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The Feynman-Dyson propagators for neutral particles (locality or non-locality?)*
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An analog of theS = 1/2 Feynman-Dyson propagator is presented in the framework of theS = 1 Weinberg’s theory. The basis for this
construction is the concept of the Weinberg field as a system of four field functions differing by parity and by dual transformations. Next, we
analyze the recent controversy in the definitions of the Feynman-Dyson propagator for the field operator containing theS = 1/2 self/anti-self
charge conjugate states in the papers by D. Ahluwaliaet al. [11] and by W. Rodrigues Jr.et al [18, 19]. The solution to this mathematical
controversy is obvious. It is related to the necessary doubling of the Fock Space (as in the Barut and Ziino works), thus extending the
corresponding Clifford Algebra. However, the logical interrelations of different mathematical foundations with physical interpretations are
not so obvious. We present some insights with respect to.
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1. The Weinberg propagators

We study the problem of construction of causal propagators
in both higher-spin theories and the spinS = 1/2 Majorana-
like theory. The hypothesis is: in order to construct the ana-
logues of the Feynman-Dyson propagator we need actually
four field operators connected by the dual and parity trans-
formation. We use the standard methods of quantum field
theory. So, the number of components in the causal propaga-
tors is enlarged accordingly. The conclusions are listed in the
last Section: if we would not enlarge the number of compo-
nents in the fields (in the propagator) we would not be able to
obtain the causal propagator.

Accordingly to the Feynman-Dyson-Stueckelberg ideas,
a causal propagatorSF has to be constructed by using the
formula (e.g., Ref. [1, p.91])

SF (x2, x1) =
∑

σ

∫
d3p

(2π)3
m

Ep

× [
θ(t2 − t1) a uσ(p)uσ(p)e−ip·x

+ θ(t1 − t2) b vσ(p)vσ(p)eip·x]
, (1)

wherex = x2 − x1, m is the particle mass,̂p = pµγµ,
pµ = (Ep, ~p), uσ, vσ are the 4-spinors,θ(t) is the Heavi-
side function. In the spinS = 1/2 Dirac theory, it results
in

SF (x) =
∫

d4p

(2π)4
e−ip·x p̂ + m

p2 −m2 + iε
, (2)

provided that the constantsa andb are determined by impos-
ing

(i∂̂2 −m)SF (x2, x1) = δ(4)(x2 − x1) , (3)

namely,a = −b = 1/i; ∂2 = ∂/∂x2, ε defines the rules of
work within poles.

However, attempts to construct the covariant propagator
in this way have failed in the framework of the Weinberg the-
ory, Ref. [2], which is a generalization of the Dirac ideas to
higher spins. For instance, on the page B1324 of Ref. [2]
Weinberg writes:

“Unfortunately, the propagator arising from Wick’s the-
orem is NOT equal to the covariant propagator except for
S = 0 andS = 1/2. The trouble is that the derivatives act
on theε(x) = θ(x) − θ(−x) in ∆C(x) as well as on the
functionsi ∆ and∆1. This gives rise to extra terms propor-
tional to equal-timeδ functions and their derivatives. . . The
cure is well known: . . . compute the vertex factors using only
the original covariant part of the HamiltonianH; do not use
the Wick propagator for internal lines; instead use the co-
variant propagator.

The propagator proposed in Ref. [3] is the causal prop-
agator. However, the old problem remains: the Feynman-
Dyson propagator is not the Green function of the Weinberg
equation. As mentioned, the covariant propagator proposed
by Weinberg propagates kinematically spurious solutions [3].

The aim of my paper is to consider the problem of con-
structing the propagator in the framework of the model given
in [4]. The concept of the Weinberg field ‘doubles’ has been
proposed there. It is based on the equivalence between the
Weinberg field and the antisymmetric tensor field, which can
be described by bothFµν and its dualF̃µν . These field func-
tions may be used to form a parity doublet. An essential
ingredient of my consideration is the idea of combining the
Lorentz and the dual transformation.

