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In this paper, we relate the evolution equation of the electric field and magnetic field vectors of the polarized light ray traveling along with a
coiled optical fiber on the unit 2-sphe$é into the nonlinear Scidinger’s equation, by proposing new kinds of binormal motions and new
kinds of Hasimoto functions, in addition to commonly known formula of the binormal motion and Hasimoto function. All these operations
have been conducted by using the orthonormal frame of spherical equations, that is defined along with the coiled optical fiber lying on the
unit 2-sphereS?. We also propose perturbed solutions of the nonlinear@&@ihger's evolution equation that governs the propagation of
solitons through the electric field€) and magnetic fieldM) vectors Finally, we provide some numerical simulations to supplement the
analytical outcomes.
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1. Introduction tailed information related to geometric and dynamical fea-
tures of curves. For example, Balakrishredal [10] demon-

Nonlinear evolution equation systems are commonly emstrated a possible connection between the soliton evolution
ployed as models to explain physically complex events ingnd geometric phase, which stems from the rotational path
several fields of sciences, particularly in solid-state physicsgependence of Frenet-Serret orthonormal frame concerning
fluid mechanics, chemical physics, optical physics, plasmaermi-walker non-rotating frame, by using the binormal mo-
physics, etc. Having a better comprehension of the underlytion of curves. Sdidinger flow is also induced by the bi-
ing events together with their advanced applications in theonormal motion. The generalization of the universal theory of
retical studies and simple usage in practical life, it is high'YSchbdinger flow in Riemannian manifold, symplectic man-
significant to find exact solutions of given systems. Al-ifo|ds, Kahler manifolds, paraKahler manifolds, and other

though there exists no general and unified method to detektructures were intensively investigated in the literature by
mine exact solutions for each nonlinear evolution system remany researchers [11,14].

searchers use a variety of different approaches ranging from
the truncated Painleve expansifif, Darboux transforma- The concept of Berry phase or geometric phase in quan-
tion method2] , the inverse scattering transformation methodtum systems has gained much attention following the pioneer
[3], homogeneous balance meth@d, Backlund transfor-  study of Berry[15] . Berry proved that a quantum system de-
mation method5] , Jacobi elliptic functions methd@] , pro-  pending on some parameters and evolving in time can pick up
jective Riccati equation methdd] , Hirota’s bilinear method  a topological phase in addition to the usual dynamical phase.
[8] to many other methods. This topological phase is related to the motion of the quan-
One of the important nonlinear evolution equation sys-tum system in the space. This result has become the center of
tems encountering in the differential geometry is known asseveral other experimental and theoretical investigations re-
geometric flow. This flow can be obtained through the cur-ating the other geometric events in physics to Berry phase.
vature or binormal motion of space curves concerning thé'he remarkable example of such a situation is involved in
time parameter. Curvature motion implies that a curve movethe motion of a charged point-particle in the existence of a
in the direction of a normal vector proportional to its cur- time-dependent magnetic vector field, since an extra phase is
vature. This type of evolution equation contains many no-gained by the point-particle depending on the geometry of the
table geometric partial differential equation systems. Thesenagnetic field. Another classical example for that case can
equation systems are mainly classified as average mean cure observed on the propagation of polarized light along an
vature flow, mean curvature flow, Willmore flow, and sur- optical fiber. In particular, Rosd6], Kugler and Shtrikman
face diffusion flow. Some of these evolution systems havdl7] have focused on the geometric nature of the rotation of
a particular solution under some circumstances, for instanceolarization in the optical fiber, by considering the fiber as a
Willmore flow leads surfaces whose squared to mean curvaspace curve showed that the phase dependence of this phe-
ture is minimal and the mean curvature flow yields to mini-nomenon can be explained in terms of parallel transportation
mal surfaced9]. Binormal motion, however, implies that a along the optical fiber. The geometric phase of the optical
curve moves in the direction of binormal vector proportionalvortices in coiled optical fibers were studied by Alexeyev and
to its curvature. This type of evolution equation includes de-Yavorsky [18].
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The organization of the paper is as follows. Section 2smooth. Then the spherical frame is defined along the curve
is devoted to present brief information about the geometryl as follows
of the unit 2-sphereéS? to provide the basic background. v, 0 1 0 N
The goal of the third section is to supply a somewhat more t, =] -1 0 u t |, 1)
fundamental differential geometric approach to compute the
geometric phase of the polarized light ray, traveling along
with the coiled optical fiber lying on the unit 2-sphe3é.  wherey = det (¥, t, t, ) is the geodesic curvature &f. The
In Sec. 4 it is aimed to clarify the geometric nature of thevector product of spherical vector fields is given by
electric field and magnetic field vectors of the polarized light
ray along with the coiled optical fiber. Investigating the re- V=tAn, t=nA¥, n=UAt. )
lation between the evolution equations of the electric fieldFor more details, seie9) .
and magnetic field vectors of the polarized light ray travel-

