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The Feynman-Dyson propagators for neutral particles (locality or non-locality?)*
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An analog of theS = 1/2 Feynman-Dyson propagator is presented in the framework of'the 1 Weinberg's theory. The basis for this
construction is the concept of the Weinberg field as a system of four field functions differing by parity and by dual transformations. Next, we
analyze the recent controversy in the definitions of the Feynman-Dyson propagator for the field operator contashiag f2eself/anti-self

charge conjugate states in the papers by D. Ahluveatlial. [11] and by W. Rodrigues Jet al[18, 19]. The solution to this mathematical
controversy is obvious. It is related to the necessary doubling of the Fock Space (as in the Barut and Ziino works), thus extending the
corresponding Clifford Algebra. However, the logical interrelations of different mathematical foundations with physical interpretations are
not so obvious. We present some insights with respect to.
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1. The Weinberg propagators However, attempts to construct the covariant propagator
] in this way have failed in the framework of the Weinberg the-
We study the problem of construction of causal propagatorgyy Ref. [2], which is a generalization of the Dirac ideas to

in both higher-spin theories and the spin=1/2 Majorana-  pigher spins. For instance, on the page B1324 of Ref. [2]
like theory. The hypothesis is: in order to construct the anaweinberg writes:

logues of the Feynman-Dyson propagator we need actually
four field operators connected by the dual and parity trans-  «ynfortunately, the propagator arising from Wick’s the-

formation. We use the standard meth'ods of quantum fielyrem is NOT equal to the covariant propagator except for
theory. So, the number of components in the causal propagay —  gnds — 1/2. The trouble is that the derivatives act
tors is enlarged accordingly. The conclusions are listed in thg, thee(z) = 0(z) — (—z) in AC(z) as well as on the

last Section: if we would not enlarge the number of compo-fynctiond A and A;. This gives rise to extra terms propor-

nents in the fields (in the propagator) we would not be able tqjona) to equal-times functions and their derivatives. .. The

obtain the causal propagator. cure is well known: ... compute the vertex factors using only
Accordingly to the Feynman-Dyson-Stueckelberg ideasihe original covariant part of the Hamiltoniak; do not use

a causal propagatdr has to be constructed by using the the \wick propagator for internal lines; instead use the co-

dp m . .
Sp(x9,71) = Z 2n)3 - The propagator proposed in Ref. [3] is the causal prop-
™)% Ep .
o agator. However, the old problem remains: the Feynman-
X [0tz — t1) a u® (p)ua’® (p)e~P* Dyson propagator is not the Green function of the Weinberg
- equation. As mentioned, the covariant propagator proposed
+0(t1 — t2) b v (p)07 (P)e™*], (1) by Weinberg propagates kinematically spurious solutions [3].

wherexz = x5 — 21, m is the particle massj = p*v,,
pt = (Ep,p), u’, v’ are the 4-spinorg(t) is the Heavi-
side function. In the spitt = 1/2 Dirac theory, it results
in

The aim of my paper is to consider the problem of con-
structing the propagator in the framework of the model given
in [4]. The concept of the Weinberg field ‘doubles’ has been
proposed there. It is based on the equivalence between the
Sr(z) = / d*p —ipx  DEtmM @) Weinberg field and the antisymmetric tensor field, which can

r (27)4 p2 —m?2 + i€’ be described by both),, and its dualF,,. These field func-
tions may be used to form a parity doublet. An essential
! ingredient of my consideration is the idea of combining the
ng Lorentz and the dual transformation.

(idy — m)Sp(xa, 1) = 6W (20 — 21), (3)