The set of four equations has been proposed in Ref. [4].
For the functionsψ(1)

1 andψ
(1)
2 , connected with the first one

by the dual (chiral,γ5 = diag(13×3),−13×3)) transforma-
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tion, the equations are

(γµνpµpν + m2)ψ(1)
1 =0 , (4)

(γµνpµpν −m2)ψ(1)
2 =0 , (5)

with µ, ν = 1, 2, 3, 4. For the field functions connected with
ψ

(1)
1 andψ

(1)
2 by theγ5γ44 transformations the set of equa-

tions is written:
[
γ̃µνpµpν −m2

]
ψ

(2)
1 =0 , (6)

[
γ̃µνpµpν + m2

]
ψ

(2)
2 =0 , (7)

whereγ̃µν = γ44γµνγ44 is connected with theS = 1 Barut-
Muzinich-Williamsγµν matrices [5,6].

In the cited paper I have used the plane-wave expansion:

ψ1(x) =
∑

σ

∫
d3p

(2π)3
1

m
√

2Ep

× [
uσ

1 (~p)aσ(~p)eip·x + vσ
1 (~p)b†σ(~p)e−ip·x]

, (8)

ψ2(x) =
∑

σ

∫
d3p

(2π)3
1

m
√

2Ep

× [
uσ

2 (~p)cσ(~p)eip·x + vσ
2 (~p)d†σ(~p)e−ip·x]

, (9)

whereEp =
√

~p 2 + m2; aσ(~p), cσ(~p), b†σ(~p), d†σ(~p) are an-
nihilation/creation operators in the Fock space. This is in or-
der to prove that one can describe anS = 1 quantum particle
with transversal components in the framework of the Wein-
berg and/or the antisymmetric tensor theory.

The corresponding ‘bispinors’ in the momentum
space coincide with the Tucker-Hammer ones within a
normalizationii. Their explicit forms are

u
σ (1)
1 (~p) = v

σ (1)
1 (~p)

=
1√
2




[
m + (~S · ~p) + (~S·~p)2

(E+m)

]
ξσ[

m− (~S · ~p) + (~S·~p)2

(E+m)

]
ξσ


 , (10)

and

u
σ (1)
2 (~p) = v

σ (1)
2 (~p)

=
1√
2




[
m + (~S · ~p) + (~S·~p)2

(E+m)

]
ξσ[

−m + (~S · ~p)− (~S·~p)2

(E+m)

]
ξσ


 , (11)

whereξσ are the 3-component objects (the analogs of the
Weyl spinors). Thus,u(1)

2 (~p) = γ5u
(1)
1 (~p) andu

(1)
2 (~p) =

−u
(1)
1 (~p)γ5.
The bispinors

u
σ (2)
1 (~p) = v

σ (2)
1 (~p)

=
1√
2




[
m− (~S · ~p) + (~S·~p)2

(E+m)

]
ξσ[

−m− (~S · ~p)− (~S·~p)2

(E+m)

]
ξσ


 , (12)

u
σ (2)
2 (~p) = v

σ (2)
2 (~p)

=
1√
2




[
−m + (~S · ~p)− (~S·~p)2

(E+m)

]
ξσ[

−m− (~S · ~p)− (~S·~p)2

(E+m)

]
ξσ


 (13)

satisfy Eqs. (6) and (7) written in the momentum space. Thus,u
(2)
1 (~p) = γ5γ44u

(1)
1 (~p), u

(2)
1 = u

(1)
1 γ5γ44, u

(2)
2 (~p) =

γ5γ44γ5u
(1)
1 (~p) andu

(2)
2 (~p) = −u

(1)
1 γ44.

