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We make a number of remarks on linearized gravity with cosmological constant in any dimension, which, we argue, can be useful in a
quantum gravity framework. For this purpose we assume that the background space-time metric corresponds to the de Sitter or anti-de Sitter
space. Moreovelia the graviton mass and the cosmological constant correspondence, we make some interesting observations, putting
special attention on the possible scenario of a graviton-tachyon connection. We compare our proposed formalism with the Novello and
Neves approach.
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1. Introduction velops the formalism considering a linearized metric in such
equations. We note that the result is deeply related to the cos-
Itis known that there are a number of works relating tachyonsnological constant < 0 sign. In fact, one should remember
with M-theory [1] (see also Ref. 2 and references therein)that in (1 + 4)-dimensionsA is positive, while in(3 + 2)-
including the brane and anti-brane systems [3], closed-stringlimensionsA is negative. At the level of linearized gravity,
tachyon condensation [4], tachyonic instability and tachyorpne searches for the possibility of associating these two dif-
condensation in thé”(8) heterotic string [5], among many ferent signs ofA with tachyons. This leads us to propose
others. Part of the motivation of these developments emergegunified tachyonic framework it + 6)-dimensions which
because it was discovered that the ground state of the bosonjgcludes these two separate cased oMoreover, we argue
string is tachyonic [6] and that the spectrumAdS/CFT"  that our formalism may admit a possible connection with the
[7] can contain a tachyonic structure. increasing interesting proposal of duality in linearized gravity
On the other hand, it is also known that tte + 5)- (see Refs. [10-12] and references therein).
signature and thél + 9)-signature are common to both type
[IA strings and type 1B strings. In fact, versions &f-theory
lead to type IIA string theories in space-time of signature
(0+10), (149),(2+38), (4+6) and(5+5), and to type 1IB

In order to achieve our goal, we first introduce, in a simple
context, the tachyon theory. Secondly, in a novel form we de-
%/elop the de Sitter and anti-de Sitter space-times formalism,

. . . clarifying the meaning of the main constraints. Moreover,
string theories of signaturés +9), (3-+7) and(5+5) [8]. It much work allows us to describe a new formalism for higher

s quth mentioning that some of these theories are linked b>éimensional linearized gravity. Our approach is focused on
duality transformations. So, one Wonders whether tac.hyonl%e space-time signature in any dimension and in particular
may also be related to the various signatures. In partlcula{n (4 + 6)-dimensions

here we are interested to see the possible relation of tachyons o
with a space-time of4 + 6)-dimensions. Part of the motiva- A further motivation of our approach may emerge from
tion in the (4 + 6)-signature arises from the observation thatthe recent direct detections of gravitational waves [13-15].
(4+6) = (1+4) + (3 + 2). This means that the world of Accor<_j|ng to this detection the upper_boun'd of the graviton
(4 + 6)-dimensions can be splitted into a de Sitter world of Mass ism, < 1.3 x 107°% kg [15]. Since in our compu-
(1 + 4)-dimensions and an anti-de Sitter world (&f + 2)- t_atlons the mass and the cosmological constant are propor-
dimensions. Moreover, looking the + 6)-world from the t|onal,_such an upper bound must also be reflected in the cos-
perspective of3-+7)-dimensions obtained by compactifying- Mological constant value.
uncompactifying prescription such that— 3 and6 — 7, Technically, this work is structured as follows. In Sec. 2,
one can associate with tBeand7 dimensions of th€3 +7)-  we make a simple introduction of tachyon theory. In Sec. 3,
world with a $® and S7, respectively, which are two of the we discuss a possible formalism for the de Sitter and anti-de
parallelizable spheres; the other it98. As it is known these  Sitter space-times. In Sec. 4, we develop the most general
spheres are related to both Hopf maps and division algebrgermalism of higher dimensional linearized gravity with cos-
(see Ref. 9 and references therein). mological constant. In Sec. 5, we establish a novel approach
In this work, we develop a formalism that allows us to for considering the constraints that determine the de Sitter
address thé4 + 6)-dimensional worldria linearized gravity.  and anti-de Sitter space. In Sec. 6, we associate the concept
In this case, one starts assuming the Einstein field equatiorsf tachyons with higher dimensional linearized gravity. In
with cosmological constant in (4 + 6)-dimensions and de- Sec. 7, we develop linearized gravity with cosmological con-
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stantin(4+ 6)-dimensions. We add an Appedix A in attempt In tensorial notation, one may write (7) as
to further clarify the negative mass squared term-tachyon as-
sociation. Finally, in Sec. 8, we make some final remarks. ds? = —c?d¢* = ) dytdy”, (8)

wherey! = c), y? = w, y® = p andy* = (. Moreover,n,(;)
denotes the flat Minkowski metric with associated signature
(+1,-1,—1,—1). One says that this signature represents a
world of (3 + 1)-dimensions.