ing in a coiled optical fiber an&v LS equations is the sub- . . .
ject of Sec. 5. In Sec. 6 we propose perturbed solutions 0’13' A geometric phase of the polarized light ray

the nonlinear Sclirdinger’s evolution equations that govern propagati_ng along with a coiled optical fiber
the propagation of solitons through the electric figi) and on the unit 2-sphereS?
magnetic(M) field vectors.

n, 0 —u O n

In this section, we mainly focus on the behavior of the po-

larization of light traveling along with a coiled optical fiber
2. Preliminaries on the unit 2-spher82. We aimed to obtain the geometric

phase of the polarized light through Fermi-Walker parallel
The characterization of the motion of particles via a spacgransportation law and spherical coordinate system in various
curve is a very efficient method to comprehend many physsityations.
ical events. These events can be modeled by connecting the e begin by describing notations and definitions of the
motion of the particle with a space curve in a given spacepolarized light ray coupling into a coiled optical fiber lying
time. on the unit 2-spher§?. Here, the polarized light ray is sup-

Ordinary space is one of best fitted geometric settings foposed to arc-length parameterized and the arc-length param-

many physical phenomena, such that it has been intensivebter is denoted by. It is also assumed that each ray corre-
studied by both differential geometers and physicists. Sincgponds to a space curve for a given specific refractive index
the unit 2-sphere is a submanifold of the ordinary 3-space, wgnction V/(¥), which is the solution of the following differ-
firstly give geometry of the curves in the ordinary 3-space. ential equation.

Ordinary 3-space is a vector space endowed with a stan-
dard metric N(®)V,), = VN (). 3)

From now on, we shall suppose that there exists a sufficiently
smooth space curve: ¥ = ¥(v) satisfying the Eq(3) and
standing for a ray of light traveling in a coiled optical fiber.
Our primary goal is to observe the evolution of the elec-
h tric field vector concerning arc-length parameteas light
ray propagates along the coiled optical fiber. NowHetp-
resents the normalized complex electric field vector having
a three-component of the spherical triad at the pdift)
ondie E= Z?:1 ¢;[t, n, U], where eachp; is a smooth
function along with the¥(v). The direction of the electric
S? = {7€R3: (- 7) = 1). field vector evolves due to Fermi-Walker parallel transporta-
tion law, while its magnitude varies along the ray. Here, we
Hereafter, we consider a smooth regu'ar curve |y|ng fu"y onWi” analyze three different cases according to the choice of
the unit 2-sphere. In the theory of differential geometry, onethe direction of the electric field vector.
of the most efficient ways of exploring the intrinsic feature ~ Case 1. Inthe first case, the normalized complex electric
of the curve is to consider its orthonormal frame. It is con-field vectorE is assumed to lie on a plane perpendicular to
structed by several orthonormal vectors and associated cut- AS @ consequence of Maxwell's equations, the evolution of
vatures depending on the dimension of the space. The cunige electric field vectoE concerningu obeys the following
satisfying the spherical frame equation is called a sphericdPrmula due to the Fermi-Walker transportation Ig].
curve. Finally, we are ready to establish the orthonormal E, = —(E-t,)t @)
frame of spherical curves lying fully on the unit 2-sphere. Y v
Let ¥ : T — S? be a unit speed regular spherical If spherical frame vectorgt,n,¥) and electric field vec-
curve, that is it is an arc-length parametrized and sufficientlytor E are respectively regarded as being a three-component

(’/T . 9): 71'191 + 7T202 +7393,

wherer = (w1, m2,m3), 0 = (01,03,03) € R3 are arbitrary
vectors in the spac&he norm function of a vector is given
by ||| = /(7 - 7) andr is called a unit speed or arc-lengt
parametrized ifjr|| = 1.