provided that the constanisandb are determined by impos-

The set of four equations has been proposed in Ref. [4].
namely,a = —b = 1/i; 9 = 0/0x2, € defines the rules of For the functionaﬁ” andwél), connected with the first one
work within poles. by the dual (chiralys = diag(13x3), —13x3)) transforma-
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tion, the equations are u P (@) =07 D(p)
(PYMVpupl/ + mQ)'(/ng) =0, (4) {m 4 (5_"15') + (5-p)2 :| f
2y,(1) -2 . e , (10)
(VuwDpup — m?)5" =0, ) V2 [m- (S 9+ &
with u, v = 1,2, 3,4. For the field functions connected with
»{V and 4P by theysu transformations the set of equa- @Nd
tions is written: o o
_ . g V@) =03 @)
['Y,uupupu —m ] =0, (6) (5-5)2
5 @ _, 7 _1 ([ aeeine (11)
Fuwpupw +m°] 1y (7 =7 {_ LGP <sﬁ)}§ ’
wherey,, = v44vu744 1S CcONnected with thé' = 1 Barut- (Btm) | >7
Muzinich-Williams,,,, matrices [5, 6]. where¢, are the 3- component objects (the analogs of the
In the cited paper | have used the plane-wave expanS|or\Ney| spinors). Thusuz (P) = %% (4) and@ u2 (ﬁ)
—a, (P
The bispinors
[ _.) ip-x + —»)b]‘(—v) —ip- m] (8) o (2) _ o (2)
ul b aU(me U1 (p b)e 5 Uq (m Uy (]5)
- B R
= ﬁ = (5-5)2 . (12)
. t i __m - (S m T (E+m) | Se
H@@MWWW@@%@WWL @ L e
whereE, = \/p? +m2; a, (D), co (), bl (9), df, () are an- Uy (P) = vy T (P)
nihilation/creation operators in the Fock space. This is in or- 1 [ + (g,ﬁ) _ (5p)? I
der to prove that one can describe$a- 1 quantum particle = — - ((?;g;) (13)
with transversal components in the framework of the Wein- V2 - (S-p) - (E+m) | 5o

berg and/or the antisymmetric tensor theory.
The corresponding ‘bispinors’ in the momentum
space coincide with the Tucker-Hammer ones within a

normalizatio?. Their explicit forms are
|

satisfy Eqs (6) and (7) ertten |n the momentum space. Th@(ﬁ) = 75744u§1)(ﬁ), ﬂ? = u( )75744, u2 (ﬁ) =

75’74475111 (157 andu2 (p) = u "/44
Let me check, if the sum of four equations

d3p o —0 ip-x o —o —ip-x
s =] [t (00t = )0 uf V) 4 000~ 1) o] 077 )]

d3p [ o —0 ip-xT o —o —ip-x
+hw@@+mﬂ/@m@&rﬂbmaUJWM%m@kp+9mvaJWM%m@kp}

+ [Fyu 00y + m?] TP oty t)a ul P () @ (p)e + 0t — ta) b o7 @ p)o7 @ ()]
MAYNGY (2’/T)32Ep | 2 1 1 1 1 2 1 1

~ d3 [ o o ip-x o _o —i-px
+ Bt = m?] [ St 02 = )0 D D @)™ + 001 = 1) 0§ D oy75 P )7

= 5(4) (SEQ - Il) (14)

can be satisfied by the definite choiceacdndbd. The relationu;(p) = v;(p) for bispinors in the momentum space had been
used in Ref. [4]. In the process of calculations | assume that the 3-‘spinors’ are normalized to
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The simple calculations give
0,0y |af(ty —t1) ePlr2—e1) 4 bO(t, — ta) e_ip(“_”“)] = — [apﬂp,ﬁ(tg —t1) exp [ip(xe — 1))

+ bpupub(ts — ta) exp [—ip(ze — x1)] | + a] — 646,40 ' (ta — t1) + i(pubua + Pu6ua)d(ta — t1)]

X exp [ip(Ty — 1)] 4 b [0,40040 '(t2 — t1) + i(pudua + pudua)d(ta — t1)] exp [—ip(Za — T1)] ; (15)
and 2(2S + 1) bosons has been obtained on the basis of the use
1 m? S ©8 of one field only and it is obviously incomplete, see also
ugl)ﬂgl) == < 3 %3 p=mp ) , Ref. [6]. But, it is interesting to note that the spin structure
2 p®Sp m was proved there to be the same, regardless we consider the
1—y 1 -m?  S,®5, two-Dirac-fermion interaction or the two-Weinbef& 1)-

