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In this work, we present numerical results of classic&riard—type systems in a very general context, since we consider several types of
derivatives (integer order and fractional order, global and local). Additionally, we made theoretical-methodological observations.
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En este trabajo, presentamos resultadoséarians de sistemas tipo &mard en un contexto muy general, puesto que consideramos varios
tipos de derivadas (de orden entero y fraccionario, globales y locales). Adicionalmente, hacemos obsenacaases teetoddlgicas.
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1. Introduction However, the case of Ehard-type systems having non-
integer derivatives has received scarce attention, although the
The classical Llenard equation [1] nature of many processes and phenomena makes them suit-
" , able for modeling with fractional differential equations. Over
2"+ f(x)a’ +g(x) = 0 the years many mathematicians have built up a large body

of mathematical knowledge on fractional calculus, but de-

and the equivalent system . . ; o .
q Y spite fractional calculus is a natural generalization of classi-

o =y — F(z) cal ca_lculus, anql although its _mathemz_iti_cal histor_y is eq_ually
, (1) long, it has, until recently, paid a negligible role in applica-
y' = —g(x) tions. One reason for this could be that until recently, un-

til a few years ago, the basic facts about fractional calculus

with F'(z) = [, f(s)ds, have been extensively investigated ;.o o readily accessible even in the mathematical litera-
since they appear in many problems of applied and basic & re (see [13, 14], for example)

search, such as in theory of feedback in electronic circuits i )
and motion of mass-spring systems, egg[2—4]. Also, sev- 'On the other hand, if we take into account the
eral reviews of the literature that focus on Eq. (1) have beef§Xistence of different fractional derivatives, both global
made. The book by Sansone and Conti [5] contains an excefGronwald-Letnikov, etc.) and local (conformable and non-
lent summary up to 1960; it was updated up to 1962 in [6] and:_onf_o_rmab_le), versus classu?al denvatlves_, one may ask: How
further extended in the lists of references of [3, 7, 8]. Amon95|gn|f|cant is the use of fractional models in the stL_de of pro-
the relevant papers that investigate thérzrd system, that C€SSes and phenomenon? How advantageous is the use of
were recently published, we can mention Refs. [9-11]. Agthese no_n—lntege_r order Qerlyat|ve_s? Is any |nformat|on _Iost
ditionally, for a description with the problems associated tovyhen using fractlonal derlvatlves. instead of plassmal deriva-
the oscillatory nature of Eq. (1), the book by Minorsky [10] tives? In fact, fractional calculus is now applied successfully_
is highly recommended. to address several problems of physics, see some examples in
In [11] the system (1) was studied in an attempt to unify, RefS- [15-19].
in a general result, the methods known for particular cases Therefore, the purpose of this paper is to investigate the
on an important qualitative aspect: the boundedness of sol@ualitative behavior of systems of type (1) under non-usual
tions. The Lénard system (1) is often taken as the typicalassumptions; that is, the functions evolved in (1) are the same
example of a nonlinear self-excited vibration problem andput the derivatives considered are of different tygess, (in-
since its appearance (cf. [12]) it has become a paradigm dEger order and fractional order such as global, Gronwald-
nonlinear analysis. It is clear then that the study of (1) is ofLetnikov and local, conformable and non-conformable), and
paramount importance in physics and other sciences. elucidate the questions posed above. To that end we apply
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fractional derivatives to six known examples o€bhard—type
systems, each one showing relevant dynamical properties:
example | the origin(0,0) is an asymptotically stable equi-
librium position, in example Il the system has a stable limit

cycle, system lll has no continuable solutions, example IV
has unbounded solutions, example V requires additional con:

ditions for the existence of a stable limit cycle, as compare
to example Il, and example VI is a particular case of a lin-
ear system with constant coefficients. Thus, starting wit
numerical experiments we conclude with some theoretical
methodological remarks.