Let me check, if the sum of four equations

[
γµν∂µ∂ν −m2

] ∫
d3p

(2π)32Ep

[
θ(t2 − t1) a u

σ (1)
1 (p)uσ (1)

1 (p)eip·x + θ(t1 − t2) b v
σ (1)
1 (p)vσ (1)

1 (p)e−ip·x
]

+
[
γµν∂µ∂ν + m2

] ∫
d3p

(2π)32Ep

[
θ(t2 − t1) a u

σ (1)
2 (p)uσ (1)

2 (p)eip·x + θ(t1 − t2) b v
σ (1)
2 (p)vσ (1)

2 (p)e−ip·x
]

+
[
γ̃µν∂µ∂ν + m2

] ∫
d3p

(2π)32Ep

[
θ(t2 − t1) a u

σ (2)
1 (p)uσ (2)

1 (p)eip·x + θ(t1 − t2) b v
σ (2)
1 (p)vσ (2)

1 (p)e−ip·x
]

+
[
γ̃µν∂µ∂ν −m2

] ∫
d3p

(2π)32Ep

[
θ(t2 − t1) a u

σ (2)
2 (p)uσ (2)

2 (p)eip·x + θ(t1 − t2) bv
σ (2)
2 (p)vσ (2)

2 (p)e−i·px
]

= δ(4)(x2 − x1) (14)

can be satisfied by the definite choice ofa andb. The relationui(p) = vi(p) for bispinors in the momentum space had been
used in Ref. [4]. In the process of calculations I assume that the 3-‘spinors’ are normalized toδσσ′ .
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The simple calculations give

∂µ∂ν

[
a θ(t2 − t1) eip(x2−x1) + b θ(t1 − t2) e−ip(x2−x1)

]
= −[

a pµpνθ(t2 − t1) exp [ip(x2 − x1)]

+ b pµpνθ(t1 − t2) exp [−ip(x2 − x1)]
]
+ a

[− δµ4δν4δ
′(t2 − t1) + i(pµδν4 + pνδµ4)δ(t2 − t1)

]

× exp [i~p(~x2 − ~x1)] + b [δµ4δν4δ
′(t2 − t1) + i(pµδν4 + pνδµ4)δ(t2 − t1)] exp [−i~p(~x2 − ~x1)] ; (15)

and

u
(1)
1 u

(1)
1 =

1
2

(
m2 Sp ⊗ Sp

Sp ⊗ Sp m2

)
,

u
(1)
2 u

(1)
2 =

1
2

( −m2 Sp ⊗ Sp

Sp ⊗ Sp −m2

)
, (16)

u
(2)
1 u

(2)
1 =

1
2

( −m2 Sp ⊗ Sp

Sp ⊗ Sp −m2

)
,

u
(2)
2 u

(2)
2 =

1
2

(
m2 Sp ⊗ Sp

Sp ⊗ Sp m2

)
, (17)

where

Sp = m + (~S · ~p) +
(~S · ~p)2

E + m
, (18)

Sp = m− (~S · ~p) +
(~S · ~p)2

E + m
(19)

are the Lorentz boost matrices. Due to
[
Ep − (~S · ~p)

]
Sp ⊗ Sp = m2

[
Ep + (~S · ~p)

]
, (20)

[
Ep + (~S · ~p)

]
Sp ⊗ Sp = m2

[
Ep − (~S · ~p)

]
, (21)

one can conclude: the generalization of the notion of causal
propagators is admitted by using the ‘Wick’s formula’ for
the time-ordered particle operators provided thata = b =
1/4im2. It is necessary to consider all four equations, Eqs.
(4)-(7). Obviously, this is related to the 12-component for-
malism, which I presented in [4].

The S = 1 analogues of the formula (2) for the Wein-
berg propagators follow immediately. In the Euclidean met-
rics they are:iii

S
(1)
F (p)∼− 1

i(2π)4(p2+m2−iε)
[
γµνpµpν−m2

]
, (22)

S
(2)
F (p)∼− 1

i(2π)4(p2+m2−iε)
[
γµνpµpν+m2

]
, (23)

S
(3)
F (p)∼− 1

i(2π)4(p2+m2 − iε)
[
γ̃µνpµpν+m2

]
, (24)

S
(4)
F (p)∼− 1

i(2π)4(p2+m2−iε)
[
γ̃µνpµpν−m2

]
. (25)

We should use the obtained set of Weinberg propagators
(22,23,24,25) in the perturbation calculus of scattering am-
plitudes. In Ref. [7] the amplitude for the interaction of two

