ote +¢u ot —u ot
where the coefficients’, ¢* and¢ of the vector field are to n i (a> 0" pu DO (w) + 9,
be determined. WheW satisfy the Lie symmetry condition, A\ ot

the vector field (7) generates a symmetry of (5),
where
prl@DV(A)azo =0, A=0u—F.

co n m k-1
« n k) 1
Thus the extension operator take the form U= Z Z Z Z <n> <m> (T ) jx)

n=2m=2k=2r=0

pT.(a,Q)V =V + (bgaaf‘“ + ¢I8uT + (bwwau,w; y tn—a [_u]ral[ k—r] an—m+k¢
where Fn+1-a) otm otn=muk”
¢° = Dy() — uy Dy (€°) — ut'Dw(gt)’ Therefore
67 = Dy(67) — unDa(€") — tuaDa(€9), =T 4 (pu—omi(eh) T a0y

Fo = Di(¢) + "D} (us) — D (€ uq)

+ D (D, (€)u) — D (€M) + €D (u). *

()5 (5 ) Prreioe

(o) Preme ).

The condition of invariance

&z, t,u)|4=0 = 0, n

e 18 &

Il
-
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3. Symmetry representation of TFKPP equa- Lettingo = t/s, one can getls = —(t/0?)dpo, therefore (14)

tion can be written as
In view of the Lie theory, we have: oou o { S (;CMAL”’"—O‘]:) (C)}
B0, = ¢ + A + 2u¢u + 3ypu’, (11) ot ot g '

Substituting (10) into (11), the determining equations for ) )
Eqg. (1) is attained,consequently, we have Taking into account the relatid = xt~/2), we can obtain

£ = dtcs, £ = ¢y + 2axces,

B _0Cde(Q) o do(()
¢ = cou+ (3a — 2)ucs + C(x, t), t&“b(o N t@ d¢ 27 d¢

wherec;, co andes are constants an€l(z, ¢) is a solution of
Eq. (1). Therefore, the algebgeof Eq. (1) can be written as 1 herefore one can get

0 0
Vi=—, Va=u-, n « 1 sat2
YT o P ou 8771 173 (’ng ’ j-‘) ©)
V—4t9+2 2+(3 —2)3 ” ’
5 ot amax @ u8u7 _ an71 g (tnf%fé <’C30‘4+2,n7a]:) (C))
9 ot | ot 2
Vi=C(z,t)—.
du ot P a 1 a_ d
For Vs, one can write = -1 "y T 97 §Cd7§
@ — di — diu Sat2 o«
4 20z (3a—2)u’ X (’C§4 ~7:) (O]
and this give n—1
— .=t S
C=at=, ulz,t) =t T F). (12) - = A TT9bNac
Theorem 3.1.The transformatior§12) reduceq1) to the Bad? o
following: X (’Cg 7:) (€)
(PLFTHF) (O = '+ AF +uF2 4972, (19) =i (P ) ().
with the Ercklyi-Kober (EK) fractional differential operator
7);"1 defined by This completes the proof.
_— L4 Also, for the symmetry o/, + V5 + V3, one can write
,Pr,a]_- - H <T+j _ C) ’CT+a,n—af- (C)
B B )
(Pin7) =11 5ac) ( ) 0w
] +1, a¢N 4t 2azx+1  (Ba-—1)u’
n =
{ a, a€eN
where which yields
e 1T u— 1)yt F Cu% du, 20 +1 —a 3a—1
(k57 F) (2= Tlr {071 (cu?) (=2 =1 T FQ. a8
f(é-)) a = 0) @
is the EK fractional integral operator. .
Proof: Letn — 1 < a <n, n=1,2,3, .... By means of Theorem 3.2. The transformation(15) reduces(1) to
Reimann-Liouville. one reaches the following nonlinear ordinary differential equation of frac-
’ tional order:
AT
ot otn [T'(n — a)

(P F) Q= F 4 0F 4 pF 447 19)

@

t

X /(t — s)"_a_lsg%z}" (ms%) ds]. (14

0 Proof: Similar to the proof of previous theorem.
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4. Exact Solutions of TFKPP equation we use the solutions