If one now defines the linear momentum

2. Special relativity and the signature of the
space-time

Let us start considering the well known time dilatation for-
mula

_
at— ® Pr=ms e ©

_ v
c2

Here, 7 is the proper timep? = (dz/dt)? + (dy/dt)? +
(dz/dt)? is the velocity of the object anddenotes the speed pupan;) + m(()—)2c2 = 0. (10)
of light. Of course, the expression (1) makes sense over the
real numbers only if one assumes< c. It is straightforward  Since,u > c one observes that in this case the constraint (10)
to see that (1) leads to the line element corresponds to a tachyon system with S
) 5 o 5 o ) ) ) Now, for the case of ordinary matter, if one wants to

ds” = —cdr” = —cdi” + da” +dy” + dz". (2) guantize, one starts promotipg as an operator identifying

pt = —i0*. Thus, at the quantum level (5) becomes

with mé_) # ( a constant, one sees that (9) implies

In tensorial notation one may write (2) as

v +)2
ds? = —c2dr? = n{) dat dz”, (3) (-9"9 TIA(;) + m(() ) )p =0. (11)

nv

where the indices., v take values in the sefl,2, 3,4}, It is important to mention that here we are using a coordinate

o' = cf, 2% = 2, 25 = y andz? — z. Moreover 77/(:5) representation fap in the sense that(z*) =< z#|¢ >.

Tall ’ 2 _ ) v
denotes the flat Minkowski metric with associated signature BY defining the d’Alembert operatan*)” = 7, 9"0
(—1,+1,+1,+1). Usually, one says that such a signature®ne notes that last equation reads
represents a world dfi + 3)-dimensions. 2 ()2
If one now defines the linear momentum @7 —mg")p =0. (12)

dzt 4) Analogously, in the constraint (10) one promotes the momen-
dr’ tumP# as an operatdP* = —i9* and usingﬁ;) = —nf;),
the expression (10) yields

P =mg"

with mff) # (0 a constant, one sees that (3) implies
02 £ m{%)p = 0. 13

pupunl(tt) + m6+)202 —0. (5) ( +mg ) (13)

The last two expressions are Klein-Gordon type equations for

ordinary matter and tachyonic systems, respectively. In fact,

these two equations will play an important role in the analy-

sis in Sec. 6, concerning linearized gravity with positive and

negative cosmological constant.

Of course,méH plays the role of the rest mass of the object.
This is because setting = 0, with i € {2, 3,4}, in the rest
frame and defining? = ¢p!, the constraint (5) leads to the
famous formulatl = £mc?.

Let us follow similar steps, but instead of starting with
the expression (1), one now assumes the formula

d§
\ /10172 _
whereu? = (dw/d¢)? + (dp/d€)? + (d¢/d€)?. Note that in o
this case on(e hés t)he C(()nd/iti031> c.( He/re,)in order to em- z'w! m(f) + (a2 =13, (14)
phasize the differences between (1) and (6), we are using a ) ‘ . _ _ _
different notation. Indeed, the notation used in (1) and (6) igvheren;;” = diag(—1,1, ..., 1) is the Minkowski metric and

introduced in order to establish an eventual connection wittihei index goes front tod. andr{ is a positive constant. The
(4 + 6)-dimensions. From (6) one obtains line element is given by

3. Clarifying de Sitter and anti-de Sitter

d\ = (6) space-time

Let us start with the constraint

ds? = —c2de? = +c2d\? — dw? — dp? — d¢?. (7) ds® = dadaPnap = da'dain(P + (dz)?. (15)

iJ
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It is not difficult to see that the corresponding Christoffel ~ Here, we shall replace the Minkowski metrig, by a

symbols and the Riemann tensor are given by general background metric denoted ¢f§l). At the end we
C guat shall associatgffl) with the de Sitter or anti-de Sitter space.
= 2 (16)  So, the analogue of (21) becomes
0
and Juv = g(o)uy + huy- (22)
1 . .
Riji = —5 (9ikgs1 — gugjk); (17)  Theinverse of,, is
0
respectively. g =g — . (23)

