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We make a number of remarks on linearized gravity with cosmological constant in any dimension, which, we argue, can be useful in a
quantum gravity framework. For this purpose we assume that the background space-time metric corresponds to the de Sitter or anti-de Sitter
space. Moreover,via the graviton mass and the cosmological constant correspondence, we make some interesting observations, putting
special attention on the possible scenario of a graviton-tachyon connection. We compare our proposed formalism with the Novello and
Neves approach.
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1. Introduction

It is known that there are a number of works relating tachyons
with M -theory [1] (see also Ref. 2 and references therein),
including the brane and anti-brane systems [3], closed-string
tachyon condensation [4], tachyonic instability and tachyon
condensation in theE(8) heterotic string [5], among many
others. Part of the motivation of these developments emerges
because it was discovered that the ground state of the bosonic
string is tachyonic [6] and that the spectrum inAdS/CFT
[7] can contain a tachyonic structure.

On the other hand, it is also known that the(5 + 5)-
signature and the(1 + 9)-signature are common to both type
IIA strings and type IIB strings. In fact, versions ofM -theory
lead to type IIA string theories in space-time of signatures
(0+10), (1+9), (2+8), (4+6) and(5+5), and to type IIB
string theories of signatures(1+9), (3+7) and(5+5) [8]. It
is worth mentioning that some of these theories are linked by
duality transformations. So, one wonders whether tachyons
may also be related to the various signatures. In particular,
here we are interested to see the possible relation of tachyons
with a space-time of(4 + 6)-dimensions. Part of the motiva-
tion in the(4 + 6)-signature arises from the observation that
(4 + 6) = (1 + 4) + (3 + 2). This means that the world of
(4 + 6)-dimensions can be splitted into a de Sitter world of
(1 + 4)-dimensions and an anti-de Sitter world of(3 + 2)-
dimensions. Moreover, looking the(4 + 6)-world from the
perspective of(3+7)-dimensions obtained by compactifying-
uncompactifying prescription such that4 → 3 and6 → 7,
one can associate with the3 and7 dimensions of the(3+7)-
world with a S3 andS7, respectively, which are two of the
parallelizable spheres; the other it isS1. As it is known these
spheres are related to both Hopf maps and division algebras
(see Ref. 9 and references therein).

In this work, we develop a formalism that allows us to
address the(4 + 6)-dimensional worldvia linearized gravity.
In this case, one starts assuming the Einstein field equations
with cosmological constantΛ in (4 + 6)-dimensions and de-

velops the formalism considering a linearized metric in such
equations. We note that the result is deeply related to the cos-
mological constantΛ ≶ 0 sign. In fact, one should remember
that in (1 + 4)-dimensions,Λ is positive, while in(3 + 2)-
dimensions,Λ is negative. At the level of linearized gravity,
one searches for the possibility of associating these two dif-
ferent signs ofΛ with tachyons. This leads us to propose
a unified tachyonic framework in(4 + 6)-dimensions which
includes these two separate cases ofΛ. Moreover, we argue
that our formalism may admit a possible connection with the
increasing interesting proposal of duality in linearized gravity
(see Refs. [10-12] and references therein).

In order to achieve our goal, we first introduce, in a simple
context, the tachyon theory. Secondly, in a novel form we de-
velop the de Sitter and anti-de Sitter space-times formalism,
clarifying the meaning of the main constraints. Moreover,
much work allows us to describe a new formalism for higher
dimensional linearized gravity. Our approach is focused on
the space-time signature in any dimension and in particular
in (4 + 6)-dimensions.

A further motivation of our approach may emerge from
the recent direct detections of gravitational waves [13-15].
According to this detection the upper bound of the graviton
mass ismg ≤ 1.3 × 10−58 kg [15]. Since in our compu-
tations the mass and the cosmological constant are propor-
tional, such an upper bound must also be reflected in the cos-
mological constant value.

Technically, this work is structured as follows. In Sec. 2,
we make a simple introduction of tachyon theory. In Sec. 3,
we discuss a possible formalism for the de Sitter and anti-de
Sitter space-times. In Sec. 4, we develop the most general
formalism of higher dimensional linearized gravity with cos-
mological constant. In Sec. 5, we establish a novel approach
for considering the constraints that determine the de Sitter
and anti-de Sitter space. In Sec. 6, we associate the concept
of tachyons with higher dimensional linearized gravity. In
Sec. 7, we develop linearized gravity with cosmological con-
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stant in(4+6)-dimensions. We add an Appedix A in attempt
to further clarify the negative mass squared term-tachyon as-
sociation. Finally, in Sec. 8, we make some final remarks.

