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Extracting fairly accurate proton range formulas for use in microdosimetry
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Radiation therapy is a promising treatment for cancer patients. The highest dose of radiation must be deliver to tumor and the lowest to the
healthy tissues. Since charged particles such as protons have high stopping-power at track-end, these particles can be used to treat tumors
close to sensitive tissues. Formulas that commonly used for proton stopping-power in a soft tissue-equivalent (T.E.) material and each of its
elements have 48 and 12 constants respectively. Due to the complexity of formulas, high number of constants, high occupancy of computer
memory, and rounding error of computer, existing formulas reduces information processing speed. Because of the importance of proton
therapy and its applications in dosimetry, microdosimetry, detectors, and computer simulations of these systems, it is necessary to use fast
and accurate formulas for the stopping-power and range in the T.E., and its elements. We wrote a computer code inFORTRANprogramming
language, and used the fitting method and obtained simple and fairly accurate formulas for the proton range in these materials. Our range
formulas in T.E. have 6 constants, and this formulas in elements of T.E. include carbon, nitrogen, and oxygen have 4 and hydrogen have 8
constants. So our formulas greatly reduce the above mentioned errors.
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1. Introduction

The main purpose of the radiation therapy is to maximize
radiation doses to cancer cells while minimize damage to
surrounding normal tissue. Protons have different dosimet-
ric characteristics when compared to photons used in con-
ventional radiation therapy. After a short build-up region,
conventional radiation shows an exponentially decreasing en-
ergy deposition with increasing depth in tissue. In contrast,
protons show an increasing energy deposition with penetra-
tion distance leading to a maximum, called the “Bragg peak”,
near the end of proton range. This physical characteristic of
protons causes an advantage of proton treatment over con-
ventional radiation because the region of maximum energy
deposition can be positioned within the target for each beam
direction [1]. So, it is necessary to calculate the range with
high accuracy in the proton therapy.

Also, as protons and charged particles travel through a
medium, they interact with atomic electrons and atomic nu-
clei of the medium through Coulomb forces [2].

Every atom has many electrons with different ioniza-
tion and excitation potentials. As a result of this, the mov-
ing charged particle interacts with a tremendous number of
electrons-millions. Each interaction has its own probability
for occurrence and a certain energy loss. It is impossible to
calculate the energy loss by studying individual collisions.
Instead, an average energy loss is calculated per unit distance
traveled [3], this energy loss per unit path length of the par-
ticle (S = −dE/dx) is known as the stopping power. The
values ofS are usually given in unit of MeV/(g/cm2) [or in
SI unit of J/(kg/m2)] [2].

The total stopping cross-section can be divided into two
parts: 1- The energy transferred by the ion to the target elec-
trons (called electronic stopping or inelastic energy loss). 2-
To the target nuclei (called nuclear stopping or elastic energy

loss). This classification is due to the assumption that the tar-
get nucleus is slowly being recoil, while electrons move very
fast [4].

The study of energy loss is important for measuring and
evaluating the effects of radiation, since radiation effects are
determined based on the interactions and deposited energy in
the target material [3], therefore, extensive studies have been
done on the stopping power [5-8] and the range [9-10] and
both of these [11-14] with various methods such as empirical,
fit, extrapolation, and simulation. There are several formulas
in different situations.

It should be noted that the stopping powers are relevant
to the wide range of applications such as ion beam analysis,
region of energy deposition (such as hadron therapy in bio-
logical target), and radiation damage, and . . . [15].

Also, in order to consider damage to body the substances
of interest in radiobiology and irradiated media have been
considered to have an elemental composition like that of tis-
sue [16]. Tissue-equivalent materials may be fabricated to
simulate a wide variety of tissues and organs. A single soft-
tissue material is therefore commonly used for all soft-tissues
with the exception of the lung [17].

Therefore, considering the many uses of stopping power,
in this paper we calculate this quantity in one of the most
important materials;i.e. the soft tissue equivalent (T.E.) ma-
terial.