Here, the metrig;, is given b . _ . ) .
@i 159 y Here, (23) is the inverse metric of (22) at first orderhiy), .

g =)+ Lﬁ) (18)  Also, the metrng(O_)W is used to raise and lower indices.
) Therefore, neglecting the terms of second ordek,jp one

(r3 — arzsns
It is worth mentioning that one can even consider a flat metfiNdS that the Christoffel symbols can be written as

ric n;; = diag(—1,—1,....,1,1), with ¢-times ands-space
coordinates and analogue developments leads to the formulas
(14)-(18).

1, =T} 454, (24)

where F(O)ﬁy are the Christoffel symbols associated with

(0) A e i
Of course, the line element associated with the metrid # andEW is given by

o, = 3 9O (Dyhay + Dyhye — Dahy).  (25)
ds2 = | 0P + Lilj datda? (19) . . ,
S=| My (T2 — et ) Lars, Here, the symbolD,, denotes covariant derivative with re-
fhrs spect the metrig'”),..
mann tensor becomes
ds? = — (1 - ’2> dt* + _ar +72dQ92. (20)
B ’I"S (1 - %) ’ Ruyaﬁ = R(O)#uaﬁ + DO‘ZMVB - Dﬁzuua’ (26)
Here, one is assuming that'z"n() = —a'a! + 2, where ~ Which can be rewritten as
r? = %04, With a,b running from?2 to d. Moreover, 0)
dQ?-2 is a volume element i@ — 2 dimensions. The ex- Ruvap = Ruyas + DaXvpp
pression (20) is, of course, very usgful when one considers —DgXyau + R(O)omﬁhow 27)
black-holes or cosmological models in the de Sitter space (or
anti-de Sitter space). where
In the anti-de Sitter case, instead of starting with the )
formula (14) one considers the constraintajécjngf) — Yuva = = (Duhay + Dyhaw — Dahyw). (28)
(z¥+1)2 = —rZ. This constraint will play an important role 2
in Sec. 5. Then, using the definition (28), the Riemann tensor becomes
. . . . . 1
4. Linearized gravity with cosmological con- Ruvap = 5(DaDphuy — PsDaltyy + DaDyhsy

stant in any dimension — DyDyhap + DsDyhve — DaDyphs)

Although in the literature there are similar computations [16], 4+ RO 4 Oy (29)
the discussion of this section seems to be new, in sense that it pvof vafiiop:
is extended to any background metric in higher dimensionsygte that in this case the covariant derivati@s do not
Usually, one starts linearized gravity by writing the metric of .5\ mute as is the case of the ordinate partial derivatiyes
the space-time,., = g,., (") as in a Minkowski space-time background.

Guw = N + My, 1) o One can show that the terth, Dgh,,,, — DgDy by, leads
wheren,,, = diag(—1,—1,....1,1) is the Minkowski metric, O
with ¢-times ands-space coordinates, atg,, is a small per- DoaDphyy — DsDahyw = —ha, BT, 05
turbation. Therefore, the general idea is to keep only with the

(0)A
first order terms irh,,,, in the Einstein field equations. —haw R g (30)
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Then using (29), (30) and properties of the Riemann tensof. Constraints in de Sitter and anti-de Sitter

one can rewrite?,, g as space
R _ R(O) + l(h R(O)A —h R(O)/\ . .
wap = Mg+ 5 (M wBv AB pow When one considers the de Sitter space, one assumes the con-
02 straint (14). However, one may notice that actually there are
—haxR, 05+ DuvDahys — DyDghya eight possible constraints corresponding to the two metrics
+

) andy.,,’ mentioned in section 3. In fact, for the metric
+ DpDyhe — DaDyhug). 31 ey AN _ oo on ’
pom whus) (1) 1\t one has following possibilities:
Multiplying (31) by ¢#, as given in (23), leads to the Ricci

tensor et nh) + (@42 =1, (38)
1
R, = R(O)W + §(h,\yR(0)kM + hy RO*) m“x”n&t) — (21?2 =2, (39)
1 wovo(4) d+1y2 _ 2
— B R 5, + 5(DuD" hay + DD ey e+ @)= = (40)
—D,Dyh — D Dohy). 32) and

