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The relation of Zakharov-Shabat scattering problem to Schr̈odinger equation
with complex potential and approximations for soliton parameters
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The relation of Zakharov-Shabat scattering problem to Schrödinger equation with complex potential is used to analytically approximate
parameters of high power solitons produced in positive Kerr media with chirped parabolic pulses. The soliton parameters are estimated for
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1. Introduction

In nonlinear positive Kerr media light pulses break into soli-
tons and radiation part. The number, powers, and velocities
of obtained solitons for situations described by the nonlin-
ear Schr̈odinger equation (NLS) are governed by eigenvalues
of the Zakharov-Shabat (ZS) scattering problem [1,2]. The
ZS equations are not self-adjoint, and in most cases of in-
terest can be solved only numerically. On the other hand,
the qualitative understanding of emerging soliton parame-
ters is often important for applications. It is known that real
pulses with one hump produce solitons only with zero ve-
locities [3] (all ZS eigenvalues are purely imaginary), how-
ever for chirped pulses, and for more complicated (e.g two-
hump) real pulses this is not true [4,5]. There are numerical
and analytical studies of soliton parameters for diffirent initial
pulse shapes [6-8], but most analytic work is limited to real
pulses. Here we propose a simple analytic method, which
permits an estimation of ZS eigenvalues with big imaginary
part (high power solitons) for multisoliton pulses with one in-
tensity maximum. These eigenvalues are mostly determined
by the function shape in a vicinity of the maximum, thus the
situation of parabolic pulse is quite general. For the approx-
imation we systematically use the relation between ZS and
Schr̈odinger equation eigenvalue problem, which was first
mentioned in an approximate form in the original Zakharov-
Shabat paper [1] . In mathematical literature it is also known,
that for real pulsesq(x), an equivalent Schrödinger equa-
tion with complex potential (SCP) exists, for the potential
Q(x) = −q2±i∂xq [9]. The SCP gives the same eigenvalues
after taking the square root. The relation can be established
for complexq(x) as well, but in general it seems, that the
inverse scattering technique is needed to reconstruct the cor-
respondingQ(x), and the resulting potential can have singu-
larities. However, it is relatively easy to obtain an equivalent
SCP potential, which itself has an eigenvalue as a parame-

ter. If the initial pulse has small variations in phase, the SCP
potential depends on the parameter only quite weakly, and
useful approximations can be constructed by iterations.

The link between SCP and ZS scattering problem is inter-
esting not only mathematically. Recently, there is a lot of in-
terest in PT symmetric physical systems with loss, described
by SCP [10-12] . In optics, such systems correspond to media
with locally distributed loss and gain, and such systems are
not easily realized in experiment. But, once the equivalence
between CS and ZS is established, the particular complex po-
tential can be modelled with a certain distribution of light
amplitude either in fiber (temporal domain) or in the bulk
nonlinear medium such as photorefractive crystal (spatial do-
main) - parameters of solitons emerging from pulse breaking
will correspond to SCP eigenvalues. PT symmetry breaking
will correspond to the appearance of fiber soliton pairs with
nonzero velocity, or spatial soliton pairs propagating with an
angle to the symmetry axis.

2. The relation of ZS and SCP problems

The Zakharov-Shabat scattering problem is written as [1,2]:

∂xv1(x) = −iλv1(x) + q(x)v2(x) (1)

∂xv2(x) = −q∗(x)v1(x) + iλv2(x). (2)

If v1(x) −→ exp(−iλx), v2(x) −→ 0 for x −→ −∞, the
solution will be limited only for a finite number of eigenval-
uesλn in the upper complex plane, withIm(λ) > 0 (we
consider continuous functionsq(x) on the compact support
which are zero for|x| > R).

The eigenvalues define soliton parameters for the nonlin-
ear Schr̈odinger equation

i
∂ψ

∂t
+

1
2

∂2ψ

∂x2
+ |ψ|2ψ = 0, (3)

with the initial conditionψ(x, 0) = q(x).
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If the pulse is symmetric,q(−x) = q(x), PT symmetry
exists, and corresponding eigenvalues are either purely imag-
inary or obtained in pairs with opposite real parts.