2. Theory

The purpose of the hadron therapy is to deliver maximum
dose (the energy absorbed per unit mass of the irradiated ma-
terial) to the tumor and minimum dose and damage to the
surrounding normal tissues. The appropriate proton energy
to destroy the tumor needs to be determined depending on
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the type and characteristics of the target tissue and the depth
of the tumor [2]. On the other hand, the proton range and the
corresponding stopping power (and depth-dose profile) have
to be estimated with high accuracy in order to determine the
correct proton energy to be used to irradiate the tumor at a
specific depth.

2.1. Calculation of stopping power for a compound

In this section the formula used to calculate the stopping
power of protons in the T.E. and in their components will
be reported. The density of T.E. is 1.07 gr/cm3 and its frac-
tions by weight of H (hydrogen), C (carbon), N (nitrogen),
and O (oxygen) is 10.1%, 11.1%, 2.6%, 76.2% respectively
[16]. This material consists of four elements: hydrogen, oxy-
gen, carbon and nitrogen. Therefore, we must calculate the
stopping power in a compound. The mass stopping power
of the compound is calculated with formula in Eq. (1). The
mass stopping power can be obtained by dividing the stop-
ping power with the density of the material.(

− dE

ρdx

)

compound
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∑

i
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dE
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, (1)

Whereρ is the density andwi is weighted fraction of the
ith element [6].

2.2. Electronic stopping power

The following formula has been proposed to calculate stop-
ping power due to ionization-excitation for proton by Bethe:
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NA = 6.022× 1023 atoms/mol. (3)

In the above relation,T is kinetic energy andM is the rest
mass of the particle. The speed of light isc, n is number of
atoms/m3 in the material through which the particle moves.
Z is the atomic number of the material andz is the charge
of the incident particle (z = 1 for proton), andI is the mean
excitation potential of the material [3].

The Bethe’s stopping-power formula is valid at high en-
ergies. One of the most obvious limitations of the Bethe’s
formula is that this formula is based on the assumption
that the particle moves much faster than atomic electrons.
At low energies the Bethe’s formula fails because the term
Ln((2mc2β2γ2)/I) eventually becomes negative, giving a
negative value for the stopping power [18]. Thus, we cal-
culate the proton stopping power using the reference [19],
which is expressed in wide region of energy. The below stop-
ping power unit is eV/((1015 atoms)/cm2).

S = A1E
1/2

for Energy : 0− 10 keV

(S)−1 = (SLow)−1 + (SHigh)−1

for Energy : 10− 999 keV

S =
(

A6

β2

) [
ln

A7β
2

1− β2
− β2 −

4∑

i=0

Ai+8(lnE)i

]

for Energy : 1000− 100000 keV (4)

WhereSLow (Low Energy Stopping) is:

SLow = A2E
0.45 (5)

And SHigh (High Energy Stopping) is:

SHigh = (A3/E) ln[1 + (A4/E) + (A5/E)] (6)

In this relation, energy is as follows:

E =
Hydrogen Energy
Hydrogen Mass

[keV / amu] (7)

And the coefficients of the T.E. for the proton stopping
power are as follows [19]:

Element A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12
H[1] 1.262 1.44 242.6 1.2E4 0.1159 0.0005099 5.436E4 −5.052 2.049 −0.3044 0.01966 −0.0004659
C[6] 2.631 2.989 1445 957.2 0.02819 0.003059 1.322E4 −4.38 2.044 −0.3283 0.02221 −0.0005417
N[7] 2.954 3.35 1683 1900 0.02513 0.003569 1.179E4 −5.054 2.325 −0.3713 0.02506 −0.0006109
O[8] 2.652 3 1920 2000 0.0223 0.004079 1.046E4 −6.734 3.019 −0.4748 0.03171 −0.0007669

(8)
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As seen from the above formula, each element has 12
constants, and so the soft tissue equivalent material has 48
constants. Many constants causes a large rounding error and
increases the probability of user error and memory consump-
tion of the computer, consequently reduces Information pro-
cessing speed.