Now, we can present a geometric definition of the unit
sphereS? as the analog of the ordinary 3-space in the follow-
ing manner.
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real column vector and complex three-component columiio find the geometric phase of the system defined, in this
vector, then the Eq.(4) can be expressed in the form of case, we need to solve the E@L0) . For this purpose, we

Schibdinger’s equation as followg1] . choose the electric field vect® as the linear combination
, of the tangent and binormal vectors of the spherical triad in
iE, = HE, (5)  the following way.
H=ix(nt” —tn”). t+ U t— v
E-= + : 11
01 /2 02 NG (11)

Apart from the evolution Eq. (5), there exists following re-
striction onE along with thep(v). whereEE* = 1 and polarization coefficients: |* + |o2|* =

1. If one follows a similar approach as in the first case, then
the following consequence is obtained for polarization coef-
ficients of the system.

t’E = 0. (6)

This restriction, together with the Eqg. (5), implies that the

dynamical phase of the system vanishes. The vanishing of 0. = —ip, 1= Pl dv g

the dynamical phase is an attractive and special feature of the ° ’ ’

system, and it is caused by the transverse nature of electro- 02, =03, o03=eT0?dy,

magnetic waves, whose mathematical expression is given by _ .

the Eg. (6) on the unit 2-sphere whose stereographic pro- do = colvo) = (t(vo) + ¥ (vo)) E(vo),

jection is a 2-dimensional plang&his fact leads to conclude V2

that the measured geometric phase automatically yields the (t(vo) — i¥(vp))*

total phase and vice versa. To compute the geometric phase, di = c1(vg) = 7 E(w). (12)
we firstly consider a finite segment of the space curve from a 2

point p(vp) to a pointp(v1 ). ThenE(v) is determined by the  If one considers Eqq7, 10 — 12), then the geometric phase
selection ofE(vg) for v € [vg,v;1] and leads to an ultimate is computed by)g = f;;l dv.
E(vq). As a consequence, the geometric phase of the system

's given by 4. Magnetic field vectors of the polarized light
ray traveling along with a coiled optical
fiber on the unit 2-sphereS?

Yo = arg E(vg)"E(v1), (7

whereE(vg)* is the complex conjugate of ti&(wvy ). To find

the geometric phase of the system defined, in this case, we
need to solve the Eq. (4). For this purpose, we choose thi flat spacetime, the motion of a charged point particle was
electric field vectorl as the linear combination of the nor- highly active and popular research field since the early study
mal and binormal vectors of the spherical frame triad in theof Poincare, Abrahams, and Lorentz. As such, Einstein’s

following way. study of special relativity was inspired on the electrodynam-
n4 iU n— T ics of moving_objects. Poincarg and Lorentz were also moti-

E =¢; + @2 , (8) vated and guided by the equations of Maxwell to investigate

V2 V2 spacetime transformations. This gave rise to the radical uni-

whereEE* = 1 and polarization coefficients satisfy that fication of Minkowski spacetime. In this context, it is fairly
612 + |és]2 = 1. We obtain the following results for po- true that Maxwell equations played a key role to compre-

larization coefficients. hend the profound connection between the dynamics of the
major physical fields and interactions. Further researches, in

01, =0, ¢1=co, ¢2,=0, ¢2=0cy, turn, led to connect the spacetime geometry with the electro-

. . magnetic field. As a conclusion, it is observed that the field
co = colvy) = (n(vo) — 1¥(vo)) E(vo), equations are entirely general at the very base of the elec-

V2 tromagnetic theory, regardless of considering of any affine

(n(vo) + i (v))* structure or metric of spacetime, however, its comprehension

c1 = c1(vg) = NG E(vp). 9) in spacetime by way of essential connections admits consti-

tutive relations between the causal framework of spacetime

If one considers Eqgs. (7-9) then the geometric phase is conand electrodynamics.
puted byye = 0. The study of magnetic fields and their associated mag-

Case 2. In this case, the normalized complex electric netic curves is one of the research topic situated at the inter-
field vectorE is assumed to lie on a plane perpendiculaito action between physics and differential geometry. A closed
It is deduced from Maxwell’s equations that the evolution of 2-form K on the ordinary spacgR?, -) is called a magnetic
the electric field vectoE concerningu obeys the following  field. The Lorentz force ofR?, -, K) is defined by the skew-
formula of the normal Fermi-Walker transportation &26] symmetric one-to-one tensor fieflon R? fulfilling that