2. Fractional approach to Liénard—type sys-
tems

Fractional calculus is a generalization of integration and
differentiation to non-integer-order fundamental operations

«Df, wherea andt are the bounds of the operation and
a € R. The continuous integrodifferential operator is de-
fined as

dO{
— if
el if >0
1, if «a=0
oD = ¢ 2
/(dT)O‘, if <0

a

h

619

we have
In

S () e S0 () flta) . @
k=0

To overcome some difficulties of the classical fractional
erivative, Khalilet al.[20] came up with an interesting idea
hat generalizes the familiar limit definition of the derivative
hat allows to successfully introduce a conformable fractional
derivative (see Definition 2..2 below). Thus, below, a defini-
tion of a conformable generalized fractional derivative of a
function at a point is introduced and some useful results are

obtained.

Definition 2..1 Let I be an intervall C (0,00), f : I — R
anda € RT. Theconformable derivativéy® f of f of order
o at the pointt € [ is defined by

t

g L
= 550 Blal

[o]

x Y (-1
k=0

Classical calculus assures thafiis a function defined in
a neighborhood of the poimtand there exist®™ f(¢), then

(

Gf(t)

(fzd)f@ — khtlel=ey. (a)

n

LS

. n
= lim —
k=0

0 .

)f(t ). )

h—0 h™

The three most frequently used definitions for the generalherefore, ifa = n € N and f is smooth enough, Defini-

fractional differintegral are the @nwald-Letnikov (GL) def-
inition, the Riemann-Liouville, and the Caputo definition

(see [14]). Other definitions are associated with well-known

mathematicians, for instance, Weyl, Fourier, Cauchy, Abel
etc.

2.1. Definitions and properties of fractional derivatives

The Giinwald-Letnikov definition is given as (witlh = 0)

G o _ 1 —« - _1\k o o
R TN (7))
with o M(a+1)

(k) S Tk+D)N(a—k+1)°
or the analogous representation

[#]
(0%
where[-] denotes the integer part. In the case of discrete time

Do f(t) = Jim b= > (=1)"(

k=0

)f(t — k),

{to =0,t1,t2,t3--- N}

and
t, = to + nh,
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tion 2..1 coincides with the classical definition for theth
derivative.

The following conformable fractional derivative is intro-
duced in [20].

Definition 2..2 Given f : (0,00) — R, the derivativeTy, f
of f of ordera € R is defined by

(Ted=1) ¢y — f(Tad=1) (¢ — ptlal—a
T R il T W

The latter conformable fractional derivative is a particular
case of Definition 2..1 fat € (0, 1]. Animportant difference
between Definition 2..1 and the conformable derivaiiygs
that our definition permits direct inferences for the fractional
derivative of any positive order, whereas in Definition 2..2 the
fractional derivative can be applied only to the last derivative.

Theorem 2.1 LetI be an intervall C (0,0), f : I — R
anda € R*. If a € (0,1], then f is G*-differentiable at
t € Iif and only if f is differentiable at; in this case, we
haveG® f(t) = tlel=a f/(¢).

Proof 2..1 If we takeq = ht!®!~* in the definition ofG* f,
then we obtain

T, () = Jim

Gof(t) = tlol=a g LD ZFE =0 _yrar-a gy

q—0 q

and there exist&* f(t) if and only if there existg’(¢), since
t>0.

(6) 618-625
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The following result contains some basic properties of theProposition 2..6 LetI be an intervall C (0,00), a € I and

derivativeG* (see [21, 22]). a € (0,1]. Then
Proposition 2..2 LetI be an intervall C (0,00), f,g: I — ae(Jo D= ft
R anda € RT. Assume thaf, g are G*-differentiable func- (J2 ()@ = £(0),
tions att € I. Then the following statements hold: for every continuous functiofion I anda, t € I.
(1) af + bg is G>-differentiable att for everya,b € R For additional details on fractional calculus we refer
andG (af +bg)(t) = aG*(£)(t) + bG"(9)(t). to [23-25].