2.3. Nuclear stopping power

Formula (9) is the nuclear stopping power, expressed in unity
of eV/(atoms/cm2),

Sn = sn
(8.462× 10−15z1z2M1)

[(M1 + M2)(z0.23
1 + z0.23

2 )]
. (9)

In the above relationsn is defined as follows:

sn =
ln(1 + 1.1383ε)

2(ε + 0.01321ε0.21226) + 1.9593ε0.5
, (10)

which the reduced energy is defined as follows:

ε =
32.53M2E

[z1z2(M1 + M2)(z0.23
1 + z0.23

2 )]
, (11)

E is the ion energy in units of keV andz1 and z2 are the
atomic number of the ion and target respectively, and theM1,
M2 are the ion and target mass respectively in units of amu
[4].

2.4. Range of charged particle

A charged particle moving through a certain material loses
its kinetic energy through interactions with the electrons and
nuclei of the material. Eventually, the particle will stop, pick
up the necessary number of electrons from the surrounding
matter, and become neutral. The total distance traveled by
the particle is called the path length. The thickness of ma-
terial that just stops a particle of kinetic energyT , massM ,
and chargez is called the rangeR of the particle in that ma-
terial [3] which is calculated by the following formula:

R =
∫

dE

f(E)
,

(
−dE

dx

)
= f(E) (12)

3. Methods

We wrote a computer code usingFORTRAN’s programming
language. In this computer code we used formulas (4-12)
to calculate the stopping power (SP) and the proton range for
four elements of soft tissue equivalent material up to 10 MeV.
Also, using Formulas (1), (12) and the fraction by weight
for elements of the soft tissue equivalent material, we ob-
tained the stopping power and the proton range in this ma-
terial up to 10 MeV. With this computer code, in addition to
the range, we calculated the stopping power of protons due to
the nuclear interactions, the stopping power of protons due to
ionization-excitation and the total stopping power of protons.

In order to validate our computer code, we compared our
computer code results with Ref. [20]. Then, using the Origin
software, we fitted the data of our computer code with var-
ious fittings including polynomials of order two and higher,
Gaussian and exponential, and we chose and reported the best
fits. In the following, we will express our results.

4. Results

In Fig. 1 we show that the nuclear stopping power in the low
energy region is important, and in other energies it has a small
share from total stopping power. Nevertheless, in order to in-
crease the accuracy of the calculations, we also consider this
stopping power.

Figure 2 shows the total stopping power of protons with
an incident energy of 10 MeV within the T.E. and within
each composing element as calculated with the implemented
code. As you can see the maximum stopping power is ob-
tained for protons traversing carbon. This results from the
highest density of carbon between the other elements as well
as the composed T.E. By increasing density of material, the
number of electrons increases and the probability of particle
interaction with electrons increases thus the stopping power
will be larger. In the soft tissue equivalent material due to
weighted fraction, the effect of stopping power of protons in
carbon decreases in this material.

FIGURE 1. The nuclear SP, electronic SP, and total SP for protons
with an energy ranging from 0.3 MeV up to 10 MeV in the T.E.

FIGURE 2. Total stopping power for protons with an energy rang-
ing from 0.3 MeV up to 10 MeV in the T.E. and its elements.
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FIGURE 3. Total stopping power for protons with an energy ranging from 0.3 MeV up to 10 MeV in hydrogen, oxygen, nitrogen. The black
curve indicates the results of our computer code, and the white circles are the results shown in reference [20].

We also compared our calculations to https://physics.nist.
gov [20] , and the results in Fig. 3 plotted for hydrogen, ni-
trogen, and oxygen, respectively, and this figure shows good
agreement.

Heavier ions have typically a shorter range in the tra-
versed matter. With increasing the energy of the proton to in-
termediate energies, the probability of interactions of ioniza-
tion and excitation increases, but increasing energy from in-
termediate to high energies, the collision time decreases and
the possibility of energy deposition reduces. As you can see
in Fig. 3 the trend of the stopping power as a function of the
incident energy will be first ascending and then descending
with a peak depending on the type of radiation and material
traversed.