E,=—(E-n)n. (10) (®2-8)=K(Z-S), (13)

Rev. Mex. 5. 65 (6) 626-633



SOLITON PROPAGATION OF ELECTROMAGNETIC FIELD VECTORS OF POLARIZED LIGHT RAY TRAVELING ALONG... 629

whereZ,S € X(R3). Thanks to these fundamental facts, aNow, one can characterize a special magnetic field vector that
trajectory produced by the magnetic field can be described asontains magnetic trajectories of ti&M ¢ —magnetic curve
an arc-length parametrized space cupyan R? if it satisfies  of the . To do that, one should first consider an arbitrary

following Lorentz equation divergence-free vector field on the unit spher&2. Then
_ o 14 we can assume thal is written as a linear combination of
S = Dy, A4 the spherical triad vectors along with tB&M—magnetic

where¢ = £(v). In the physical context, it is said that mag- curve of thel such that it doe_s not vanish on any points of
netic curvet is the trajectory of a point charged particle underthe curve. From the Eq. (16) it is known thBM=0. Thus

the influence ofC in the magnetic backgrour@?, -, K). itis readily obtained that
In the case of the three-dimensional space, vector fields
and 2-forms can be described via the volume faim,, 0 = @M=, Pt+mPn+m3Pb, (19)

and the Hodge star operater of the manifold. Hence,

divergence-free vector fields and magnetic fields are in (Iwherem;, 1 < i < 3 are arbitrary sufficiently smooth

1) correspondence. Therefore, for any vector fielcon the  functions. Finally, from Egs. (18,19) one can conclude that

three-dimensional space, the Lorentz equation can be giveBEM¢—magnetic curve of th& is a magnetic trajectory of a

by the following formula magnetic field vectoM if and only if divergence-free vector
field M is in the following form.

PZ=MA\ Z, (15)
wherediv(M) = 0 [22]. M=n + V. (20)
In this context, we define magnetic curves generated by
the electric field vectoE, along with the polarized light ray Secondly, we suppose tHaties on a plane perpendicular

coupling into a coiled optical fiber on the unit 2-sphBfeby  ton along withd : ¥ = ¥(v). If one considers Egs. (10-17)
considering the Lorentz force. These curves are called sphethen the Lorentz forcé in the spherical triadt, n,V) of the
ical magnetic curve$SEM —magnetic curvesalong with  SEM,, —magnetic curve of th& is given by

the paper since it is used the definition of both electric and

magnetic field vectors during the generation process. oU 0 0 O v
The direction of the state of the polarized light ray is ot | =0 0 —p t . (21)
referred by the direction of the electric field vectBrin dn 0 uw O n

the coiled optical fiber. ThE EM—magnetic curve of the

U = ¥(v) along with the polarization plane of a light ray In this case, one can also conclude tB&M,,— magnetic

propagating in the coiled optical fiber in the space is definegurve of thep is a magnetic trajectory of a magnetic field

by vectorM if and only if divergence-free vector fiedI is in
PE=E,=MAE, (16)  the following form.

whereM is any vector field in the space withv(M) = 0. M=pV. (22)

This definition is given naturally from Eqgs. (13-15).
In the first special circumstances, we firstly suppose that

E lies on a plane perpendicular toalong withd : ¥ = 5. The evolution of electric and magnetic field
¥(v). E, can be computed by using Egs. (4-9) as follows. vectors and its connection with NLS equa-
—p i tions
E,/ = <\/§(CO + Cl) + E(CO — Cl)> t.

) o .. The research of geometric evolution equations can be seen in
Under the assumption of the Eq. (16) and following identities, 5/iq s physical systems, such as the kinematics of a poly-

(PE-t) = —(E - &t), mer chain, the motion of a vortex filament, low dimensional
magnets, interface dynamics, magnetic spin chains, etc. Such
(PE-n) = —(E - ¢n), interrelations between physical systems and geometric evolu-
(BE-T) = —(E- & tion have led to comprehend many significant consequences
’ belonging to the underlying dynamics of the aforementioned
(Pt -t) = (Pn-n) = (P¥ - V) =0, (17)  mechanisms. Space curves have been heavily considered

as the main tool to develop the theory of evolution equa-
tions. For example, Lamb [23] focused on a space curve,
whose motion is represented by various linear equations. He
showed that, under some circumstances, the evolution equa-

one can compute the Lorentz fordein the spherical triad
(t,n,T) of the SEM—magnetic curve of th& in the fol-
lowing manner.