2. Special relativity and the signature of the
space-time

Let us start considering the well known time dilatation for-
mula

dt =
dτ√

1− v2

c2

. (1)

Here, τ is the proper time,v2 ≡ (dx/dt)2 + (dy/dt)2 +
(dz/dt)2 is the velocity of the object andc denotes the speed
of light. Of course, the expression (1) makes sense over the
real numbers only if one assumesv < c. It is straightforward
to see that (1) leads to the line element

ds2 = −c2dτ2 = −c2dt2 + dx2 + dy2 + dz2. (2)

In tensorial notation one may write (2) as

ds2 = −c2dτ2 = η(+)
µν dxµdxν , (3)

where the indicesµ, ν take values in the set{1, 2, 3, 4},
x1 = ct, x2 = x, x3 = y andx4 = z. Moreover,η(+)

µν

denotes the flat Minkowski metric with associated signature
(−1, +1, +1,+1). Usually, one says that such a signature
represents a world of(1 + 3)-dimensions.

If one now defines the linear momentum

pµ = m
(+)
0

dxµ

dτ
, (4)

with m
(+)
0 6= 0 a constant, one sees that (3) implies

pµpνη(+)
µν + m

(+)2
0 c2 = 0. (5)

Of course,m(+)
0 plays the role of the rest mass of the object.

This is because settingpi = 0, with i ∈ {2, 3, 4}, in the rest
frame and definingE = cp1, the constraint (5) leads to the
famous formulaE = ±m0c

2.
Let us follow similar steps, but instead of starting with

the expression (1), one now assumes the formula

dλ =
dξ√

u2

c2 − 1
, (6)

whereu2 = (dw/dξ)2 + (dρ/dξ)2 + (dζ/dξ)2. Note that in
this case one has the conditionu > c. Here, in order to em-
phasize the differences between (1) and (6), we are using a
different notation. Indeed, the notation used in (1) and (6) is
introduced in order to establish an eventual connection with
(4 + 6)-dimensions. From (6) one obtains

ds2 = −c2dξ2 = +c2dλ2 − dw2 − dρ2 − dζ2. (7)

In tensorial notation, one may write (7) as

ds2 = −c2dξ2 = η(−)
µν dyµdyν , (8)

wherey1 = cλ, y2 = w, y3 = ρ andy4 = ζ. Moreover,η(−)
µν

denotes the flat Minkowski metric with associated signature
(+1,−1,−1,−1). One says that this signature represents a
world of (3 + 1)-dimensions.

If one now defines the linear momentum

Pµ = m
(−)
0

dyµ

dξ
, (9)

with m
(−)
0 6= 0 a constant, one sees that (9) implies

PµPνη(−)
µν + m

(−)2
0 c2 = 0. (10)

Since,u > c one observes that in this case the constraint (10)
corresponds to a tachyon system with massm

(−)
0 .

Now, for the case of ordinary matter, if one wants to
quantize, one starts promotingpµ as an operator identifying
p̂µ = −i∂µ. Thus, at the quantum level (5) becomes

(−∂µ∂νη(+)
µν + m

(+)2
0 )ϕ = 0. (11)

It is important to mention that here we are using a coordinate
representation forϕ in the sense thatϕ(xµ) =< xµ|ϕ >.

By defining the d’Alembert operator¤(+)2 = η
(+)
µν ∂µ∂ν

one notes that last equation reads

(¤(+)2 −m
(+)2
0 )ϕ = 0. (12)

Analogously, in the constraint (10) one promotes the momen-
tumPµ as an operator̂Pµ = −i∂µ and usingη(+)

µν = −η
(−)
µν ,

the expression (10) yields

(¤(+)2 + m
(−)2
0 )ϕ = 0. (13)

The last two expressions are Klein-Gordon type equations for
ordinary matter and tachyonic systems, respectively. In fact,
these two equations will play an important role in the analy-
sis in Sec. 6, concerning linearized gravity with positive and
negative cosmological constant.