Then, using our computer code implementing also For-
mula (12), the proton ranges in the soft tissue equivalent ma-
terial and its elements, including hydrogen, oxygen, nitrogen,
and carbon, have been obtained as shown in Fig. 4.

As it is shown in Figs. 2 and 4 protons have a maximum
stopping power and as a consequence a lower range within
carbon element. On the other hand, since the minimum stop-
ping power for protons is noticed within hydrogen element,
a much longer range within such element is obtained. For

the same type of incident particles,i.e. protons, higher is the
density of the traversed material and higher is the probability
of interaction with the surrounding electrons, resulting in a
much faster delivery of the energy and hence a shorter range
within the material.

In the next step, in order to obtain fast and accurate for-
mulas, for proton range in the soft tissue equivalent material

FIGURE 4. Range-energy curve for Proton in the T.E. and its ele-
ments.

TABLE I. The coefficients obtained from the best fits of the proton range in T.E. and its elements. The energy of the incident proton is0.3 ≤
E(MeV) < 10. Hydrogen and the T.E. for the more precise are divided into two intervals0.3 ≤ E(MeV) < 3, and3 ≤ E(MeV) < 10, so
the two values are expressed respectively for each case.
hhhhhhhhhhhhhhEquation

Material
a b c d

1
1H 2.68× 10−5, 9.59× 10−5, −5.69× 10−6, 4.44× 10−7,

y = ax + bx2 + cx3 + dx4 3.68× 10−5 8.53× 10−5 −2.20× 10−6 7.70× 10−8

12
6 C

y = ax + bx2 + cx3 + dx4 6.51× 10−6 6.64× 10−6 −1.72× 10−7 5.16× 10−9

14
7 N

y = ax + bx2 + cx3 + dx4 1.81× 10−5 1.94× 10−5 −5.56× 10−7 1.76× 10−8

16
8 O

y = ax + bx2 + cx3 + dx4 1.47× 10−5 1.38× 10−5 −3.76× 10−7 1.15× 10−8

T.E. 9.11× 10−6, 1.39× 10−5, −4.93× 10−7, -

y = ax + bx2 + cx3 1.25× 10−5 1.17× 10−5 −1.53× 10−7
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FIGURE 5. Percentage of the relative difference of the proton range
between third and fourth order polynomial fittings and our com-
puter code for proton in hydrogen with an energy ranging from
0.3 MeV up to 10 MeV.

FIGURE 6. Percentage of the relative difference of proton range be-
tween third and fourth order polynomial fittings and our computer
code for proton in carbon with an energy ranging from 0.3 MeV up
to 10 MeV.

and each of its elements, we fitted the data of our computer
code, Fig. 4, with different functions such as polynomials
of order two and higher, Gaussian and exponential, and we
chose and reported the best fits. Separately for the soft tissue
equivalent material and each of its elements we subtracted the
data of our computer code from data of fittings, and we cal-
culated the discrepancy between the range obtained from the
fits and the one obtained with the data of our computer code.
We plotted them in separate graphs using Figs. 10 and 11 and
Figs. 5 to 8 for the soft tissue equivalent material and each of
its elements separately. In the following, we will express the
best fits for each material.

For the proton range in hydrogen element, two fittings of
the third degree and fourth degree polynomial were the most
suitable fittings that in Fig. 5 we plotted the percentage of
the relative difference of the range for these two fittings. The
best fit for this element is the fourth order polynomial with

FIGURE 7. Percentage of the relative difference of the proton range
between third and fourth order polynomial fittings and our com-
puter code in nitrogen with an energy ranging from 0.3 MeV up to
10 MeV.

FIGURE 8. Percentage of the relative difference of the proton range
between third and fourth order polynomial fittings and our com-
puter code in oxygen with an energy ranging from 0.3 MeV up to
10 MeV.

R-Square=1. According to Fig. 5, in this fit, we get the per-
centage of relative error less than 0.5% in wide area of energy.
Our fitting coefficients for the proton range in hydrogen are
given in Table I.