oU 0 1 0 U tions of moving curve are equivalent to the sine-Gordon equa-
ot | =| -1 0 pu t . (18)  tion, nonlinear Sctidinger(N LS) equation, and nonlinear
on 0 —u 0 n heat system(NHS) equation. Murugeslet al. [24] and
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Wei-Zhonget al. [25] defined some other classes of evo-binormal motion, we find it convenient to improve the fol-

lution equations for moving curves and gave correspondindpwing method. Due to the orthonormality condition we have

integrability and compatibility conditions to discover soli- (t - n) = 0 and(t - ¥) = 0. If we differentiate both equal-

ton equations. Ding and Inoguchi [26] obtained that unitities concerning the time parameter then it is obtained that

speed non-lightlike space curves obeying a binormal moft - n,.) = —(t, - n) and (t - ¥,.) = —(t, - ¥). If we also

tion satisfy Minkowski Heisenberg model for unit pseudo- consider the fact thagn - n) = 1 and (¥ - ¥) = 1 and

sphere and unit hyperbolic 2-space embedded in Minkowskiake the partial derivative of each equality we also obtain that

space. Then Grbliz [27,28] introduced three distinct fam- (n-n,) = (¥ - ¥,.) =0. Under the light of this information,

ilies of evolution equations for non-lightlike curves accord- the rest of the time evolution equation of the spherical triad

ing to the Darboux frame and Frenet-Serret frame in threeis computed by

dimensional Minkowski space. However, it should be noted

that all these research efforts have followed the remarkable n, = p,t—AV, ¥, = An, (25)

paper conducted by Hasimoto [29]. In that paper, Hasimoto

defined such a special transformation by combining the curwhere.A is an arbitrarily chosen sufficiently smooth function

vature and torsion functions of the thin vortex filament, thatdepending on botfr, v) . This background is enough to pro-

it can be reduced t&/ LS equations. ceed the next stage and find the time evolution equation of the
In this section, we demonstrate the relation between thelectric field vectorE) of the polarized light ray traveling

evolution equation of the electric fie[®) and magnetic field along withW. To do that we should first consider the compat-

(M) vectors of the polarized light ray traveling in a coiled op- ibility condition, which strictly asserts tha#t,, = E,.,. Then

tical fiber, which is supposed to correspond a moving spacee describe specially designated complex quantities, which

curve lying on the unit sphe®?, andN LS equations. To be carry a complete characterization of the moving curve. These

more specific, we firstly consider the basic identities governguantities are called as the first kind of Hasimoto functions

ing the motion of the coiled optical fiber, and we find the evo-and they contain geodesic curvature term in the following

lution of the electric field E) and magnetic fieldM) vec-  way.

tors of the polarized light ray. Then, we introduce a specially 1 . 1 .

defined Hasimoto function for each type of motion to relate % = V2 (=ntd), o= V2 (ot (26)

the evolution equations of the electric fiélB) and magnetic

field (M) vectors into the special type o LS equations If one uses Eqgs. (23-26) then a straightforward calculation

Theorem 5.1. Let O be a coiled optical fiber that de- yields that
scribes a sufficiently smooth space cutve ¥ = ¥(v,r) s
lying on the unit spher&2 such that polarized light ray is B, = (codo — c101) t, (27)
coupled into the). Let suppose thdk lies on a plane per- E, = (co(60), — 1 (61),) t + AS1 + ASa,
pendicular tot, along withd : ¥ = ¥(v). If ¥ obeys the
first kind of binormal motion(t, = t,,) then the evolution where S; = (1/v2)co (in — V), and S; = (1/V2)

equation of the electric field vectgE) of the polarized light ¢, (—in — ¥). The compatibility condition implies that
ray traveling along with? satisfiesN LS equations and the Hasimoto functions of the evolved electric field ved®sat-
magnetic field vectofM) satisfies following evolution equa- isfies following N LS —type equation.
tion.
Ay = i, pr = AL+ %), (d0),. = (d0),,, + iAdo, (28)
whereA is a smooth function depending on bdthv) . (51), = (61),, — iASy.
Proof. If E lies on a plane perpendicular tathen it is " vy

already known from Eqgs. (8,9) that Finally, if A is assumed to have the fors = —idyd;, then

n+ v n— v (23) we obtain one of the AKNS- hierarchies equation as a special
V2 “ V2 case of the Eq. (28) as follows.