3. Clarifying de Sitter and anti-de Sitter
space-time

Let us start with the constraint

xixjη
(+)
ij + (xd+1)2 = r2

0, (14)

whereη(+)
ij = diag(−1, 1, ..., 1) is the Minkowski metric and

thei index goes from1 tod. andr2
0 is a positive constant. The

line element is given by

ds2 ≡ dxAdxBηAB = dxidxjη
(+)
ij + (dxd+1)2. (15)
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It is not difficult to see that the corresponding Christoffel
symbols and the Riemann tensor are given by

Γi
kl =

gklx
i

r2
0

(16)

and

Rijkl =
1
r2
0

(gikgjl − gilgjk), (17)

respectively.
Here, the metricgij is given by

gij = η
(+)
ij +

xixj

(r2
0 − xrxsη

(+)
rs )

. (18)

It is worth mentioning that one can even consider a flat met-
ric ηij = diag(−1,−1, ...., 1, 1), with t-times ands-space
coordinates and analogue developments leads to the formulas
(14)-(18).

Of course, the line element associated with the metric
(18) is

ds2 ≡

η

(+)
ij +

xixj(
r2
0 − xrxsη

(+)
rs

)

 dxidxj , (19)

which in spherical coordinates becomes

ds2 ≡ −
(

1− r2

r2
0

)
dt2 +

dr2

(1− r2

r2
0
)

+ r2dΩd−2. (20)

Here, one is assuming thatxmxnη
(+)
mn = −x1x1 + r2, where

r2 = xaxbδab, with a, b running from2 to d. Moreover,
dΩd−2 is a volume element ind − 2 dimensions. The ex-
pression (20) is, of course, very useful when one considers
black-holes or cosmological models in the de Sitter space (or
anti-de Sitter space).

In the anti-de Sitter case, instead of starting with the
formula (14) one considers the constraint isxixjη

(+)
ij −

(xd+1)2 = −r2
0. This constraint will play an important role

in Sec. 5.

4. Linearized gravity with cosmological con-
stant in any dimension

Although in the literature there are similar computations [16],
the discussion of this section seems to be new, in sense that it
is extended to any background metric in higher dimensions.
Usually, one starts linearized gravity by writing the metric of
the space-timegµν = gµν(xα) as

gµν = ηµν + hµν , (21)

whereηµν = diag(−1,−1, ....1, 1) is the Minkowski metric,
with t-times ands-space coordinates, andhµν is a small per-
turbation. Therefore, the general idea is to keep only with the
first order terms inhµν , in the Einstein field equations.

Here, we shall replace the Minkowski metricηµν by a
general background metric denoted byg

(0)
µν . At the end we

shall associateg(0)
µν with the de Sitter or anti-de Sitter space.

So, the analogue of (21) becomes

gµν = g(0)
µν + hµν . (22)

The inverse ofgµν is

gµν = g(0)µν − hµν . (23)

Here, (23) is the inverse metric of (22) at first order inhµν .
Also, the metricg(0)

µν is used to raise and lower indices.
Therefore, neglecting the terms of second order inhµν one
finds that the Christoffel symbols can be written as

Γλ
µν = Γ(0)λ

µν + Σλ
µν, (24)

where Γ(0)λ
µν are the Christoffel symbols associated with

g
(0)

µν andΣλ
µν is given by

Σλ
µν ≡

1
2
g(0)λα(Dνhαµ +Dµhνα −Dαhµν). (25)

Here, the symbolDµ denotes covariant derivative with re-
spect the metricg(0)

µν .
Similarly, one obtains that at first order inhµν , the Rie-

mann tensor becomes

Rµ
ναβ = R

(0)µ
ναβ +DαΣµ

νβ −DβΣµ
να, (26)

which can be rewritten as

Rµναβ = R
(0)
µναβ +DαΣνβµ

−DβΣναµ + R
(0)σ

ναβhσµ, (27)

where

Σµνα ≡ 1
2
(Dνhαµ +Dµhαν −Dαhµν). (28)

Then, using the definition (28), the Riemann tensor becomes

Rµναβ =
1
2
(DαDβhµν −DβDαhµν +DαDνhβµ

−DβDνhαµ +DβDµhνα −DαDµhνβ)

+ R
(0)
µναβ + R

(0)σ
ναβ hσµ. (29)