The relation of ZS and SCP for real ZS potentialq can be
established as follows:

Start with equations:

∂v1 = −Pv1 + λv2 (4)

∂v2 = −λv1 + Pv2 (5)

After taking second derivatives it is transformed to the
Schr̈odinger eigenvalue problem :

∂2v1 − P 2v1 + ∂Pv1 = −λ2v1, (6)

which has potentialQ = P 2 − ∂P . For v2 the term with
derivative∂P has opposite sign. Now, make the transforma-
tion of Eqs. (4-5) with a constant matrixSUS−1, where

S =
1√
2

(
1 i
i 1

)
, (7)

and denoteiP = p. Then we obtain AKNS scattering prob-
lem [2]:

∂xv1(x) = −iλv1(x) + p(x)v2(x) (8)

∂xv2(x) = −p(x)v1(x) + iλv2(x). (9)

It is seen, that whenq is real, this is equivalent to Eqs. (1-
2). In this case the corresponding CS potential isQ =
P 2 − ∂P = −q2 + i∂q. Genarally, one has for ZS−q∗ as
lower off-diagonal element, and in this case we were unable
to find simple general correspondence between ZS and SCP
problems. However, formally one can reconstruct a ZS pulse,
which has the same spectral data in a sense of inverse scatter-
ing problem, as a Schrödinger equation with complex poten-
tial. For this, the scattering data of (Eq. (8-9)) can be used to
reconstruct ZS potential Eq. (1-2) with one of known integral
equation methods, taking into account different symmetry for
two cases. The theory of inverse scattering for both ZS prob-
lem and Eq. (8-9) can be found in the book of Ablowitz [2].
The reconstruction of SCP from ZS can be problematic, since
for Eq. (8-9) even one-soliton solution can produce potentials
with singularity [2]. This procedure, however, does not seem
practical for pulses with varying phase, because for reduction
to SCP we need to solve the problem itself first.

Now, rewrite Eqs. (1-2) forv± = v1 ± v2, and using real
and imaginary part of pulseq(x) = qR + iqI (bothqR, qI are
real functions):

∂xv+ = −iλv− + qRv− + iqIv+ (10)

∂xv− = −iλv+ + qRv+ − iqIv−. (11)

From Eq. (10),

v− =
iqIv+ − ∂v+

iλ + qR
, (12)

and by taking second derivatives in Eqs. (10 -11 ), we obtain

−∂2v+ − |q|2v+ − ∂qRv− + i∂qIv+ = λ2v+, (13)

where|q|2 = q2
R + q2

I . Denote

g =
∂qR

iλ + qR
, (14)

and use expression Eq. (12) in Eq. (13). The resulting equa-
tion can be reduced with standard method to Schrödinger
form by takingv+ = u exp(1/2

∫
g), which finally gives:

−∂2u +
[
− |q|2 + i∂qI − iqIg

+
1
4
g2 − 1

2
∂g

]
u = λ2u. (15)

The expression in brackets gives the equivalent SCP po-
tential, valid for anyq, but the potential depends on eigen-
value according to Eq. (14). It is seen, that for purely imag-
inary q(x) = iqI(x), we obtainλ-independent potential,
which is the same as for purely real pulse. If in some sense
qI À qR, we can approximateλ by iterations. It is also seen,
that additions to SCP potential become bigger for smallλ, in
particular one can expect strong distortions and even singu-
larities for purely imaginary eigenvalues whenIm(λ) ≈ qR.

3. Approximations to soliton parameters

Mathematically, the reduction of ZS to SCP does not solve
the problem, but it suggests that in some cases it is possible
to develop approximations which start from known solutions
of Schr̈odinger equation. We use here ZS and SCP relation
to calculate approximate eigenvalues. For this, some simple
Schr̈odinger potential is taken as a starting point, and the rest
is treated as perturbation. As a test system we take a pulse
with parabolic intensity distribution. It approximates pulses
with one hump close to their intensity maximum. The corre-
sponding Schr̈odinger problem is that one of quantum oscil-
lator, and matrix elements for perturbation can be calculated
explicitly for a number of cases. Other potentials which are
analytically solved (P̈oschl-Teller, Morse, square pulse, etc)
can be used as well, but it seems to us that the parabolic pulse
presents good balance between practical interest and analytic
difficulties.