Symmetry analysis of differential equations gives many in- 2(€) = *y 2P la(k = 1)(€ + &)]
formation about geometric properties of various differential 1—bexp [a(k — 1)(£+ &)’
equations. For example, it is possible to extract vector fields
infinitesimals, conservation laws and reductions of differ-1of the case. > 0, b < 0 and
e_nt|al equations. Reductlon_ procgdure of dlfferenual_ equa- k\l/ aoxp [a(k (e 50)]

tions allows us to reduce dimension of these equations by z(€) = — ,

one less. In two dimensional partial differential equations L+ bexp [a(k = 1)(€ + &)

(PDEs), reduction procedure gives an ordinary differentiakor the case: < 0, b > 0 and¢, is a constant of integration.
equation (ODE). So, solving this ODE concludes exact sofor the Riccati equation

lution of original PDE. However, in FPDEs with Riemann-

Liouville fractional derivatives we get ODEs with the EK dz = a+ b[z(&)]?,

derivatives which there is not a systematic method to find d

their exact solution. Therefore, after reduction of TFKPPwhich admits the following exact solutions:

equation with the Riemann-Liouville fractional derivative we

obtain Egs. (13) and (16) which it is not possible to find an-,(¢) — _ Y ;ab tanh [\/_szf_elﬂ(éo)} €0 >0, e = +1,

alytical solutions. However, we can obtain exact solution of 2

Eq. (1) withofu := T, (u). In this section, we investi- \whenab < 0 and

gate the exact solutions of TFKPP equation with conformable Jab

fractional derivative. 2(€) = ;‘ tan [y fab¢ + &), & = Const.,

4.1. Simplest equation method and its applications to whenab > 0.
time fractional differential equations Step 3: Plugging (20) into (19) and equating the coef-

) ) ficients of z* to zero, one can obtain an algebraic system in
This approach was proposed in [27,28]. The steps for the; | 444 i = 0. N.

approach is stated as follows:

Let the TFDE is given by 4.2. Application to the TFKPP equation
P (u, +Ta(u), ug, Ugg,...) =0. 0 < <1, (17)  The transformation
Then the modified version of simplest equation method pro- u(z,t) = 0(€), £=A (m _ Vﬁ(’) 1)
cedure have the following steps: ’ ’ a)’

Step 1: We utilize the following changes Eq. (1) withf'u = ;T (u) to:

u(z,t) =0(¢), £€=A (x _ yl) , (18) A?Q" +vAQ + 0O + 0% +403 =0.  (22)

We suppose that Eq. (22) has solution of the form (20).

whereA andv are nonzero constants to be determined later.g,jancing the highest order derivative terms with nonlinear
Consequently we attain with parameterandv the fol- 1 15in Eq. (22), we geV = 1, and hence

lowing
O(&) = ao +a12(§), a1 # 0. (23)
P(0,—Av®', A0', A?0", ..)=0. (29)
Substituting (23) along with (21) into Eq. (22) and then van-
Step 2: Suppose that Eq. (19) possesses ishing the coefficients of’, one can get some algebraic equa-
N tions aboutag, a1, A andv, which solving them byMaple
i concludes:
CIGEDIALIE (20)
=0 e Case 1:
wherea;, i = 0,1,..., N, are constants to be determined
later. The positive value aV in (20), which the pole order b( 2| |¢)
for the general solution of Eqg. (19), can be determined by ap =0, a3 = i,
substitutingd(¢) = €™, (m > 0). 2apry
In the present paper, we use the Bernoulli and Riccati V1% + 207 £ [u]¢
equations which their solutions can be expressed by elemen- A= 2a\/7 )
tary functions. For the Bernoulli equatién:
i L WA TF
@& = O TR ke N1} 2/7 (=42 +2Ay £ [uld)
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wherey) = /u? — 4)\v. In this case, the exact solutions of where

Eq. (22) are:
 2a\ /v (=4 + 29N £ [pf)
o(e) = b(—p? £ |ulv) exp [a(€ + &) Cas0.b<o, n(z,t) = "
o) = b(—p? £ |plv) exp [a(€ + &) a<0.b>0, Ina

21 (1 + bexp [a(§ + 50)])
and using the substitution in (18) we get the final solutions: e Case 2:

b(—p? £ |l exp [n(z, t)])