Note that in this case the covariant derivativesDµ do not
commute as is the case of the ordinate partial derivatives∂µ

in a Minkowski space-time background.
One can show that the termDαDβhµν−DβDαhµν leads

to

DαDβhµν −DβDαhµν = −hλµR
(0)λ

ναβ

− hλνR
(0)λ

µαβ . (30)
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Then using (29), (30) and properties of the Riemann tensor,
one can rewriteRµναβ as

Rµναβ = R
(0)
µναβ +

1
2
(hλαR

(0)λ
µβν − hλβR(0)λ

µαν

− hλνR
(0)λ
µαβ +DνDαhµβ −DνDβhµα

+DβDµhνα −DαDµhνβ). (31)

Multiplying (31) by gµν , as given in (23), leads to the Ricci
tensor

Rµν = R(0)
µν +

1
2
(hλνR(0)λ

µ + hλµR(0)λ
ν)

− hαβR
(0)
αµβν +

1
2
(DµDαhαν +DνDαhαµ

−DµDνh−DαDαhµν). (32)

Thus, the scalar curvatureR = gµνRµν becomes

R = R(0) +DαDβhαβ −DαDαh− hαβR
(0)

αβ . (33)

Now one can use (32) and (33) in the Einstein gravitational
field equations with a cosmological constant

Rµν − 1
2
gµνR + Λgµν = 0. (34)

When one setsg(0)
µν as a de Sitter (or anti-de Sitter) back-

ground one obtains

DµDνh +DαDαhµν −DµDαhαν −DνDαhαµ

+ g(0)
µν(DαDβhαβ −DαDαh)− 2

r2
0

hµν

− (d− 3)
2r2

0

hg(0)
µν = 0. (35)

As it is commonly done, in linearized gravity in four dimen-
sions, one shall definēhµν = hµν − (1/2)g(0)

µν . Therefore,
substituting this expression forh̄µν in (35), fixing the Lorentz
gaugeDν h̄µν = 0 and assuming the tracēh = 0, one finally
gets

¤2h̄µν − 4Λ
(d− 2)(d− 1)

h̄µν = 0, (36)

whered is the dimension of the space-time. It is important to
observe that in (36),¤2 = η

(+)
µν ∂µ∂ν is now generalized to

the form¤2 = g
(0)

µνDµDν .
At this point, considering the(4+6)-signature (which can

be splitted into a de Sitter and an anti-de Sitter space accord-
ing to (4+6) = (1+4)+(3+2)) one has to setd = 8 since
there are two constraints, one given by the de Sitter world and
another from the anti-de Sitter world. Consequently, the Eq.
(36) becomes

¤2h̄µν − 2
21

Λh̄µν = 0. (37)

One recognizes this expression as the equation of a gravita-
tional wave ind = 8.

5. Constraints in de Sitter and anti-de Sitter
space

When one considers the de Sitter space, one assumes the con-
straint (14). However, one may notice that actually there are
eight possible constraints corresponding to the two metrics
η
(+)
µν andη

(−)
µν mentioned in section 3. In fact, for the metric

η
(+)
µν one has following possibilities:

xµxνη(+)
µν + (xd+1)2 = r2

0, (38)

xµxνη(+)
µν − (xd+1)2 = r2

0, (39)

xµxνη(+)
µν + (xd+1)2 = −r2

0 (40)

and

xµxνη(+)
µν − (xd+1)2 = −r2

0. (41)

While for the metricη(−)
µν one finds

xµxνη(−)
µν + (xd+1)2 = r2

0, (42)

xµxνη(−)
µν − (xd+1)2 = r2

0, (43)

xµxνη(−)
µν + (xd+1)2 = −r2

0 (44)

and

xµxνη(−)
µν − (xd+1)2 = −r2

0. (45)

Now, since one has the relationη(+)
µν = −η

(−)
µν , one sees

that two sets of constraints (38)-(41) and (42)-(45) are equiv-
alents. Hence, we shall focus only on the first set of con-
straints (38)-(41). Let us now rewrite (39) and (40) as

xµxνη(+)
µν = [(xd+1)2 + r2

0] (46)

and

xµxνη(+)
µν = −[(xd+1)2 + r2

0]. (47)