Thus, the scalar curvatute = g R, becomes atan(h) — (@) = —rf. (41)

R =R +D*DPh,5 — D*Doh — h*PR® .. (33 _
* 7 ' agr (33) While for the metricy|, one finds
Now one can use (32) and (33) in the Einstein gravitational

field equations with a cosmological constant atz'n,) + (z4h)? =1, (42)
L A (34) ratnly) — (@) =13, (43)
R, —-guwR+Ag, =0.
A : atanf,) + () = —rf (44)
When one set@,(ﬁ,) as a de Sitter (or anti-de Sitter) back-
ground one obtains and
DNDVh + Da,DahuV - D;J,Dahow - DuDahau x“x”nf;) — ($d+1)2 = —’f‘g. (45)
+ ¢ (D¥DPhys — D*Dyh) — 2h - 0o (+) =)
9" v of o P2 Now, since one has the relation,,” = —n,.,’, one sees
i that two sets of constraints (38)-(41) and (42)-(45) are equiv-
_ ﬁ (O)W —0. (35) alents. Hence, we shall focus only on the first set of con-
2rg straints (38)-(41). Let us now rewrite (39) and (40) as
As it is commonly done, in linearized gravity in four dimen-
sions, one shall defin,, = h,, — (1/2)g'",.. Therefore, e nlh) = (@) + ] (46)
substituting this expression féy,,, in (35), fixing the Lorentz
gaugeD” h,,, = 0 and assuming the trade= 0, one finally and
gets
27 M atan) = —[(")? + ). (47)
Ohy — ——————hyu =0, 36
I (d _ 2>(d _ 1) H ( )

. ) } . o Observe that one may assume thd’kz”n,f;) < 0, with
whered is the dimension of the space-time. Itis importantto, (+) _ (~1,1,..,1). So, since right hand side of (46) is
observe that in (036)32 = nju) 910" is now generalized to strictly positive, by consistency this constraint must be omit-
the form3? = ¢, DrD". ted. Similarly since the right hand side of (47) is strictly nega-
Atthis point, considering thel+6)-signature (which can  tjve then this constraint must also be omitted. Thus, one only
be splitted into a de Sitter and an anti-de Sitter space accorgeeds to consider the two constraints, (38) and (41) which
ingto(4+6) = (1+4)+(3+2)) one has to set = 8since  corresponds to polynomial equations over the reals whose set
there are two constraints, one given by the de Sitter world angd solutions can be associated with classically algebraic va-
another from the anti-de Sitter world. Consequently, the Edyieties. When this constraints are used at the level of line
(36) becomes element, one discovers that they can be associated with man-

.- 2 . - ifolds for the de Sitter and anti-de Sitter space-time. It turns
D hywy = ﬁAhW =0. (37) out that the constraints (38) and (41) can be rewritten as
One recognizes this expression as the equation of a gravita- A B (1) 2
tional wave ind = 8. TN, = To (48)
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and and
a:AxBn(_B) =P, (49) g;(;) = 17&—) + %’ (61)
pE — x“mﬁnaﬁ
where
) respectively.
Nap = (=1,1,...,1,1) (50) Using (60) an((j ()61) one sees that according to (17) the
and Riemann tensor&, . ; andR, . ; become
(<) _ (1 -1 -1 _ H L@ )+
nhy = (1,=1,-1,...,—1,1). (51) Rives = 33 (gw gt — gt glt ) (62)
Here, one is assuming that (49) allows for a different radius
po- This is useful for emphasizing theg refers to the de Sit-
ter world andp to the anti-de Sitter world. Note that using ) 1/ (=) ()
p? the expression (49) can also be rewritten as R,,0p = 2 (g,m 995" — 935 v ) . (63)
gty + (@) = g, (52)  The corresponding curvature scalars associated with (62) and
63) are
Now, using (50) and (51) one can write the line elements in( )
the form dld =1
R = 4 . ) (64)
ds?,) = datdxPn() = dadavnfl) + (da®t)? (53) 0
and
and
_ d(d—1)
_ ey (— (=) — _
ds%f) = dxAda?anM_D? = daMdx niw) + (da:d+1)2_ (54) R p% . (65)

From (38) one obtains Now, let us consider the Einstein gravitational field equa-

tion (see Eq. (34))