) . ] The nonconformable derivative (see [26]) is defined as:
(2) If a € (0,1], then fg is G*-differentiable att and Definition 2..3 Given a functionf : (0. o) R and
GO& t) = tGa t+ tGa t). mniu . Vi u | . , OO —
(F9)®) = F()G°9(1) + 9(HGS (1) € (0,1], the G¥-derivative of f at the pointt is defined
3) If « € (0,1] and g(t) # 0, then f/g is G* by
differentiable att and G*(f/g)(t) = [g(t)G*f(t) —

flt+het ") - f(t)

o Gof(t) =1l
F(OGg(0)]/9(t)* e f(1) = Jim, P
If f is G¢-differentiable and there exists
4 o = R. . e
(4) G*(A) =0, A€ lim; o+ GS f(t), then we define
A similar argument to the one in the proof of Proposi- N ) N
tion 2..2 (see [22]) provides the chain rule for this fractional Gef(0) = lim GEf(t).
derivative fora. € (0, 1]. Let g be aG“-differentiable func- ) )
tion at¢t > 0 andf a differentiable function aj(t). Then, So for discrete times we have
o @ o a @ f(tn) — f(tnfl)
G (fog)t) = f'(9(t) G*g(t) = (G f)(9(t)) g’ (t)- NE () met - =

Some theorems of the classical calculus have their equivAlso, note that
alents in the fractional calculus.

Neft)y=e " f(t). 7
Theorem 2..3Leta > O and f : [a,b] — R a continuous r=e S %

function such thaf (a) = f(b) and f is G*-differentiableon 55 gome Lenard—type systems
(a,b) for somea € (0, 1]. Then there exists € (a,b) such

that G f(c) = 0. For the numerical experiments we present below we use the
Using the previously developed ideas we can demonstra@;andard Euler method that for the classicarard system

the following classical result. of Eq. (1)

Proposition 2..4 Leta > 0 and f, g : [a,b] — R continu- O e A VR o YR

ous functions which ar&*-differentiable on(a, b) for some h

a € (0,1]. If G¥f(t) = G(¢) for all t € (a,b), then y o I T Ynot —g(zn_1)

there exists a constat such thatf (t) = g(t) + C for every h

t € la,b]. provides the discrete orbits

Although the index law for iterated derivatives is not ful-
filled, the following result provides a general rul to compute
iterated derivatives. Yn = Yn—1 — hg(Tn—1) .

Let I be an intervall C (0,00), a,t € I anda € R™.
The integral operatod? is defined for every locally inte-

Ty = Tp_1+ h [yn—l - F(xn—l)] )

Moreover, we consider here the general system

grable functionf on I as (@ =y — F(z),
(8)
A (S) y(ﬁ) = —g(l’) )
Ta()®) = | Fara s (@) andy(®) i
s wherez'\®) andy'”) are fractional operators aid< «a, 8 <

a

1. Therefore, in the conformable case [from (8) and Theo-
The following results contain some basic properties ofrem 2..1] we have

this integral operator (see [21, 22]).

” . =’ =y — F(z),
Proposition 2.5 Let I be an intervall C (0,00), a € I, =Py = —g(x) ,
0 < a < 1 and f a differentiable function od such thatf’

is a locally integrable function od. Then, we have for all Wwith solutions

tel Tp =Tp_1+ h(tn—l)ail [yn—l - F(xn—l)] 5

Jg (Ga(f))(t) - f<t) B f(a) Yn = Yn—-1 — h(tn—l)ﬁilg(xn—l) 5

Rev. Mex. 5. 65 (6) 618-625



ON FRACTIONAL LIENARD-TYPE SYSTEMS 621

while in the non-conformable case [from (7) and (8)] I ™ T T 1

1+ — 1 —
. a b

et LC/ =y — F(ﬁ) , | ( ) i | ( ) i
ey = —g(x). 5 05 — o5k —
the solutions are written as i 1 T i
0 — OF —
Ty = Tp-1+ hei(t"_l):: [yn—l - F(xn—l)} ) i I T C 1+ 1 v 17

Yn = Yn—1 — he” =) gz, ). 0 05 1 0 05 1

T 1T T 1 T 1T T
Note that the standard Euler method has a computational cos 1= (C) -1 1 (d) -
of n and an error of)(h?). But for the Giinwald-Letnikov - - - .
case, we use aiterative Euler method with computational 0.5 Hosk _
cost ofn? and error ofO(h): from (3) and (8) we have > i i i |
O a 0 — Of —
h Z(l)k(k>zn—k = Yn—-1 — F(In—l) ) E o | | A E | | A