Observe that one may assume thatxµxνη
(+)
µν ≶ 0, with

η
(+)
µν = (−1, 1, ..., 1). So, since right hand side of (46) is

strictly positive, by consistency this constraint must be omit-
ted. Similarly since the right hand side of (47) is strictly nega-
tive then this constraint must also be omitted. Thus, one only
needs to consider the two constraints, (38) and (41) which
corresponds to polynomial equations over the reals whose set
of solutions can be associated with classically algebraic va-
rieties. When this constraints are used at the level of line
element, one discovers that they can be associated with man-
ifolds for the de Sitter and anti-de Sitter space-time. It turns
out that the constraints (38) and (41) can be rewritten as

xAxBη
(+)
AB = r2

0 (48)
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and

xAxBη
(−)
AB = ρ2

0, (49)

where

η
(+)
AB = (−1, 1, ..., 1, 1) (50)

and

η
(−)
AB = (1,−1,−1, ...,−1, 1). (51)

Here, one is assuming that (49) allows for a different radius
ρ0. This is useful for emphasizing thatr2

0 refers to the de Sit-
ter world andρ2

0 to the anti-de Sitter world. Note that using
ρ2
0 the expression (49) can also be rewritten as

xixjη
(−)
ij + (xd+1)2 = ρ2

0. (52)

Now, using (50) and (51) one can write the line elements in
the form

ds2
(+) = dxAdxBη

(+)
AB = dxµdxνη(+)

µν + (dxd+1)2 (53)

and

ds2
(−) = dxAdxBη

(−)
AB = dxµdxνη(−)

µν + (dxd+1)2. (54)

From (38) one obtains

xd+1 = ±(r2
0 − xαxβη

(+)
αβ )

1
2 . (55)

So, differentiating (55) one obtains

dxd+1 = ∓ xµ

r2
0 − xαxβη

(+)
αβ

dxµ. (56)

Similarly, from (52) one gets

dxd+1 = ∓ xµ

ρ2
0 − xαxβη

(−)
αβ

dxµ. (57)

Hence, with the help of (56) and (57), one can rewrite (53)
and (54) as

ds2
(+) =

(
η(+)

µν +
xµxν

r2
0 − xαxβη

(+)
αβ

)
dxµdxν (58)

and

ds2
(−) =

(
η(−)

µν +
xµxν

ρ2
0 − xαxβη

(−)
αβ

)
dxµdxν , (59)

respectively.
Thus, one learns that the metrics associated with (58) and

(59) are

g(+)
µν = η(+)

µν +
xµxν

r2
0 − xαxβη

(+)
αβ

(60)

and

g(−)
µν = η(−)

µν +
xµxν

ρ2
0 − xαxβη

(−)
αβ

, (61)

respectively.
Using (60) and (61) one sees that according to (17) the

Riemann tensorsR(+)
µναβ andR

(−)
µναβ become

R
(+)
µναβ =

1
r2
0

(
g(+)

µα g
(+)
νβ − g

(+)
µβ g(+)

να

)
(62)

and

R
(−)
µναβ = − 1

ρ2
0

(
g(−)

µα g
(−)
νβ − g

(−)
µβ g(−)

να

)
. (63)

The corresponding curvature scalars associated with (62) and
(63) are

R(+) =
d(d− 1)

r2
0

(64)

and

R(−) = −d(d− 1)
ρ2
0

. (65)

Now, let us consider the Einstein gravitational field equa-
tion (see Eq. (34))

R(+)
µν − 1

2
g(+)

µν R(+) + Λ(+)g(+)
µν = 0, (66)

for g
(+)
µν . Multiplying this expression bygµν(+) one sees that

(66) leads to

R(+) − 1
2
dR(+) + Λ(+)d = 0. (67)

Solving (67) forΛ(+) leads to

Λ(+) =
(d− 2)(d− 1)

2r2
0

, (68)

where the Eq. (64) was used.
In analogous way, by considering the Einstein gravita-

tional field equations forg(−)
µν

R(−)
µν − 1

2
g(−)

µν R(−) + Λ(−)g(−)
µν = 0, (69)

one obtains

Λ(−) = − (d− 2)(d− 1)
2ρ2

0

. (70)

Note that, sinceΛ(−) refers to the anti-de Sitter space, (70)
agrees with the fact thatΛ(−) < 0.
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6. The signature of the space-time in lin-
earized gravity

In the previous section, the Einstein gravitational field equa-
tions were considered forg(+)

µν andg
(−)
µν . Such equations lead

us to find a relations forΛ(+) andΛ(−). Now, if one substi-
tutes the Eqs. (68) and (70) into (36) one obtains

(
(+)¤2 − 4Λ(+)

(d− 2)(d− 1)