For the proton range in carbon, we also fitted the data of
our computer code with different curves, which the best fit
is fourth-order polynomial with R-Square=1. The percentage
of the relative difference of the range in this fit in the wide re-
gion of energy is less than 0.2 and its maximum value is 1.1.
We showed this graph in Fig. 6 and our fitting coefficients in
Table I.

For the proton range in nitrogen, we fitted the data of our
computer code with different curves, which the best fit is the
fourth-order polynomial with R-Square=1. With this fit in
most of the energy region, the percentage of the relative dif-
ference of the range is less than 0.5% and in the energy re-
gion below 1 MeV, the maximum error is 3%. We plotted this
graph in Fig. 7 and our fitting coefficients showed in Table I.
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FIGURE 9. Range-energy curve for Proton in the soft tissue equiv-
alent material.

FIGURE 10. Percentage of the relative difference of the proton
range for second, third and fourth order polynomial and Gaussian
function fittings with our computer code in T.E with an energy
ranging from 0.3 MeV up to 10 MeV.

FIGURE 11. Percentage of the relative difference of the proton
range between two fittings of third order polynomial in two regions
of energy and our computer code in the T.E. A) energy region of
0.3 < E < 3 MeV B) 3 < E < 10 MeV.

For proton range in the oxygen, we also fitted the data
of our computer code with different curves. The best fit is
the fourth-order polynomial with R-Square=1, and in wide

region of energy, the percentage of the relative difference of
the range is less than 0.5% and in the energy region below
2 MeV, the maximum error is 2.5%. We plotted this graph in
Fig. 8 and our fitting coefficients showed in Table I.

For proton range in the soft tissue equivalent material
we also fitted the data of our computer code with different
curves. We presented the graph of this range in Fig. 9 and
the results of different fittings in Fig. 10.

We then fitted the data of our computer code in T.E. with
Second, third, fourth degree polynomials, and Gaussian func-
tion. We plotted the percentage of the relative difference of
the range for these fits in Fig. 10. According to this figure,
for protons with energy greater than 3 MeV, the best fit is
third-order polynomial with R-Square=1.

As you can see in Fig. 11, for energies ranging from 0.3
up to 3 MeV, we used a different third order polynomial curve
for the fitting (R- Square=1). The discrepancy (in percentage)
with respect to the range values in T.E. obtained with the for-
mula for the two energy intervals (A and B) are shown in
Fig. 11. The coefficients resulted from the two fits are shown
in Table I.

According to Fig. 11, the discrepancy in percentage be-
tween the best fit and the range values obtained with the for-
mula is less than 0.5% in a wide energy interval with a maxi-
mum value of 0.75% at 0.55 MeV. According to these results,
we can state that, with a good approximation, we can defi-
nitely use directly the curves obtained from the best fit (Ta-
ble I) to calculate the proton range in the soft tissue equivalent
material for proton energies up to 10 MeV.

5. Conclusion

A new method is here proposed allowing to calculate the
range of protons with an energy ranging from 0.3 and
10 MeV in T.E with two third order polynomial curves (A and
B) in alternative to the original formula (8) depending on 48
constants. A maximum discrepancy of 0.75% is obtained be-
tween the range value calculated with the new fitted formula
and the original one, confirming the good accuracy of our
approach. Using our formula depending on just 6 constants
will reduce considerably the computation time and error. A
discrepancy of 0.5%, 0.2%, 0.5% and 0.5% was obtained for
the proton range calculated in hydrogen, carbon, nitrogen and
oxygen respectively in a wide energy intervals with a maxi-
mum discrepancy of 0.8%, 1.1%, 3%, and 2.5% respectively.
The original formula used to calculate the proton range in
each element of the soft tissue equivalent material depends
on 12 constants, instead our formulas obtained with the fit-
ting approach have just 4 constants for carbon, oxygen and
nitrogen and 8 constants for hydrogen only. Due to the com-
plexity of the usual formula, the need for high accuracy in
calculations and simulations and the probability of user er-
ror in calculations, the approximated formulas obtained in
the present work represent a good alternative to the complex
original formulas.
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