2(2S + 1) bosons has been obtained on the basis of the use
of one field only and it is obviously incomplete, see also
Ref. [6]. But, it is interesting to note that the spin structure
was proved there to be the same, regardless we consider the
two-Dirac-fermion interaction or the two-Weinberg(S = 1)-
boson interaction. However, the denominator slightly dif-
fers (1/~∆2 → 1/2m(∆0 −m)) in the cited papers [7] from
the fermion-fermion case, where∆0, ~∆ is the momentum-
transger 4-vector in the Lobachevsky space. More accurate
considerations of the fermion-boson and boson-boson inter-
actions in the framework of the Weinberg theory has been
reported elsewhere [8]. So, the conclusion of this Section is:
one can construct an analog of the Feynman-Dyson propaga-
tor for the2(2S + 1) model and, hence, a ‘local’ theory pro-
vided that the Weinberg states are quadrupled (S = 1 case).

2. The self/anti-self charge conjugate con-
struction in the (1/2, 0)⊕ (0, 1/2) represen-
tation

The first formulations with doubling solutions of the Dirac
equations have been presented in Refs. [9], and [10]. The
group-theoretical basis for such doubling has been given in
the papers by Gelfand, Tsetlin and Sokolik [12], who first
presented the theory later called ‘the Bargmann-Wightman-
Wigner-type quantum field theory’. M. Markov wrote long
agotwo Dirac equations with the opposite signs at the mass
term [9]iv:

[iγµ∂µ −m] Ψ1(x) = 0 , (26)

[iγµ∂µ + m] Ψ2(x) = 0 , (27)

whereγµ are the Dirac matrices. Of course, these two equa-
tions are equivalent each other on the free level since we are
convinced that the relative intrinsic parity has physical signif-
icance only. In fact, he studied all properties of this relativis-
tic quantum model while he did not know yet the quantum
field theory in 1937. Next, he added and subtracted these
equations. As a result the equations are

iγµ∂µϕ(x)−mχ(x) = 0 , (28)

iγµ∂µχ(x)−mϕ(x) = 0 . (29)

Thus, ϕ− and χ− solutions can be presented as some su-
perpositions of the Dirac 4-spinorsu− andv−. These equa-
tions, of course, can be identified with the equations for the
Majorana-likeλ− and ρ− spinors, which we presented in
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Ref. [13, 14]v. The four-component Majorana-like spinors
are defined as

λ(p) =
(

ϑΘφ∗L(p)
φL(p)

)
, (30)

Θ[1/2] =
(

0 −1
1 0

)
. (31)

They become eigenspinors of the charge conjugation opera-
tor Sc with eigenvalues±1 if the phaseϑ is set to± i:

Sc λ(p)
∣∣∣
ϑ=±i

= ±λ(p)
∣∣∣
ϑ=±i

. (32)

In a similar way one can constructρ− spinors on usingφR.
The dynamical equations are:

iγµ∂µλS(x)−mρA(x) = 0 , (33)

iγµ∂µρA(x)−mλS(x) = 0 , (34)

iγµ∂µλA(x) + mρS(x) = 0 , (35)

iγµ∂µρS(x) + mλA(x) = 0 . (36)

None of them can be regarded as the Dirac equation. How-
ever, they can be written in the 8-component form as follows:

[iΓµ∂µ −m] Ψ(+)(x) = 0 , (37)

[iΓµ∂µ + m] Ψ(−)(x) = 0 , (38)

with

Ψ(+)(x) =
(

ρA(x)
λS(x)

)
,

Ψ(−)(x) =
(

ρS(x)
λA(x)

)
, Γµ =

(
0 γµ

γµ 0

)
. (39)

It is easy to find the corresponding projection operators, and
the Feynman-Dyson-Stueckelberg propagator.