)
h̄(+)

µν = 0, (71)

and
(

(−)¤2 +
4Λ(−)

(d− 2)(d− 1)

)
h̄(−)

µν = 0. (72)

Here,(±)¤2 = g
(±)(0)

µν DµDν .
Let us now to consider, in the context of linearized grav-

ity, the vielbein formalism forg(+)
µν andg

(−)
µν . One introduces

the vielbein fieldea
µ and writes

g(±)
µν = ea

µeb
νη

(±)
ab , (73)

where

ea
µ = ba

µ + ha
µ. (74)

If one replaced (74) into (73), the metricg(±)
µν becomes

g(±)
µν = (ba

µ + ha
µ)(bb

ν + hb
ν)η(±)

ab . (75)

Thus, one obtains

g(±)
µν = ba

µbb
νη

(±)
ab + ba

µhb
νη

(±)
ab

+ ha
µbb

νη
(±)
ab + ha

µhb
νη

(±)
ab . (76)

Since one is assuming thatha
µ ¿ 1 thenha

µhb
νη

(±)
ab ∼ 0 and

therefore (76) is reduced to

g(±)
µν = ba

µbb
νη

(±)
ab + ba

µhb
νη

(±)
ab + ha

µbb
νη

(±)
ab . (77)

If one establishes the identificationsg
(±)(0)

µν = ba
µbb

νη
(±)
ab and

h
(±)
µν = ha

µbb
νη

(±)
ab + ba

µhb
νη

(±)
ab one obtains

g(±)
µν = g(±)(0)

µν + h(±)
µν , (78)

which is the expression (22) but with the signatures+ or −
in g

(±)(0)
µν andh

(±)
µν identified.

Now, we shall compare the Eqs. (71) and (72) with (12)
and (13), respectively. SinceΛ(+) > 0 andΛ(−) < 0 one can
introduces the two mass terms

m(+)2 =
4Λ(+)

(d− 2)(d− 1)
(79)

and

m(−)2 = − 4Λ(−)

(d− 2)(d− 1)
. (80)

Ford = 4, corresponding to the observable universe, and
for ordinary matter one has

m(+)2 =
2
3
Λ(+). (81)

This mass expression must be associated with a systems trav-
eling lower than the light velocity(c > v). In the case of
particles traveling faster than light velocity(v > c), corre-
sponding to tachyons, one obtains

m(−)2 = −2
3
Λ(−). (82)

Note that sinceΛ(+) > 0 andΛ(−) < 0, both rest masses
m(+)2 andm(−)2 are positives.

7. Linearized gravity in (4+6)-dimensions

The key idea in this section is to split the(4 + 6)-dimension
as(4 + 6) = (1 + 4) + (3 + 2). This means that the(4 + 6)-
dimensional space is splitted in two parts the de Sitter world
of (1 + 4)-dimensions and anti de Sitter world of(3 + 2)-
dimensions. In this direction, let us write the line elements in
(3) and (7) in the form

dS2
(+) = −c2dt20(+) = −c2dt2(+)

+ dx2
(+) + dy2

(+) + dz2
(+) + dw2

(+) (83)

and

dS2
(−) = −c2dt20(−) = +c2dt2(−)

− dx2
(−) − dy2

(−) − dz2
(−) + dτ2

(−), (84)

respectively. One can drop the parenthesis notation in the co-
ordinatesxµ

(+) andxµ
(−) if one makes the convention that the

indexµ in xµ
(+) runs from1 to 4, while the indexµ in xµ

(−) is
changed to an indexa running from5 to 8. Thus, in tensorial
notation one may write (83) and (84) as

dS2
(+) = η(+)

µν dxµdxν + dw2
(+) (85)

and

dS2
(−) = η

(−)
ab dxadxb + dτ2

(−). (86)

Here,η(+)
µν andη

(−)
ab denotes flat Minkowski metrics with the

signatures(−1,+1, +1, +1) and(+1,−1,−1,−1), respec-
tively. It seems evident that one can reach a unified frame-
work by adding (85) and (86) in the form

dS2 = dS2
(+) + dS2

(−) = η(+)
µν dxµdxν

+ dw2
(+) + η

(−)
ab dxadxb + dτ2

(−). (87)
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Let us assume that in a world of(4+6)-signature one has
the two constraints

η(+)
µν xµxν + w2 =

3
Λ(+)