1) = , a>0,b<0,
uwt) 29 (—1+bexp [n(z,6)]) Y b~ 12Xy — )
w(.t) = b(—p? + |pul) exp [n(x7t)]7 0 <0, b>0, Ty va(3p —p)
2y (1+ bexp [n(z,1)]) V2 V24
| T2y T 2y

In this case, the exact solutions of Eq. (22) are:
_ =2+ 2 + 6My + b (6)y — p® — ) exp [a(€ + &o)]
V(B¢ — ) (—1+ bexp [a(é + &)]) ’

20 4 2 — 6Ny + b (6Xy — i — ) exp [a(€ + &)
(3¢ — ) (1 + bexp [a(€ + &)]) ’

o) a>0,b<0,

O(¢) a<0,b>0,

or equivalently
—2u? + 2u1h + 6Xy + b (6)@ - ,Lu/}) exp [n(a:, t)]
Y(3¢ — p) (=1 + bexp [n(z, t)]) ’

2% + 2p1p — 6Xy + b (6Ay — p? — i) exp [n(z,t)]
Y(3¢ — p) (1 +bexp [n(z,1)]) ’

u(z,t) = a>0,b<0,

u(zx,t) =

a<0,b>0,

where
o/ =2y papt®

t) = .
77(567 ) Soa + 2 2

e Case 3:

and using the substitution in (18) we have

Y= p 2b(i? — 3y — ) () 2 (—p® + 3\ + uy)

@ = 2y “= va(3p —pu) V= (3¢ — ) (=1 + bexp [n(z,1)])’

e 2Ny — p? + L 6y — 2 + pap a>0,b<0,
2a,/y ’ 2¢/7 20y — 12 + ) .4) 2 (u? = 3\y — )
u(x,t) = ,
In this case, we can obtain Y34 — p) (1 + bexp [n(,1)])

a<0,b>0, (24)

_ 2 (=% + 3\ + )
C (B — ) (=1 +bexp [a(€ + &)])’ where

a>0,b<0, n(z,t) = &a + NG
2 (p? — 3\y — p)) 2

= ; —p + 4+ 69A

v(3¢ — ) (1 + bexp [a(é + &)]) - 1o e

a<0,b>0, Also, in the use of Riccati equation, substituting (23)
along with (21) into Eqg. (22) and then vanishing the coeffi-
cients ofz?, we can obtain some algebraic equations about

e(¢)

x\/—p2 + b + 29\

e(¢)
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ap, a1, A andv, that solving them by Computer algebra tech- Exact solutions of Eq. (22) extracted from this case are:

nigue , concludes:
e Case 1:

W LY

ag=———, a4 =xT——,
0 2y 1 27\/@
V2 2
4v/vab’ 2.7
In this case, the exact solutions of Eq. (22) are:
_ —ptdptan [\/@5 + &)
= o

A=+

e(¢)

)

ab >0,

_ —pE¢tanh [\/—abf — ElnT(gO)]
= %

e(¢)

)

ab < 0,

and using the substitution in (18) we get the following final

solutions:

1
u(z,t) = 2 (,u

—VTbza F 4600 + ww} )

p b
+ i an[ o

whenab > 0 and

(o) = —— (ﬂ

2y

4 ¢ tanh {—z\/%@/}xa + 2veln(&y)a — papt }) ’
dva
whenab < 0.

e Case 2:

1% by

ag = , a1 = F )
0 2 1 2ab
V21 iV2pu

s ' T T A

o(¢) = — 4 F i) tan [\/@fﬁ-&)} Cab> 0,
2y
_ — _ €ln(&)
o = LTV T <o,

or equivalently

w(z, ) = —217(,1

V2o £ AyEoa + dppt® ] )

+ 1) tan [
dya

whenab > 0 and

1
’U,(.’I}, t) = _g </’(‘
4 tanh i/2ypra F 2yeln(&o)a — ppt®
dva ’

whenab < 0.

5. Conclusion

In this study, the Lie group analysis method was successfully
applied to investigate the reduction and symmetry properties
of the TFKPP equation. Moreover, we have arrived to some
exact solutions of the conformable TFKPP equation, thanks
to the application of simplest equation method. The results
of this study undoubtedly offer helpful information about the
TFKPP equation.
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