On the unit spher&?, a spherical frame equation is intro- 2

duced as an orthonormal trigd, n, t) of unit vectors to in- (80) = (90, + 9001, (29)

vestigate the intrinsic features of a space cubvewhich is (61), = (61),, — 67%0.

given by Egs. (1,2). IV is supposed to obey the first kind of

binormal motion, thenl both depend on the arc-length and WhenE is assumed to lie on a plane perpendicular &dong

time parameters. The first kind of binormal motion of a spacewith ¥, the magnetic field vectqiM) is computed by using

curve is given by the Eqg. (20) adMi=n + pV. If Egs. (24,26) are considered
. . and the compatibility conditiodM,,,, = M,., is used then it

br = bop = pom. (24) is obtained that
To define time-dependent spherical frame equations for a
moving space curv& = ¥(v,r), obeying the first kind of Ay = fh, pr = AL+ 1i?). (30)

E =Cp
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Theorem 5.2. Let O be a coiled optical fiber that de-
scribes a sufficiently smooth space cutve ¥ = U(v,r)
lying on the unit spher&? such that polarized light ray is
coupled into the). Let suppose thdk lies on a plane per-
pendicular tan along withd : ¥ = ¥ (v). If ¥ obeys the sec-
ond kind of modified binormal motiofn, = n,,,) then the
evolution equation of the electric field veci{@) of the polar-
ized light ray traveling along witl satisfies anVvLS—type
equation and the magnetic field vect®I) satisfies follow-
ing evolution equation.

Cy = /1*27 24y = —pC,

whereC is a smooth function depending on bgthv) .
Proof. If E lies on a plane perpendicular itothen it is
already known from Eqg11, 12) that

t 40
——

V2

t—v

V2

E=c oy +eto

(31

631

When we suppose th#t lies on a plane perpendicular to
n along with ¥, the magnetic field vectqfM) is computed
by the Eq. (25) aM =p V. If Egs. (32-34) are considered
and the compatibility conditiodM,,,, = M,., is used then it
is obtained that

(38)

6. Optical Soliton Perturbation in Coiled Op-
tical Fiber with Evolution Equations of
Electric and Magnetic Field Vectors by
Traveling Wave Hypothesis Approach

In this section, we propose perturbed solutions of the non-
linear Schédinger’s evolution equation governing the prop-
agation of solitons through the electric figl£) and mag-
netic field(M) vectors of the polarized light ray traveling in

To define time-dependent spherical equations for a moving coiled optical fiber. The traveling hypothesis approach is

space curvel = ¥(v,r), obeying the second kind of mod-

ified binormal motion, we assume that = n,,. Then this
motion of a space curve implies that

n, = ny,, = —,t + pv. (32)
Due to the orthonormality condition we have
(n-t,)=—(n, - t),
(n-¥,.)=—(n, ), (33)
(t-t,)=(T -¥,)=0.

employed to compute analytical soliton solutions. The nu-

merical simulations are also provided to supplement the an-
alytical outcomes. Here we consider evolution equations of
the electric field and magnetic field vectors given in Theorem

5.2 since it is a much rare case. We attempt to discover the
dynamics of optical soliton propagation Bf and M along

with the coiled optical fiber.

Let suppose thak lies on a plane perpendicular io
along with the coiled optical fiber. Then the evolution equa-
tion of the electric field of the polarized light ray traveling
along with coiled optical fiber satisfies following LS —type
equation given by the Eqgs. (37,38).

Thus the time evolution equation of the spherical triad is com-

puted by using Egs. (32,33) as follows.

t, = pu,n+C¥, VU, =—un—Ct, (34)

whereC is an arbitrarily chosen sufficiently smooth function
depending on botfr, v) . Then we can define the second kind

of modified Hasimoto functions as follows.