— 1 1 1 1
, g 0 05 1 0 05 1
h™ -1 ek = —Gn_1 X X
S0 (o= =

FIGURE 1. Numerical solutions of the Einard system of Eqgs. (9)
for (a) classical, (b) Gmwald-Letnikov, (c) conformable, and (d)
non-conformable derivatives. Red thin curves in panels (b-d) are
n o solutions for the ordera, = 0.975, 0.925, and 0.9. The classical
Ty = Z(_Uk“( >$n—k + h [yn_l — F(J;n_l)] , derivative solution is also included in panels (b-d) as a reference

T=1 k (black thick curve). The blue dot indicates the initial condition.
n

Yn = Z:(*l)k+1 (Z) Ynk —h P gn_1. In Fig. 1 we present numerical solutions of thehard

k=1 system of Eqgs. (9) for (a) classical, (b) iBrvald-Letnikov,
(c) conformable, and (d) non-conformable derivatives. The
classical derivative solution is also included in panels (b-d) as
% reference (black thick curve). Red thin curves in panels (b-

with solutions

Below we use a time step of size = 10~6. We verified
that we obtain qualitatively the same solutions when usin

smaller values Oi%' . . d) are solutions for the orders= 0.975, 0.925, and 0.9 such
Now we consider six relevant cases obhard-type sys- ¢ their proximity to the black curve is greater the closer

tems subject to different conditions and within the frame-,, 1 ig the order of its derivative; as expected. The blue dot

work of different notions of derivatives (integer order and;yicates the initial condition. The rest of the figures, Figs. 2

fractional order, global and local). For them_, we will tqke 1o 6 corresponding to Cases Il to VI, respectively, display the
as a base some works that have presented diverse qualltatlggme structure as Fig. 1 for comparison purposes

results on these systems, under the general following condi- Notice that if we consider the system

tions:
/ $3 2
(@) zg(x)> 0forx #0, oy E—’_ A (10)
+oo y’ = —223 s
(b) /g(r)dr = 400, instead of (9), we get” — (22 +2)x2’ +22% = 0, which does
) not satisfies either (a) or (c) and has the unbound solution
x = et

(¢) f(z)>0 for all z € R and consequently F'(z) > 0
for x # 0.

Case Il. The study of the existence of limit cycles is one
of the fundamental topics of the Qualitative Theory since
Poincae treated it at the end of the XIX century. In [29] the

Case . The classical Lenard system.Consider the sys-  aythor studies the existence of limit cycles and its algebraic
tem (1) under assumptions (a) and (c). In this case, the equiharacter, being a fundamental example the system
librium point (0, 0) is asymptotically stable (see for exam- 3
ple [27] and [28] for additional results). Here we consider as =y — (x _ x) ’
an example the system 3

2002 4)
I (3 y’:—x[l—l—x(x].
x/ y—(z° +z), ©) 16

y=-T. The numerical solutions of this system are shown in Fig. 2.

(11)

Rev. Mex. 5. 65 (6) 618-625



622 A. FLEITAS, J.A. MENDEZ-BERMUDEZ, J.E. MPOLES VALDES, AND J.M. SIGARRETA ALMIRA

This system under the assumptiong(z) > 0, zg(z) > 0
for all z # 0, and f andg continuous onR, may have a
negative solution which is not continuable to the right as the
following example showsxz” + 3z’ + 2° = 0, has the
solutionz(t) = ¢~1. In generalz(t) = (x — a)~! with
t < a is a noncontinuable solution of the above equation and
z(t) = (x — a)~1, ¢t > «, is also a noncontinuable solution
of this equation.

The numerical solutions of system (12) are shown in
Fig. 3.