Uy Up” =35 ( S,®8, —m? ) ) (16)  poson interaction. However, the denominator slightly dif-
fers (1/A? — 1/2m(Ao — m)) in the cited papers [7] from
the fermion-fermion case, wher,, A is the momentum-

@2)—2) 1 -m? S,®5, transger 4-vector in the Lobachevsky space. More accurate
it =g < S, ®S, —m? ) ’ considerations of the fermion-boson and boson-boson inter-
1 ) — actions in the framework of the Weinberg theory has been
uPal? = = ( m Sp ®2SP ) 7 (17)  reported elsewhere [8]. So, the conclusion of this Section is:
2\ 5 @5 m one can construct an analog of the Feynman-Dyson propaga-
where tor for the2(2S + 1) model and, hence, a ‘local’ theory pro-
. vided that the Weinberg states are quadrupked-(1 case).
2
Sp_m+(5-m+%, (18)
B 2. The self/anti-self charge conjugate con-
S,=m—(5-p)+ (5 p)* (19) struction in the (1/2,0) & (0,1/2) represen-
B+ tation

are the Lorentz boost matrices. Due to ) ) ) ) ) .
The first formulations with doubling solutions of the Dirac

equations have been presented in Refs. [9], and [10]. The
group-theoretical basis for such doubling has been given in
the papers by Gelfand, Tsetlin and Sokolik [12], who first
presented the theory later called ‘the Bargmann-Wightman-
one can conclude: the generalization of the notion of causalVigner-type quantum field theory’. M. Markov wrote long
propagators is admitted by using the ‘Wick’s formula’ for agotwo Dirac equations with the opposite signs at the mass
the time-ordered particle operators provided that b =  term [9]":
1/4im?. It is necessary to consider all four equations, Egs.
(4)-(7). Obviously, this is related to the 12-component for-
malism, which | presented in [4].

The S = 1 analogues of the formula (2) for the Wein-
berg propagators follow immediately. In the Euclidean met\yhere# are the Dirac matrices. Of course, these two equa-
rics they are* tions are equivalent each other on the free level since we are

[E,,—(S?@] S, ® S, = m? [Ep+(5'.m] ., (20)

B+ (59| S, 05, =m? B, - (59|, @D

[i7" 0 — m] ¥ ()
[i9"0), 4 ] W (x)

(26)
(27)

0,
0,

convinced that the relative intrinsic parity has physical signif-

1
sg>(p)~ - 2 PP —ic) [prupu—mQ] , (22)  icance only. In fact, he studied all properties of this relativis-
) tic quantum model while he did not know yet the quantum
SP ()~ — - ‘ Jouputm?], (23 field theory in 1937. Next, he added and subtracted these
r ) i(2m)* (p>+m?—ie) i @ equations. As a result the equations are
(3) 1 ~ .
SF (p)N - i(27r)4(p2—|—m2 . ZG) [’Y/Lup;prerQ] 9 (24) Z’Y“@mo(@ — ’ITLX(SU) = 0, (28)
iV Oux(z) — mep(z) =0. (29)
)N 1 = 9 YT OuX 12
SF (p) i(277)4(p2+m2—i6) [’prpupu m ] . (25)

Thus, o— and x— solutions can be presented as some su-
We should use the obtained set of Weinberg propagatorgerpositions of the Dirac 4-spinots- andv—. These equa-
(22,23,24,25) in the perturbation calculus of scattering amtions, of course, can be identified with the equations for the

plitudes. In Ref. [7] the amplitude for the interaction of two Majorana-like \A— and p— spinors, which we presented in
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Ref. [13, 147. The four-component Majorana-like spinors itself the rotation of the spin-parity basis. However, it is usu-

are defined as ally assumed that the— andp— spinors describe the neutral
. particles, meanwhile— andv— spinors describe the charged
Ap) = ( v0¢7.(p) ) , (30) particles. Kirchbach [15] found the amplitudes for neutri-