(35)

If one uses Eqs(31 — 35) then a straightforward calculation

yields that
Ev = (doTo + lel) n,
E,,A = (do (To)v + d1 (Tl)v) n+ CNl + C./\/Q,

(36)

where N} = (1/v2) e~ g, (¥ —it), and Ny =
(1/v2) €'V ™dy (¥ +it). The compatibility condition

implies that the second kind of modified Hasimoto func-

tions of the evolved electric field vect#r satisfies following
N LS—type of evolution equations.

(Yo), = (Yo),, —iCYo,
(1), = (Y1), +iCYy.

37

(To), = (To),, — iCYo,
(T1), = (T1),, +iCYy,
Co — 1% =0, 24, + uC = 0.

(39)

We implement the traveling wave transformation method
presented by Biswas [30] for the Eq. (38) in the following
way.

C = U(¢>7 H = W(¢)7 d) =v—- QT,

where( describes the speed of the wave.
By placing the Eqg. (40) into the Eqg. (37), it is obtained
that

(40)

Uv(d’) - W2(¢) =0,
0.

2Wy(9) + U(9)W(¢) = (41)
If one solves the Eq. (41) it is further computed that
€ = 2/a tanh(y/ar (v — Qr) — 2¢2)),
5= /2esech(Var((v — Qr) —2e2))?.  (42)
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If we reconsider the Eqg. (37) then we get by the traveling
wave transformation method that

TO _ u(¢)6i(_KU+ST)7
Tl _ u}((b)ei(—m;-‘,—sr)7
¢ =v— QT7

wherex, s and@Q respectively, describe the frequency, wave
number and the speed of the wave. Thus real and imaginary
sections can be deduced by the following approach. The rea

(43)

o
o
-

TALAT K ORPINAR, RIDVAN CEM DEMIRKOL, ZELIHA KORPINAR

044. 7

1 Jpr 8

= =
10 ~

sections are as follows.
s*u(¢) — Qu'(9) —u'"(¢) = 0
Su(d) — Qui(9) — w" () = 0.
Solving the Eq.(44), we obtain that
w(p)=c1e3 Q- V@S | ) F(-QH/Q7+152),
w(B)=czet VNS | F(-QH/QPHD)6 (45

)

(44)

Ty = ei(fmﬂrsr)(Cleé(fo\/W)(var)
+ C2€%(—Q+\/Q2+4s2)(v—Qr)),

T, = ei(—m;+s7’) (036%(_Q_V Q2+452)(v—Qr)

+ ege QI 0-Qr)y (46)
The imaginary sections are as follows.
—ru(¢) + Cu(¢) — 2su'(¢) = 0,
—rw(g) — Cw(¢) = 0. (47)
Solving the Eq. (47), we obtain that
u(¢) _ e_¢<~—2mtanh<§<v—czr—2c2>>> e,
w(g) = 0. (48)

Then it is finally obtained that

10

10° g "

Al

v

FIGURE 1. Analytical solution(46) of the Eq. (39) is given for
k=-2,s=1,Q=12,c3=cqa = 1.

FIGURE 2. Analytical solution(49) of the Eq. (39) is given for
k=-2,s=1,Q0Q=12,c1 =c2 =c3 = 1.

(v=Qr) (5 —2,/CT tanh (/o (v—Qr—2¢3)))
2s

TO _ ez(fﬁv+sr)f cs,

T, =0. (49)

In Figs. (1,2) , itis represented 3D simulations of the soliton
propagation of the electric and magnetic field vectors of the
polarized light ray along with the coiled optical fiber on the

unit sphere for the solution of the real and imaginary section
respectively.

7. Conclusion

In this study, we derive the evolution equation of the elec-
tric field and magnetic field vectors of the polarized light ray,
and we use such analogy to obtain optical soliton solutions in
coiled optical fiber on the unit 2-sphe$d. As is known the
stereographic projection maps a unit 2-spl&rento a plane

R2. Then a natural question arises whether the soliton solu-
tions on the unit 2-sphei®? remains similar in the plane or
not. The answer is negative since the Riemannian curvature
of the unit 2-sphere is nonzero as opposed to the Rieman-
nian curvature of the 2-dimensional plaRé. By using this
knowledge we will also look for the solutions of the evolution
equations of the electric field and magnetic field vectors of
the polarized light ray in the different spacetimes with differ-
ent dimensions whose Riemannian curvature is not the same
asS? such as De-Sitter spacetime, anti De-Sitter spacetime,
2-dimensional plan&?2.
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