Case IV. Yu and Zhang in [32] studied the system (ex-
ample 1, page 54):

=y +22?,

! __ 3
y =—-x,

(13)

which satisfies condition (c) and has the solutign =
—ﬂx2/2.
Then, in Fig. 4 we present numerical solutions of (13).
Case V. Kooij and Jianhua considered in [12] the system:

FIGURE 2. Numerical solutions of the Enard system of Egs. (11)
for (a) classical, (b) Gmwald-Letnikov, (c) conformable, and (d)

non-conformable derivatives. Red thin curves in panels (b-d) are = 1y —z(x—1)(z+1.1),
solutions for the orders: = 0.975, 0.925, and 0.9. The classical 5" (14)
derivative solution is also included in panels (b-d) as a reference y = —a?,

(black thick curve). The blue dot indicates the initial condition.
which has a stable limit cycle at the origin (see example 4.1,

T I . page 272 of [33]). They showed that if the condition on the

monotonicity of F'(z) is violated, then an additional condi-

tion to guarantee the uniqueness of the limit cycle is needed.
The numerical solutions of (14) are presented in Fig. 5.

0
>
-2
0
0 0.5 1 0 0.5 1
X X >
FIGURE 3. Numerical solutions of the Einard system of Egs. (12) -2
for (a) classical, (b) Gmwald-Letnikov, (c) conformable, and (d)
non-conformable derivatives. Red thin curves in panels (b-d) are

solutions for the orderas = 0.975, 0.925, and 0.9. The classical
derivative solution is also included in panels (b-d) as a reference
(black thick curve). The blue dot indicates the initial condition.

icisak . . h FIGURE 4. Numerical solutions of the Einard system of Egs. (13)
Case IIl. Hricisakova in [30] studied the system (see for (a) classical, (b) Gmwald-Letnikov, (c) conformable, and (d)

also [31]): ) non-conformable derivatives. Red thin curves in panels (b-d) are
=y — 3i solutions for the ordera: = 0.975, 0.925, and 0.9. The classical
2 (12) derivative solution is also included in panels (b-d) as a reference
y = —x3. (black thick curve). The blue dot indicates the initial condition.

Rev. Mex. 5. 65 (6) 618-625
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FIGURE 5. Numerical solutions of the Enard system of Egs. (14)
for (a) classical, (b) Gmwald-Letnikov, (c) conformable, and (d)

solutions for the ordera = 0.975, 0.925, and 0.9. The classical
derivative solution is also included in panels (b-d) as a reference

(black thick curve). The blue dot indicates the initial condition.

| l_l(ll))l

0 0.5

0.5 1

623

can be considered as a limiting case for thénard system
of Eq. (1). Its roots—1 + /3i)/2 indicate that this system
has an asymptotically stable focus at the origin, of a global
nature.

Finally, Fig. 6 shows numerical solutions of system (15).

3. Theoretical-methodological remarks

In addition to the standard &nard system of Eq. (1) we con-
sider here the more general system of Eq. (8):

x(a) :y—F(fE),

where the notation:(®) andy(® labels a fractional opera-
tor; for example the Gronwald-Letnikov fractional derivative
(with 0 < o, 6 < 1). From (8) we have,

dy y" P —g(x)

de  z(-2)y— F(x)

(16)

Consider the orbifl'(x, y) of (1) and the curve”(z, y)

®which is the image ofl" by the application ofb. We can

show that”' is an orbit of (8) as follows.
In the regionz > 0, if a point(x, y) belongs to the curve
C we have from (8) that

dze  ze=Ddg’

Thus the curve” in the regionz > 0 is an orbit of (8) ob-
tained by multiplying the orbit of (1) by a “factor” which
contains a fractional integral of complementary order to the
derivative considered;e., the Jacobian of the isomorphism.
If the orbitT crosses thg-axis in some poinf0, y; ) then the
orbit C' crosses they-axis in (0, ®(0,y1)), with y; > 0 or

y1 < 0.

Let C’(z,y) be an orbit of (8) passing through the point
(0,9(0,y1)) andT’(x, y) be the inverse image @’ by the
application of®. From unicity of solutions of (1)T" andT”’
coincide and”' andC” therefore also coincide by injectivity
of ® (the Jacobia(®—1 /(@1 £ 0). Thus® maps orbits
of (1) into those of (8).