¢1(p) noless double beta deca0¢3) in this scheme. It is obvi-

ous from (40) that there are some additional terms comparing
0 -1 with the standard formulation.
O /2] < 10 ) (31) One can also re-write the above equations into the two-
component forms. Thus, one obtains the Feynman-Gell-
They become eigenspinors of the charge conjugation operddann equations [16]. As Markov wrote himself, he was ex-
tor S. with eigenvaluest1 if the phasey is set to+ i: pecting “new physics” from these equations.
Barut and Ziino [10] proposed yet another model. They
(32) considered the® operator as the operator of the charge con-
jugation. Thus, the charge-conjugated Dirac equation has a
In a similar way one can construgt- spinors on usingr. different sign comparing with the ordinary formulation:
The dynamical equations are:

Se /\(p)( = iA(p)‘

O=ti O=+i

[i7"0u + m|¥p, =0, (41)

give us the ‘doubled Dirac equation’, as the equations\fer

(36) andp— spinors. The concept of the doubling of the Fock
space has been developed in the Ziino works (cf. [4,12]) in

None of them can be regarded as the Dirac equation. Howthe framework of the quantum field theory. In their case the

ever, they can be written in the 8-component form as followsself/anti-self charge conjugate states are simultaneously the
eigenstates of the chirality. It is interesting to note that for

(37)  the Majorana-like field operatora,{(p) = b,(p)) we have

(38)

i 9N (z) — mp(z) =0, (33)

g A( ) S( ) and the so-defined charge conjugation applies to the whole
iV Oup” (x) —mA®(z) =0, (34)  system, fermion + electromagnetic fietld— —e in the co-
"o /\A(x) I mps(x) —0, (35) variant derivative. The superpositions of tiig;; andU¢;,

I
iv"0,0° (x) + mA(z) = 0.

[iT#9, —m] ¥ (z) =0,
0,

[iT"0, +m] ¥ _ (x)

[ @)+ e )] f2 = / (3232;) (42)
) (%" e

)
)
V() = ( §A Z)) ) I+ = < VOH WOM ) (39) +< ¢>Z(zp) )GL(p)ei’”}, (43)

It is easy to find the corresponding projection operators, and {VML(IIL) _ CZ/MLT(I‘U'):| /2 _ / d’p 1 (44)
the Feynman-Dyson-Stueckelberg propagator.
You may say that all this is just related to the spin- 0 }
parity basis rotation (unitary transformations). In the previ- Z { ( 7 (p) ) ay(p)e” "
ous papers the connection with the Dirac spinors has been  n =

found [14, 15]. For instance, —iO*N ,
+( 1 (ZSOL (p) >a;r](p)ezp~x:|

(45)

)
i‘(p) _ L 1_ —t _1. which naturally lead to the Ziino-Barut scheme of massive
A7 (p) 2| 1 - -1 i chiral fields, Ref. [10].
)\f(p) i 1 i -1
Ut1/2(P) 3. The controversy
v u—1/2(p) (40) ) . ) .
vi12(p) | | cite Ahluwaliaet al, Ref. [11]"": “To study the locality
v_1/2(P) structure of the fieldg\(z) and A(z), we observe that field
momenta are
provided that the 4-spinors have the same physical dimen- N
sion. Thus, we can see that the two 4-spinor systems are (z) = % _ ﬁ X (z) (46)
connected by the unitary transformations, and this represents oA ot ’
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and similarly w(z) = (9/0t) ;\ (z). The calculational de- 12-component formalism of the Sec. 1. If we calculate
tails for the two fields now differ significantly. We begin with s

. : . B m . .
the evaluation of the equal time anticommutatorAgr:) and Sl(;r., )(x% 561)2/ p {9(752 —t)a O (p) T (p)e

its conjugate momentum (27)3 By
d [P L e O(t1 — t2) b W (p) W7 (p)eP?
A1), I D) =i | Grgs e’ +0(t = 12) b WL (p) U= (p)e
s m
- - d4p —ip-x (ﬁ + m)
x Z [5a(P) £a (P) = Ca(=P) Cq (_P)} : - / (2ﬂ)4e ! P2 —m2 + i’ (49)
=2m[I+G(p)] we easily come to the result that the corresponding Feynman-