Thus, for pulses of interest the amplitude is given by:

q(x) = i
√

A2 − x2 + Cf1(x) + C2f2(x) + . . . , (16)

for |x| < A, and q(x) = 0, for |x| > A, C is small
real parameter, andfk are complex functions. The resulting
−qq∗ potential for Schr̈odinger operator is close to harmonic,
−A2 + x2, but it is true only for|x| < A, thus we assume
in the followingA À 1 , and considerλ with big imaginary
part.
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The eigenfunctionsψn, where n = 0, 1, 2... of
Schr̈odinger equation with potential−A2 + x2 are Hermite
functions given by

ψn(x) = (2nn!
√

π)−1/2e−(x2/2)Hn(x), (17)

where Hn are Hermite polynomials. The corresponding
eigenvalues are

an = −A2 + 2n + 1 (18)

For the unperturbed matrix we take a diagonal matrix with
an. As Hermite functions form orthogonal basis, the pertur-
bation matrix elements are given by

δn1,n2 =
∫

U(x)ψn1(x)ψn2(x)dx, (19)

whereU(x) is the potential in Eq. (15), except for harmonic
part−A2 + x2. Note, thatδ are generally complex and the
resulting matrix is non-Hermitian. Thus, even for corrections
of the lowest order inC it is necessary to take into account
non-diagonal elements, as well as diagonal onesδn1,n1 .

In what follows we assume thatδ are small. Consider
two diagonal elements with numbersn1, n2, wheren2 > n1

and corresponding off-diagonal element. Then, the matrix
reduced to the interaction of these two elements is:

(
an1 δn1,n2

δn1,n2 an1 + 2(n2 − n1)

)
. (20)

Its eigenvalues are trivially found asan1 + n2 − n1 ±√
(n1 − n2)2 + δ2

n1,n2. For smallδ, andn1 6= n2 the lower
eigenvalue becomes

an1 −
δ2
n1,n2

2(n2 − n1)
, (21)

and the higher one has opposite sign displacement. For
purely imaginaryδ they are mutually attracted. To the lowest
order inδ the energy additions to each level can be obtained
by adding contributions from each pair involved.

The matrix elements for termsU = xn can be calculated
usingn times recursion equation for Hermite functions:

xψn =
√

n/2ψn−1 +
√

(n + 1)/2ψn+1, (22)

together with their orthogonality property.
Let us begin with a simple example of a pulse with

slightly distorted amplitude, and no phase changes.

q(x) = i
√

A2 − x2 + iCx, (23)

The SCP potential Eq. (15) expanded to termsx3 is given
by

−A2 +x2−2ACx+Cx2 +CA−1x3 + i(C−xA−1). (24)

The additions to diagonal matrix elementsδn,n areC2(n +
1/2) + iC , but the dominant termiC is not physically valid;

it is known that ZS eigenvalues for this potential are purely
imaginary [3]. This term is eliminated when the elements
δn,n+1 are taken into account. The elementsδn,n+2 and
δn,n+3 give corrections of higher order in small parameters
C,A−1, and the result is

−λ2
n ≈ A2−2n−1−1/4A−2 +A2C2−C2(2n+1). (25)

The comparison with numerical solution for ZS is given in
Fig. 1. It is seen that upper eigenvalues are well approxi-
mated. The approximation breaks for two cases: for smallλ,
and for bigC when off-diagonal elements become important,
and Eq. (21) is no more valid. For big amplitude the leading
term isA2C2, but the next order correctionC2(2n + 1) is
also important (here we neglectedC2A−2 terms). To calcu-
late eigenvalues exactly it is necessary not only to find exact
eigenvalues for matrix, but also to take into account transi-
tions to continuous spectrum of unperturbed operator.