(88)

and

η
(−)
ab dxadxb + τ2 =

3
Λ(−)

, (89)

whereΛ(+) > 0 andΛ(−) < 0 again play the role of two cos-
mological constants. Following similar procedure as in Sec.
5, considering the constraints (88) and (89) one can general-
ize the the line element (87) in the form

dS2 = g(+)(0)
µν dxµdxν + g

(−)(0)
ab dxadxb. (90)

where

g(+)(0)
µν = η(+)

µν +
xµxν

3
Λ(+)

− xixjη
(+)
ij

(91)

and

g
(−)(0)

ab = η
(−)
ab +

xaxb

3
Λ(−)

− xixjη
(−)
ij

. (92)

Using (91) and (92) one can define a background matrix
γAB , with indexesA andB running from1 to 8 in the form

γ
(0)
AB =

(
g
(+)(0)

µν 0
0 g

(−)(0)
ab

)
. (93)

Thus, one can write the linearized metric associated with (93)
as

γAB = γ
(0)
AB + hAB . (94)

Hence, following a analogous procedure as the presented in
section 4, one obtains the equation forhAB in d = 4+4 = 8-
dimensions,

¤2h̄AB − 2
21

Λh̄AB = 0. (95)

Here, one has

¤2 = γ
(0)
ABDADB . (96)

One can split¤2 in the form

¤2 = ¤(+)2 + ¤(−)2 , (97)

where¤(+)2 = g
(+)(0)

µν DµDν and¤(−)2 = g
(0)(−)

ab DaDb.
One shall use now the separation of variables method. For
this purpose let us assume that the perturbationh̄AB =
h̄AB(xµ, xa) can be splitted in the form

h̄AB = h̄
(+)

AC(xµ)h̄(−)C
B(xa). (98)

Thus, one discovers that (95) becomes

h̄
(−)C

B¤(+)2 h̄
(+)

AC + h̄
(+)

AC¤(−)2 h̄
(−)C

B

− 2
21

Λh̄
(+)

AC h̄
(−)C

B = 0. (99)

Multiplying the last equation bȳh(+)AE h̄
(−)B

D yields

h̄(+)AE¤(+)2 h̄
(+)

AD − 2
21

ΛδE
D = −h̄

(−)B
D

×¤(−)2 h̄
(−)E
B . (100)

Thus, one observes that while the left hand side of (100) de-
pends only ofxµ and the right hand side depends only ofxa

one may introduce a constantΛ̂ such that

h̄(+)AE¤(+)2 h̄
(+)

AD − 2
21

ΛδE
D = Λ̂δE

D (101)

and

−h̄
(−)B

D¤(−)2 h̄
(−)E

B = Λ̂δE
D. (102)

One may rewrite (101) and (102) in the for

¤(+)2 h̄
(+)

AB −
(

2
21

Λ + Λ̂
)

h̄
(+)

AB = 0 (103)

and

¤(−)2 h̄
(−)

AB + Λ̂h̄
(−)

AB = 0. (104)

According to the formalism presented in Sec. 5, one
can identify the tachyonic mass in the anti-de Sitter-world
by m(−)2 = −Λ̂, while the mass in the de Sitter-world by
m(+)2 = (2/21)Λ + Λ̂. Moreover, one can also introduce an
effectiveM2 = (2/21)Λ in the(4 + 4)-world. Note that the
effective massM2 can be written asM2 = m(+)2 + m(−)2.
Thus, (103) and (104) can be rewritten as

(¤(+)2 −m(+)2)h̄(+)
µν = 0 (105)

and

(¤(−)2 −m(−)2)h̄(−)
ab = 0. (106)

Here, we fixed the gauges̄h(+)
ab = 0 and h̄

(−)
µν = 0.

Thus, we have shown that from linearized gravity in(4 + 4)-
dimensions one can derive linearized gravities in(1 + 3)-
dimensions and in(3 + 1)-dimensions. Moreover, the modes
h̄

(+)
µν can be associated with a massive graviton in the de

Sitter space, while the modes̄h(−)
ab can be associated with

the tachyonic graviton in the anti-de Sitter space.
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8. Final remarks

In this work we have developed a higher dimensional for-
malism for linearized gravity in the de Sitter or anti-de Sit-
ter space-background which are characterized by the cos-
mological constantsΛ(+) > 0 and Λ(−) < 0, respec-
tively. Our starting point are the higher dimensional Ein-
stein gravitational field equations and the perturbed metric
g
(±)
µν = g