R (- :L'axﬂn((;g))%. (55)
1
So, differentiating (55) one obtains R} — ggfﬁﬁ)R(H +AMgH) =0, (66)
d+1 _ Ty
dz™" =¥ da*. (56)  for 5. Multiplying this expression by**(+) one sees that

2 _ o (+)
76— 22 g (66) leads to
Similarly, from (52) one gets 1

. R — —dR™) + AHg =0. (67)

e/ S—; /o) (57) 2
p2 _ maxﬁn(_) )
0 b Solving (67) forA(+) leads to

Hence, with the help of (56) and (57), one can rewrite (53)
and (54) as AP — (d=2)(d-1) (68)
21"(2) ’
Tuxy v
dstyy = (77,(;) + M(Jr)> dz'dx (58)  where the Eq. (64) was used.

ré¢ — xexhn S o .
0 af In analogous way, b%/ )conS|der|ng the Einstein gravita-

and tional field equations fog,,.
IR N (-
Po — xaxﬁnaﬁ
) one obtains

respectively.

Thus, one learns that the metrics associated with (58) and =) (d=2)(d-1)

AT = (70)
(59) are 2p3
T, Ly . . .
gl =nh + ﬁ (60)  Note that, since\(~) refers to the anti-de Sitter space, (70)

g = 200N agrees with the fact that(—) < 0.
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6. The signature of the space-time in lin- Ford = 4, corresponding to the observable universe, and
earized gravity for ordinary matter one has

In the previous section, the Einstein gravitational field equa- 2 _ 2,0

tions were considered f@t,;” andg,,’. Such equations lead 3

us to find a relations foA(*) and A(~). Now, if one substi-

ttes the Egs. (68) and (70) into (36) one obtains This mass expression must be associated with a systems trav-

eling lower than the light velocityc > v). In the case of

2 _ ANH) D — o 1) parUchs travehﬂg faster than Ilght velocify > ¢), corre-
(d—2)(d—1)) ™ sponding to tachyons, one obtains
and m(7)2 = —gAH. (82)
AA () _
2 + > i) =o0. 72
( (d—2)(d-1)) ™ (72) Note that since\(*) > 0 andA(™) < 0, both rest masses

Here, ()2 — g(ift(y())D“D”. m(H)2 andm(—)? are positives.
Let us now to consider, in the context of linearized grav-
ity, the vielbein formalism fog,(f;) andg,(;,). Oneintroduces 7. Linearized gravity in (4+6)-dimensions
the vielbein fieldey; and writes
@ b (4) The key idea in this section is to split tii¢ + 6)-dimension
G’ = €u€llap (73)  as(4+6) = (144) + (3+2). This means that thet + 6)-
dimensional space is splitted in two parts the de Sitter world
of (1 + 4)-dimensions and anti de Sitter world (f + 2)-
0 — ba 1 po (74) dimensions. In this direction, let us write the line elements in
peoooe R (3) and (7) in the form

where

If one replaced (74) into (73), the met[cjﬁif) becomes ) 5 o 5 o
" dS(yy = —c7dty gy = —cdify,
(£) _ (pa ay (b b
Guar: = Ot ) By P (75) bda?, +dy? +deE +du?,,  (83)
Thus, one obtains
and
g = bubinly) + b i L »
R A O #0) = e ey =+
— dx?f) — dy({) — dz({) + dT({), (84)
Since one is assuming thaf, < 1 thenhZh’;nfj) ~ 0 and
therefore (76) is reduced to respectively. One can drop the parenthesis notation in the co-
ordinates:;é‘ﬂ andxé‘_) if one makes the convention that the
indexy in xéﬁr) runs froml to 4, while the indexu in a:"_) is
changed to an indexrunning from5 to 8. Thus, in tensorial
notation one may write (83) and (84) as

a j: a a :t
g% = by +bahiny) + bbby (D)
If one establishes the identificationS™)\? = b;jbl;nfjf) and