You may say that all this is just related to the spin-
parity basis rotation (unitary transformations). In the previ-
ous papers the connection with the Dirac spinors has been
found [14,15]. For instance,




λS
↑ (p)

λS
↓ (p)

λA
↑ (p)

λA
↓ (p)


 =

1
2




1 i −1 i
−i 1 −i −1
1 −i −1 −i
i 1 i −1




×




u+1/2(p)
u−1/2(p)
v+1/2(p)
v−1/2(p)


 , (40)

provided that the 4-spinors have the same physical dimen-
sion. Thus, we can see that the two 4-spinor systems are
connected by the unitary transformations, and this represents

itself the rotation of the spin-parity basis. However, it is usu-
ally assumed that theλ− andρ− spinors describe the neutral
particles, meanwhileu− andv− spinors describe the charged
particles. Kirchbach [15] found the amplitudes for neutri-
noless double beta decay (00νβ) in this scheme. It is obvi-
ous from (40) that there are some additional terms comparing
with the standard formulation.

One can also re-write the above equations into the two-
component forms. Thus, one obtains the Feynman-Gell-
Mann equations [16]. As Markov wrote himself, he was ex-
pecting “new physics” from these equations.

Barut and Ziino [10] proposed yet another model. They
considered theγ5 operator as the operator of the charge con-
jugation. Thus, the charge-conjugated Dirac equation has a
different sign comparing with the ordinary formulation:

[iγµ∂µ + m]Ψc
BZ = 0 , (41)

and the so-defined charge conjugation applies to the whole
system, fermion + electromagnetic field,e → −e in the co-
variant derivative. The superpositions of theΨBZ andΨc

BZ

give us the ‘doubled Dirac equation’, as the equations forλ−
and ρ− spinors. The concept of the doubling of the Fock
space has been developed in the Ziino works (cf. [4, 12]) in
the framework of the quantum field theory. In their case the
self/anti-self charge conjugate states are simultaneously the
eigenstates of the chirality. It is interesting to note that for
the Majorana-like field operators (aη(p) = bη(p)) we have

[
ν

ML

(xµ) + CνML †
(xµ)

]
/2 =

∫
d3p

(2π)3
1

2Ep
(42)

∑
η

[(
iΘφ∗ η

L
(p)

0

)
aη(p)e−ip·x

+
(

0
φη

L(p)

)
a†η(p)eip·x

]
, (43)

[
ν

ML

(xµ)− CνML †
(xµ)

] /
2 =

∫
d3p

(2π)3
1

2Ep
(44)

∑
η

[(
0

φη
L
(p)

)
aη(p)e−ip·x

+
( −iΘφ∗ η

L
(p)

0

)
a†η(p)eip·x

]
(45)

which naturally lead to the Ziino-Barut scheme of massive
chiral fields, Ref. [10].

3. The controversy

I cite Ahluwalia et al., Ref. [11] vi: “To study the locality
structure of the fieldsΛ(x) and λ(x), we observe that field
momenta are

Π(x) =
∂LΛ

∂Λ̇
=

∂

∂t

¬
Λ (x), (46)
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and similarlyπ(x) = (∂/∂t)
¬
λ (x). The calculational de-

tails for the two fields now differ significantly. We begin with
the evaluation of the equal time anticommutator forΛ(x) and
its conjugate momentum

{Λ(x, t), Π(x′, t)} = i

∫
d3p

(2π)3
1

2m
eip·(x−x′)

×
∑
α

[
ξα(p)

¬
ξα (p)− ζα(−p)

¬
ζα (−p)

]

︸ ︷︷ ︸
= 2m[I+G(p)]

.

The term containingG(p) vanishes only whenx − x′ lies
along theze axis (see Eq. (24) [therein], and discussion of
this integral in Ref. [17])

x− x′ alongze : {Λ(x, t), Π(x′, t)}
= iδ3(x− x′)I. (47)

The anticommutators for the particle/antiparticle annihila-
tion and creation operators suffice to yield the remaining lo-
cality conditions,

{Λ(x, t), Λ(x′, t)} = O, {Π(x, t), Π(x′, t)} = O. (48)

The set of anticommutators contained in Eqs. (47) and
(48) establish thatΛ(x) becomes local along theze axis. For
this reason we callze as the dark axis of locality.”