A simple pulse with real part is given by:

q(x) = i
√

A2 − x2 exp(iCx). (26)

It is easy to see from ZS equations, that in this case
λ(C) = λ(0) + C/2, thus it can be used as a test. The re-
sult by perturbation, if terms proportional toC2, CA−2 are
neglected, really can be written in this form for

λn(0)2 = −A2 +
1
4
A−2 + 2n + 1 (27)

Thus the exactitude of this approximation is determined
by the exactitude of eigenvalues forC = 0, as seen in Fig. 1.

A pulse with chirp is represented by

q(x) = i
√

A2 − x2 + Cx2. (28)

The approximation for eigenvalues is:

FIGURE 1. Numerically calculated imaginary parts of eigenvalues
for parabolic pulse with addition to amplitude Eq. (23) (crosses),
and the approximation of Eq. (25) (lines) in function of small pa-
rameterC. The amplitude isA = 5.
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FIGURE 2. Imaginary part of eigenvalues forq(x) = i
√

52 − x2+

Cx2 (crosses) and approximation (lines).

−λ2
n ≈ A2 − 2n− 1− 1

4A2
− A2C2

(iλn)2

− C2

(iλn)2

(
n +

1
2

)
+

3
2
C2

(
n2 + n +

1
2

)
, (29)

andλn in the right hand side is taken from Eq. (27). The va-
lidity range of this approximation is determined by the lead-
ing gqI term2CAx/(iλ). This term gives off-diagonal ma-
trix element

δn,n+1 = −i
2CA

iλ

√
n + 1

2
, (30)

and Eq. (21) loses validity forδ ≈ 1, which gives an estima-
tion for C. For n = 7 we haveCmax ≈ 0.15, in agreement
with Fig. 2 data. It is possible to solve Eq. (29) with respect
to λ exactly, but this gives important corrections only for big
C and two lowest eigenvalues, which already have an error
because of the above mentioned restriction.

This is an example of PT-symmetric pulse, the eigenval-
ues for smallC are purely imaginary, for bigger chirp eigen-
value pairs with opposite real parts are possible. Again we
have reasonable approximation for bigλ and smallC.

The cubic variation in phaseq(x) = i
√

A2 − x2 + Cx3

to the first order gives a real addition to eigenvalue

3CA(n + 1/2)
(iλn)2

, (31)

thus with cubic chirp smaller solitons have higher velocities.
The SCP potential in this case has a leadingC-dependent
term−3i(CA/iλ)x2, thus formally the potential is close to
αx2, with complexα. The eigenvalues are simply calculated
by consideringx along a straight line in complex plane - the
spectrum of harmonic oscillator is just rotated in complex
plane, which agrees with Eq. (31). Such potentials are known
to have interesting instability properties related to so called
pseudospectra [13]; in particular, higher eigenvalue displace-
ment with perturbation scales asexp(n). The discussion of
this topic is out of the scope of this paper.

One can formulate approximate criteria for level colli-
sions close to the maximum of the real pulse with high am-
plitude and weak phase modulation

q(x) = iq0(x) exp(iCf(x)) (32)

for PT symmetricq, whenf(x) andq0(x) are even real func-
tions, andq0(0) = A is big. If only the most important term
for big A is considered in SCP potential we get an addition
−igqI of an order of−i(CA/iλ)∂f . Then the coefficient
with C2 in level displacement forλn is determined by off-
diagonal termsδn,n+k. The “natural” case of|q|2 ≈ A2−x2,
and quadratic chirpiCx2 for this approximation is neutral -
all levels are displaced to the same amount withC. The chirp
f = x4 gives bothδn,n+1 proportional to(n + 1)3/2 , thus
all eigenvalues become lower for biggerC, and the distance
between them grows, collisions are avoided. The combina-
tion of x2 + βx4, however, can produce collisions for neg-
ative β. Making chirp, that grows slower asx2, for exam-
ple saturatesx2/(1 + Bx2), or behaves as|x|α for α < 2
favours collisions, because then for bign matrix elementsδ
grow slower withn. With quadratic chirp, it is possible to
manipulate level spacing by changing pulse intensity. If the
distance between levels grows withn, as it happens for super-
gaussian and square pulses, the collisions are also favoured.
Two-hump potentials have even-odd pairs nearly degenerate,
thus those levels tend to collide with chirp. This explains
qualitatively numerics of Klaus and Shaw [6]. However, for
moderate values ofA, as those considered here for numerical
examples, the leading term quite rapidly becomes insufficient
for biggern, The corrections, as it is seen frome.g. Eq. (29)
haven/A2 as a small parameter.