A similar result is obtained in the regian < 0. There-
fore notice that ifzF'(z) > 0 andzg(z) > 0, for z # 0,
then there exists an isomorphigbnof the phase plane of the
system (1) on the phase plane of the system (8), which is a

FIGURE 6. Numerical solutions of the Einard system of Egs. (15) one to one correspondence between all orbits of (1) and those
for (a) classical, (b) Gmwald-Letnikov, (c) conformable, and (d) of (8).

non-conformable derivatives. Red thin curves in panels (b-d) are

solutions for the ordera = 0.975, 0.925, and 0.9. The classical .

derivative solution is also included in panels (b-d) as a reference4- Conclusions

(black thick curve). The blue dot indicates the initial condition. o
Identifying the parameters that lead to stable or unstable be-

haviors in dynamical systems is of paramount importance;
since stability represents the ability to return to the state
of equilibrium after changes or temporary perturbations, ac-
cording to external and internal factors. Also, the study of the

Case VI. The linear system

r=y—=x,
y = —a (15)

Rev. Mex. 5. 65 (6) 618-625
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behavior of orbits around critical points for the identification type systems with different differential operators; also, with
of possible stationary states in dynamical systems is of mainumerical examples we showed that some cases suffer more
relevance: When a small perturbation is made to a given syddistortions than others.

tem, and there is a departure from the critical point, if the sys-  Moreover, from the figures presented in Sec. 2.2, we can
tem is in a state of stable equilibrium it will approach againmake the following methodological observations:

the critical point; on the contrary, it is in a state of unstable

equilibrium. (1) If the equilibrium position is globally asymptotically

Here, we made a stability analysis oféard—type sys- stable (or completely unstable), the orbits of the sys-
tems where the perturbation is the application of non-integer ~ tem “resist” the deformations and still offer a good ap-
differential operators. It is clear that the Jacobian of the frac- proximation wher and 3 are close td.

tional differential operator can “distort” the geometric behav-
ior of the orbits around the equilibrium points, thus we iden-
tified in which cases this distortion influences importantly the
dynamics of the system (as compared to the dynamics under
the integer differential operator).

It is well known that obtaining analytical solutions for Finally, can we contribute to answer the questions posed

given_ dynqmical s_ystems, mainly in Fhe nonlinear case, i%tt the beginning of the paper? Well, we realized that the
practically impossible. Thus, a numerical approach togetheétudy of the equilibrium points of the ordinary system pro-

with a qualitative analysis becomes a suitable strategy; Nencgijes hints of the behavior of the system under fractional
the relevance of the methodology used in this work. Here Weyiterential operatorsi.e., the study of a fractional model
have studied the behavior ofénard-type systems using dif- g4 he accompanied by the qualitative study of the cor-

f_erent der?vat_ive operators: integgr and fractio_nal. The frac'responding ordinary system. Indeed the previous analysis of
tional derivatives we used were @wald-Letnikov (GL), e corresponding ordinary system may considerably help to

conformable (G), and non-conformable (N), while the ordi-\,,qerstand and improve processes or phenomena studied in
nary derivative was also shown as a reference. The main d'?he frame of fractional derivatives

advantage of GL derivative is the non-compliance of several

classical properties of the ordinary derivative, which makes

it unable to “replicate” the case studies of the integer-orderAcknowledgments

The local fractional G and N derivatives, do not have that dis-

advantage thus have some points in favor. For example, thbA-M.-B. thanks partial support by VIEP-BUAP (Grant
G derivative is conformable which ensures an “equivalence’N0. 100405811-VIEP2019) and Fondo Institucional PIFCA
with the results of the integer-order at all finite times. In(Grant No. BUAP-CA-169), Mexico. J.M.S. was sup-
the case of the N derivative, although it is non-conformableported in part by two grants from Ministerio de Ecoriam
at infinity behaves like the ordinary derivative, which is of Yy Competitividad, Agencia Estatal de Investigati(AEI)
paramount importance in the Qualitative Theory. Moreoverand Fondo Europeo de Desarrollo Regional (FEDER)
we have demonstrated theoretically that there is a “certaifiGrant Nos. MTM2016-78227-C2-1-P and MTM2017-
geometrical similarity” between the trajectories okhard— 90584-REDT), Spain.

(2) If the equilibrium position is not structurally “good”,
the distortion manifests itself easily;e., the factor
y(1=8) /2(1=2) strongly influences the configuration of
the orbits.
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