Next, I cite Rodrigueset al., Ref. [18]: “We have shown
through explicitly and detailed calculation that the integral of
G(p) appearing in Eq. (42) of [11] is null forx− x′ lying
in three orthonormal spatial directions in the rest frame of an
arbitrary inertial framee0 = ∂/∂t.

This shows that the existence of elko spinor fields does not
implies in any breakdown of locality concerning the anticom-
mutator of{Λ(x,t),Π(x′, t} and moreover does not implies
in any preferred spacelike direction field in Minkowski space-
time.”

Who is right? In 2013 W. Rodrigues [19] changed a bit
his opinion. He wrote: “When∆z 6= 0, Ĝ(x− x′) is null the
anticommutator islocal and thus there exists in the elko the-
ory as constructed in [11] an infinity number of“ locality di-
rections”. On the other hand̂G(x− x′) is a distribution with
support in∆z = 0. So, the directions∆ = (∆x, ∆y, 0) are
nonlocal in each arbitrary inertial reference framee0 chosen
to evaluateĜ(x− x′)”, thus accepting the Ahluwaliaet al.
viewpoint. See the cited papers for the notation.

Meanwhile, I suggest to use the 8-component (or 16-
component) formalism (see the Sec. 2) in similarity with the

12-component formalism of the Sec. 1. If we calculate

S
(+,−)
F (x2, x1)=

∫
d3p

(2π)3
m

Ep

[
θ(t2−t1) a Ψσ

±(p)Ψ
σ

±(p)e−ip·x

+ θ(t1 − t2) b Ψσ
∓(p)Ψ

σ

∓(p)eip·x
]

=
∫

d4p

(2π)4
e−ip·x (p̂±m)

p2 −m2 + iε
, (49)

we easily come to the result that the corresponding Feynman-
Dyson propagator gives the local theory in the sense:

∑
±

[iΓµ∂µ
2 ∓m]S(+,−)

F (x2 − x1) = δ(4)(x2 − x1). (50)

However, physics should choose only one correct formalism.
It is not clear, why two correct mathematical formalisms lead
to different physical results? First of all, we should check,
whether this possible non-locality in the propagators has in-
fluence on the physical observables such as the scattering am-
plitudes, the energy spectra and the decay widths. If not, we
may find some unexpected symmetries in relativistic quan-
tum mechanics/field theory. This is the task for future pub-
lications. However, it is already obvious if we would not
enlarge the number of components in the fields (in the prop-
agator) we would not be able to obtain the formally causal
propagators for higher spins and/or for the neutral particles.

Note added.The dilemma of the (non)local propagators
for the spinS = 1 has also been analized in [20] within the
Duffin-Kemmer-Petiau (DKP) formalism or the Dirac-Kähler
formalism [21]. However, the propagators given in [20] are
those in the generalized Duffin-Kemmer-Petiau formalism, in
fact. They are not in the Weinberg-Tucker-Hammer formal-
ism. Moreover, the problem of the massless limit was not
discussed in the DKP formalism, which is non-trivial (like
that of the Proca formalism [22]).
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i. In the cited paper∆1(x) ≡ i [∆+(x) + ∆+(−x)] and
∆(x) ≡ ∆+(x) − ∆+(−x) have been used.i∆+(x) ≡

(1/(2π)3)
∫

(d3p/2Ep) exp(ip · x) is the particle Green func-
tion.

ii. They also coincide with the Ahluwaliaet al.ones within a uni-
tary transformation [11].
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iii. We use the Euclidean metrics in this Section due to many orig-
inal papers on the Weinberg2(2S + 1) theory use it. This is
in order the reader to have possibility to compare the formulas.
In the next Section we turn to the pseudoEuclidean metrics on
using simple correspondence rules.

iv. I turn to the pseudo-Euclidean metric because it is more usable
in the recent literature.

v. Of course, the signs at the mass terms depend on, how do we
associate the positive- or negative- frequency solutions withλ
andρ.

vi. The notation should be compared with the cited papers.
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