. . . Dyson propagator gives the local theory in the sense:
The term containingj(p) vanishes only whesr — x’ lies y propag 9 y

along thez, axis (see Eq. (24) [therein], and discussion of

; (+-) _ s(4
this integral in Ref. [17]) D I8 Fm)SE 7 (w2 — 1) = 60 (o — 21). (50)

+
! !/
x—xalongze: {AG 1), TI(x, 6)} However, physics should choose only one correct formalism.
=i (x —x)I. (47)  Iltis not clear, why two correct mathematical formalisms lead
) ) o ~ o different physical results? First of all, we should check,
The antlcomrr_\utators for the p.artlcle/z_';mnpartlcle applhlla— whether this possible non-locality in the propagators has in-
tion and creation operators suffice to yield the remaining 10-fiyence on the physical observables such as the scattering am-
cality conditions, plitudes, the energy spectra and the decay widths. If not, we
/ _ ' o may find some unexpected symmetries in relativistic quan-
{AG 1), A} =0, Il t), T, 1)} = 0. (48) tum mechanics/field theory. This is the task for future pub-
The set of anticommutators contained in Egs. (47) andications. However, it is already obvious if we would not
(48) establish that (z) becomes local along the axis. For ~ enlarge the number of components in the fields (in the prop-
this reason we calt. as the dark axis of locality. agator) we would not be able to obtain the formally causal
Next, | cite Rodrigue®t al, Ref. [18]: “We have shown propagators for higher spins and/or for the neutral particles.
through explicitly and detailed calculation that the integral of ~ Note added.The dilemma of the (non)local propagators
G(p) appearing in Eq. (42) of [11] is null fox — x’ lying ~ for the spinS = 1 has also been analized in [20] within the
in three orthonormal spatial directions in the rest frame of an Duffin-Kemmer-Petiau (DKP) formalism or the DiracKler
arbitrary inertial framee, = 0/0t. formalism [21]. However, the propagators given in [20] are
This shows that the existence of elko spinor fields does ndéhose in the generalized Duffin-Kemmer-Petiau formalism, in
implies in any breakdown of locality concerning the anticom-fact. They are not in the Weinberg-Tucker-Hammer formal-
mutator of {A(x,t), II(x’, ¢} and moreover does not implies ism. Moreover, the problem of the massless limit was not
in any preferred spacelike direction field in Minkowski space-discussed in the DKP formalism, which is non-trivial (like
time” that of the Proca formalism [22]).
Who is right? In 2013 W. Rodrigues [19] changed a bit
his opinion. He wrote: WhenA, # 0, G(x — x’) is null the
anticommutator isocal and thus there exists in the elko the- Acknowledgments
ory as constructed in [11] an infinity number blocality di-
rections. On the other han@(x — x’) is a distribution with | acknowledge discussions with the late Prof. W. Rodrigues,
support inA, = 0. Sq the directionsA = (A,,A,,0)are  Jr. and Prof. Z. Oziewicz. | am grateful to the Zacatecas
nonlocal in each arbitrary inertial reference franeg chosen  University for professorship.
to evaluateG(x — x’)”, thus accepting the Ahluwaliat al.
viewpoint. See the cited papers for the notation.
Meanwhile, | suggest to use the 8-component (or 16-
component) formalism (see the Sec. 2) in similarity with the

. Presented also at the XII Taller of DGyFM SMF, Nov. 27 - Dec. (1/(2m)?) [(d*p/2E,) exp(ip - x) is the particle Green func-

1, 2017. Guadalajara, &kico. tion.
i. In the cited paperA(z) = i[A4(z)+ A4(—z)] and 1. They also coincide with the Ahluwaliet al. ones within a uni-
A(z) = Ai(x) — Af(—=z) have been usedA (z) = tary transformation [11].
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We use the Euclidean metrics in this Section due to many orig41.

inal papers on the Weinbe2f2S + 1) theory use it. This is

in order the reader to have possibility to compare the formulas.
In the next Section we turn to the pseudoEuclidean metrics on,
using simple correspondence rules.

| turn to the pseudo-Euclidean metric because it is more usabl(f3
in the recent literature.

Of course, the signs at the mass terms depend on, how do wi

associate the positive- or negative- frequency solutions with
andp.
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