hi) = nevbn's) + behbn'; one obtains

dSt,y =i datda” + dw? (85)
g/(;) _ g(i;)fl?) + hﬁ[y)? (78) (+) B (+)
whi((:h)gs)the ex(pr)ession (22) but with the signatutesr — and
. +)(0 +) . e
in g* /.’ andh,;’ identified. 9 () gaqb 9
Now, we shall compare the Egs. (71) and (72) with (12) dS(y = ngy da"da” +dr(_). (86)
and (13), respectively. Sincg*) > 0andA(~) < 0 one can
introduces the two mass terms Here,nﬁt) andnfl;) denotes flat Minkowski metrics with the
signature§—1, +1,+1,+1) and(+1, —1,—1,—1), respec-
AN . . o
mP2— = (79) tively. It seems evident that one can reach a unified frame-
(d—2)(d-1) work by adding (85) and (86) in the form
and
dS* = dS7,) +dS]_y = ni;}) datdx”
(=)2 = L (80)
ST U= A=) +dudy ol detdat + e (87)
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Let us assume that in a world 6f+ 6)-signature one has Thus, one discovers that (95) becomes

the two constraints

Wpra =

— (88)
A

and

0y datda® + 72 = TB : (89)

(=)

whereA ) > 0andA_) < 0 again play the role of two cos-
mological constants. Following similar procedure as in Sec.
5, considering the constraints (88) and (89) one can general-

ize the the line element (87) in the form

2 —

7(-)C + 7 (+ -5 (=)0
jASY) 0 Al )chLh( )ACD( )?7,(=) 5

2 5 (o)C
- ﬁAh( Vb T g =0. (99)
Multiplying the last equation byi(VAERL TP yields
_ . 2 (VB
h(+)AE|:|(+) h( )AD _ ﬁA(;g — 7h( ) b
x O RIE, (100)

Thus, one observes that while the left hand side of (100) de-

dS? = gD dgrda” + g0 dat da. (90)  pends only ofe* and the right hand side depends only6f
one may introduce a constafitsuch that
where
x,T, T (HAER(+)2 7 (+H) _3 E _ A<E
9(+L(t9) — m(;) + 3#—”(+) (91) h o e, 21A6D = Adp (101)
Ry T8y
and
and
_ _ T _7(5)B (=) (5)E  _ ASE
g ()lg)o) _ C(Lb) +— ib . (92) h PO h 5 =NMNop. (102)
Ko T
One may rewrite (101) and (102) in the for
Using (91) and (92) one can define a background matrix
, with indexesA and B running from1 to 8 in the form - 2 2\ -
TaB J m{SRl g <21A + A) W =0 (103)
(+)(0) 0
=19 m . (93)
AP 0 g(’l)léo) and
'E[zus, one can write the linearized metric associated with (93) D(_)2ﬁ(7)AB i Aﬁ(f)AB —0 (104)
YAB = 75‘0}9 +hag. (94) A_ccording to the formalism p.resented jn Sec. 5, one
can identify the tachyonic mass in the anti-de Sitter-world
Hence, following a analogous procedure as the presented oy m(~)?2 = —A, while the mass in the de Sitter-world by

section 4, one obtains the equationfigrg ind = 4+4 = 8-
dimensions,

Phap — %ABAB =0. (95)
Here, one has
0% = 7, DADB. (96)
One can splifd? in the form
02 =O®* 407, (97)

whereOH” = ¢ prpr and0(-)* = ¢ L) paph,

One shall use now the separation of variables method.

this purpose let us assume that the perturbatigny =
hap(z*, z*) can be splitted in the form

hap = h (2R (). (98)

m(t)2 = (2/21)A 4+ A. Moreover, one can also introduce an
effective M2 = (2/21)A in the (4 + 4)-world. Note that the
effective mass\/? can be written agd/? = m(H)2 4 m ()2,
Thus, (103) and (104) can be rewritten as

(105)

and

(O =), —o. (106)
Here, we fixed the gauges™, = 0 andh™), = 0.
Thus, we have shown that from linearized gravitydnt 4)-

Fatimensions one can derive linearized gravitieg in+ 3)-
dimensions and i3 + 1)-dimensions. Moreover, the modes

B(”W can be associated with a massive graviton in the de

Sitter space, while the modéé’zlb can be associated with

the tachyonic graviton in the anti-de Sitter space.
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8. Final remarks to explore a link between this work and the electromagnetic

) . ) ) counterpart of the gravitational waves [21].
In this work we have developed a higher dimensional for-

malism for linearized gravity in the de Sitter or anti-de Sit-
ter space-background which are characterized by the coéicknowledgments

i ) =) .
mologlcal constgnts/\ Sz 0 andA < 0, '€SPEC-  \we would like to thank to E. A. Lén for helpful comments.
tively. Our starting point are the higher dimensional Ein-