(±)(0)
µν + h

(±)
µν , whereg(±)(0)

µν is a background metric
associated with the cosmological constantsΛ(+), Λ(−) and
the Minkowski flat metricη(±)

µν . After straightforward com-
putations and after imposing a gauge conditions forh

(±)
µν we

obtain the two Eqs. (71) and (72). We proved that these two
equations admit an interpretation of massive graviton with
mass given by (79) and (80). According to the formalism
discussed in Sec. 2, the massive graviton with massm(+)2

can be associated with ordinary graviton which “lives” in the
de Sitter space, while the massive graviton with massm(−)2

is a tachyonic graviton which “lives” in the anti-de Sitter
space. We should mention that these results agree up to sign
from those described by Novello and Neves [17]. The origin
of this difference in the signs is that although they consider
a version of linearized gravity their approach refers only to
four dimensions and rely in a field strengthFµναβ which is
not used in our case. Here, we get a four dimensional gravi-
ton massm2

g = (2/3)Λ for de Sitter space and using the
Planck 2015 data [18] we can setmg ∼ 3.0 × 10−69 kg,
while the current upper bound obtained by the detection of
gravitational waves ismg ≤ 1.3× 10−58 kg [15].

Furthermore, in the previous section, we discuss the case
of the(4 + 6) signature where we identifym(+)2 andm(−)2

as a contribution to an effective massM2 in the unified
framework of(4 + 4)-dimensions. It would be interesting
for a future work to have a better understanding of the mean-
ing of the massM2. Also, it may be interesting to extent
this work to a higher dimensional cosmological model with a
massive graviton.

On the other hand, it is worth mentioning that our pro-
posed formalism in(4 + 4)-dimensions may be related to the
so called double field theory [19]. This is a theory formulated
with xA = (xµ, xa) coordinates corresponding to the double
spaceR4 × T 4, with A = 1, 2, ..., 8 andD = 8 = 4 + 4. In
this case the constant metric is given by

ds2 = ηABdxAdxB . (107)

Moreover, the relevant group in this case isO(4, 4) which is
associated with the manifoldM8. It turns out thatM8 can be
compactified in such a way that becomes the productR4× T 4

of flat space and a torus. In turn the groupO(8, 8) is broken
into a group containingO(4, 4) × O(4, 4; Z). A detail for-
mulation of this possible relation will be present elsewhere.

Finally, it is inevitable to mention that perhaps the for-
malism developed in this work may be eventually useful for
improvements of the direct detection of gravitational waves.
This is because recent observations [20] established that the
cosmological value has to be small and positive and that the
observable universe resembles to a de Sitter universe rather
than an anti de Sitter universe. Also, it will be interesting

to explore a link between this work and the electromagnetic
counterpart of the gravitational waves [21].
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Appendix

A. Negative mass squared term - tachyon asso-
ciation

This appendix is dedicated to clarify why the expression (80)
refers to a tachyon system. In some sense the below presen-
tation is the reverse argument as the one presented in Sec. 2.

Consider the Klein-Gordon equation

(¤2 + m2
0)ϕ = 0. (A.1)

If one considers a plain wave solution for (A.1), the solution
can be written as

ϕ = Aepµxµ , (A.2)

whereA is a constant. Therefore, using (A.2) one can verify
that (A.1) is reduced to

(p2 + m2
0)ϕ = 0, (A.3)

which implies that

p2 + m2
0 = 0. (A.4)

Sincepµ = m0u
µ one discovers that (A.4) leads to a relation

of the form

dt =
dτ√

1− v2/c2
. (A.5)

Which implies thatv < c and therefore the system moves
with velocities less than the light velocity. Similarly if in-
stead of (A.1) one considers the expression

(¤2 −m2
0)ϕ = 0. (A.6)

A plain wave solution would imply the classical expression

p2 −m2
0 = 0, (A.7)

which again considering the relationpµ = m0u
µ one finds

that instead of the relation (A.5) one has

dt =
dτ√

v2/c2 − 1
. (A.8)

This implies thatv > c and therefore describes a tachyon
system. If instead of the fieldϕ one considers thehµν and
assume a plain wave solution of the formhµν = Aµνepµxµ ,
one may be able to obtain the corresponding expression (A.5)
and (A.8) for linearized gravity.
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