A curiuos case isf(x) = log(|x|) chirp. Then the term
iCA/x is obtained in derivative. The odd Hermite functions,
if divided byx, give a polynomial one degree lower, thus they
are expanded in only lower functions. For even polynomials
this is not true. Thus, all odd eigenvalues diminish withC,
and all even eigenvalues grow. This gives characteristic neat
pairwise collision picture (Fig. 3).

From a practical point of view, it is also interesting
to consider sinusoidal chirp and amplitude patterns, since
they are naturally produced in nonlinear media by inter-
ference fringes. As an example, we consider hereq(x)
of the type given by Eq. (32) withq0 =

√
A2 − x2 and

f(x) = cos(Y x), sin(Y x). First, consider phase perturba-
tion f(x) = sin(Y x). The leading term in correction for
λ2

n, is here purely imaginary, linear withC , and can be ex-
pressed asi(CA)Y Fn(Y ), and the displacementY Fn(Y ) is
shown in Fig. 4. The matrix elements are given by Fourier
transform of products of Hermite functions, and expressed
in Laguerre polynomials [14], but practically it is easier to
calculate them directly with Eq. (19). For smallY we have
nearly equal velocities for all three solitons, but for bigger
spatial frequencies they behave quite differently. Thus, it is
possible to separate the solitons by choosing an appropriate
Y , for example forY ≈ 3.5, the soliton withn = 0 has small

Rev. Mex. Fis.65 (6) 634–638



638 N. KORNEEV, J.A. CATANA CASTELLANOS, AND V.A. VYSLOUKH

FIGURE 3. Eigenvalues forq(x)=
√

52−x2 exp (iC log(|z|+0.001)).

FIGURE 4. Relative soliton velocities for 3 biggest solitons with
sine law phase modulation.

velocity, and solitons withn = 1 andn = 2 are deflected
in opposite directions. The behaviour for smallY can be

obtained from above discussed cases of linear and cubic ad-
ditions to real part of potential. Forf(x) = cos(Y x), the
lowest addition toλ2

n is real and proportional toC2. Again,
relative magnitudes of displacement are oscillating functions
of Y , and by choosing different spatial frequencies it is pos-
sible to obtain collisions of different pairs in function ofC
parameter. For bigY δn,n+k with big k become more impor-
tant here.

For real sinusoidal additions to potentialq(x) =
i(
√

A2 − x2 + C sin(Y x)) and q(x) = i(
√

A2 − x2 +
C cos(Y x)), the eigenvalue shift is proportional toC2, and
the coefficient is complicated oscillating function ofY, n.
The behaviour forsin(Y x) and smallY is reduced to the case
of Fig. 1, the amplitude of higher intensity solitons grows
with Y C product.

4. Discussion and conclusion

The reduction of ZS scattering problem to Schrödinger equa-
tion with complex potential permits to use known exact so-
lutions, which are more numerous, than for ZS. We use here
the approximate equivalence; the exact correspondence ex-
ists between Satsuma and Yajima solution of ZS equation
[15] with q(x) = A/ cosh(x) and complex Scarf potential of
Schr̈odinger equationα/ cosh2(x) + iβ sinh(x)/ cosh2(x).
This case, however, seems to be more complicated, than the
harmonic oscillator.

For multisoliton pulses with small chirp, the proposed
method gives reasonable estimation for parameters of the
biggest solitons, and the approximations serve as a useful
guide for numerics. In particular, it is possible to predict
to some extent if the solitons from a symmetric initial pulse
will or not diverge on propagation (PT symmetry breaking).
Parabolic pulses are analysed in detail, but similar analysis
can be made forA/ cosh(x) and square pulses, also leading
to analytically solvable Schrödinger problems. We also es-
tablish a relation of SCP and ZS, which can be interesting for
testing experimentally SCP equations.
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