.We would also like to thank the referee for valuable com-

stein gravitational field equations and the perturbed metn(‘m : :
ents. This work was patrtially supported by PROFAPI 2013.
g,(ﬂf) = g(i,l(i)) + hfff,), whereg(i,)flf)) is a background metric P y supp y

associated with the cosmological constants’), A(—) and )

the Minkowski flat metrie;'™),,,. After straightforw;bg})com- Appendix

putations and after imposing a gauge condition we .

obtain the two Eqgs. (71) and (72). We proved that these twéA‘_' l\_legatlve mass squared term - tachyon asso-

equations admit an interpretation of massive graviton witrclation

mass given by (79) and (80). According to the formalism

discussed in Sec. 2, the massive graviton with mass?

can be associated with ordinary graviton which “lives” in the

de Sitter space, while the massive graviton with mas$s)?

is a tachyonic graviton which “lives” in the anti-de Sitter

space. We should mention that these results agree up to sign (02 + m2)p = 0. (A.1)

from those described by Novello and Neves [17]. The origin

of this difference in the signs is that although they consideff one considers a plain wave solution for (A.1), the solution

a version of linearized gravity their approach refers only tocan be written as

four dimensions and rely in a field strengkh, .3 which is

not used in our case. Here, we get a four dimensional gravi-

ton massm? = (2/3)A for de Sitter space and using the whereA is a constant. Therefore, using (A.2) one can verify

Planck 2015 data [18] we can set, ~ 3.0 x 107 kg,  that (A.1) is reduced to

while the current upper bound obtained by the detection of ) )

gravitational waves isy, < 1.3 x 10758 kg [15]. (p” +mg)e =0, (A-3)
Furthermore, in the previous section, we discuss the case: .1 i nli

of the (4 + 6) signature where we identify.(+)2 andm ()2 “Vitich implies that

as a contribution to an effective magg? in the unified P> +mé =0. (A.4)

framework of (4 + 4)-dimensions. It would be interesting ) )

for a future work to have a better understanding of the meansI"C€P" = mou* one discovers that (A.4) leads to a relation

ing of the mass)M2. Also, it may be interesting to extent ©f the form

this work to a higher dimensional cosmological model with a df = dr (A5)

massive graviton. T—v2/c2

On the other hand, it is worth mentioning that our pro-Wh. h imolies th d theref h
posed formalism ij4 4 4)-dimensions may be related to the ich implies thaty < ¢ and therefore the system moves

so called double field theory [19]. This is a theory formulatedWith c;/elfoc’;ai\tifs less thandthe I;‘ght velocity. Similarly if in-
with 24 = (2#, %) coordinates corresponding to the double St€ad 0 (A.1) one considers the expression

This appendix is dedicated to clarify why the expression (80)

refers to a tachyon system. In some sense the below presen-

tation is the reverse argument as the one presented in Sec. 2.
Consider the Klein-Gordon equation

Q= Aep“:"'“, (A.2)

spaceR* x T4, withA=1,2,....8andD =8 =4+4. In (O — m2)p = 0. (A.6)
this case the constant metric is given by . . . . _
ds? =y pdatda®. (107) A plain wave solution would imply the classical expression
2 2
Moreover, the relevant group in this cas&i$d, 4) which is p~—my =0, (A7)

associated with the manifolt 8. It turns out that\/® can be
compactified in such a way that becomes the proddct 74
of flat space and a torus. In turn the gras, 8) is broken

which again considering the relatipt = mgyu* one finds
that instead of the relation (A.5) one has

into a group containing(4,4) x O(4,4; Z). A detail for- dt — dr _ (A.8)
mulation of this possible relation will be present elsewhere. VoZ/e? =1

ll_:mal(;y, |t||s |nde\_/|tark]J_Ie 0 Tent'o?) that perhﬁps th? ﬁr- This implies thatv > ¢ and therefore describes a tachyon
.ma ISm deve op(? hm L_ls Wzr mé%y efevent.ua_y usle u orsystem. If instead of the fielgh one considers thg,, and
improvements of the direct detection of gravitational waves, /e a plain wave solution of the fofm, = A, e?”

This is because recent observations [20] established that tl?)%e may be able to obtain the corresponding expression (A.5)
cosmological value has to be small and positive and that thgnd (A.8) for linearized gravity.
observable universe resembles to a de Sitter universe rather
than an anti de Sitter universe. Also, it will be interesting
Rev. Mex. f5. 65 (5) 536-544
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