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The relation of Zakharov-Shabat scattering problem to Schibdinger equation
with complex potential and approximations for soliton parameters
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The relation of Zakharov-Shabat scattering problem to &tihger equation with complex potential is used to analytically approximate
parameters of high power solitons produced in positive Kerr media with chirped parabolic pulses. The soliton parameters are estimated for
different types of chirp and intensity distortions. The comparison with numerics is discussed.
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1. Introduction ter. If the initial pulse has small variations in phase, the SCP
potential depends on the parameter only quite weakly, and

In nonlinear positive Kerr media light pulses break into soli- Useful approximations can be constructed by iterations.

tons and radiation part. The number, powers, and velocities 1 e link between SCP and ZS scattering problemiis inter-
of obtained solitons for situations described by the nonlin-€sting not only mathematically. Recently, there is a lot of in-
ear Schivdinger equation (NLS) are governed by eigenvaluederest in PT symmetric physical systems with loss, described
of the Zakharov-Shabat (ZS) scattering problem [1,2]. The?Y SCP [10-12]. In optics, such systems correspond to media
ZS equations are not self-adjoint, and in most cases of inwith locally distributed loss and gain, and such systems are
terest can be solved only numerically. On the other hand)ot easily realized in experiment. But, once the equivalence
the qualitative understanding of emerging soliton paramebetween CS and ZS is established, the particular complex po-
ters is often important for applications. It is known that realtential can be modelled with a certain distribution of light
pulses with one hump produce solitons only with zero ve-amplitude either in fiber (temporal domain) or in the bulk
locities [3] (all ZS eigenvalues are purely imaginary), how- nonlinear medium such as photorefractive crystal (spatial do-
ever for chirped pulses, and for more complicated{wo- main) - parameters of solitons emerging from pulse breaking
hump) real pulses this is not true [4,5]. There are numericalVill correspond to SCP eigenvalues. PT symmetry breaking
and analytical studies of soliton parameters for diffirent initial Will correspond to the appearance of fiber soliton pairs with
pulse shapes [6-8], but most analytic work is limited to realnonzero velocity, or spatigl soliton pairs propagating with an
pulses. Here we propose a simple analytic method, whicRngle to the symmetry axis.

permits an estimation of ZS eigenvalues with big imaginary

part (high power solitons) for multisoliton pulses withonein- 2. The relation of ZS and SCP problems

tensity maximum. These eigenvalues are mostly determined

by the function shape in a vicinity of the maximum, thus theThe Zakharov-Shabat scattering problem is written as [1,2]:

situation of parabolic pulse is quite general. For the approx- P — _ix 1
imation we systematically use the relation between ZS and w1 () o (@) + a(x)va () @
Schibdinger equation eigenvalue problem, which was first 0va(z) = —q* (2)v1(x) + idva (). 2

mentioned in an approximate form in the original Zakharov-

Shabat paper [1] . In mathematical literature it is also known

that for real pulseg/(z), an equivalent Sclhdinger equa-

tion with complex potential (SCP) exists, for the potential

Q(r) = —¢®+i0,q[9]. The SCP gives the same eigenvalues\g

after taking the square root. 'I_'he relat|on_ can be establishe The eigenvalues define soliton parameters for the nonlin-

for complexq(x) as well, but in general it seems, that the L :

: X . . ear Schiddinger equation

inverse scattering technique is needed to reconstruct the cor- )

responding?(z), and the resulting potential can have singu- oY 10% 20— 3
- - . . . t + _2+|w|17/}_? ()

larities. However, it is relatively easy to obtain an equivalent ot 20z

SCP potential, which itself has an eigenvalue as a paramevith the initial conditiony(x,0) = ¢(z).

f v (z) — exp(—idz), va(x) — 0 for x — —o0, the
solution will be limited only for a finite number of eigenval-
ues )\, in the upper complex plane, withn(\) > 0 (we
consider continuous functiongx) on the compact support
hich are zero fofz| > R).
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If the pulse is symmetricg(—z) = g(x), PT symmetry and by taking second derivatives in Egs. (10 -11 ), we obtain
exists, and corresponding eigenvalues are either purely imag-

inary or obtained in pairs with opposite real parts. —0%v, — |q/*vy — Oqru_ + i0qrvy = Nvy, (13)
The relation of ZS and SCP for real ZS potenti@an be
established as follows: wherelq|? = ¢% + ¢7. Denote
Start with equations:
_ dqr
9= ; (14)
81)1 = —Pvy + vy (4) A+ qRr
Ovy = —Avy + Pug (5) and use expression Eq. (12) in Eqg. (13). The resulting equa-

tion can be reduced with standard method to Sdimger
After taking second derivatives it is transformed to theform by takingv; = uexp(1/2 [ g), which finally gives:

Schibdinger eigenvalue problem :
8201 — P?v) + 8Pv, = — 220, 6) —0%u+ [— |af? +idqr — iqrg

which has potentia) = P? — OP. For v,y the term with 1, 1 42
derivatived P has opposite sign. Now, make the transforma- + 19 289 u= A (15)

tion of Egs. (4-5) with a constant matr§/S—!, where
The expression in brackets gives the equivalent SCP po-

g_ 1o/ ) tential, valid for anyg, but the potential depends on eigen-
v \i 1)’ value according to Eqg. (14). It is seen, that for purely imag-
inary ¢(x) = iq;(z), we obtain\-independent potential,

land dze.note:P = p. Then we obtain AKNS scattering prob- which is the same as for purely real pulse. If in some sense
em [2]: qr > qr, We can approximat by iterations. It is also seen,
, that additions to SCP potential become bigger for sthaith
Oz = —iA 8 . ) : .
(@) v (@) + pw)va () ® particular one can expect strong distortions and even singu-
Ov2(x) = —p(z)v1 () 4+ iAva (). (9) larities for purely imaginary eigenvalues whém(\) ~ ¢g.

Itis seen, that wheaqis real, this is equivalent to Egs. (1-
2). In this case the corresponding CS potentialis= 3. Approximations to soliton parameters
P? — 0P = —¢? + i0q. Genarally, one has for ZSq* as . )
lower off-diagonal element, and in this case we were unabl&athematically, the reduction of ZS to SCP does not solve
to find simple general correspondence between ZS and SCP€ problem, but it suggests that in some cases it is possible
problems. However, formally one can reconstruct a ZS puls€® develop approximations which start from known solutions
which has the same spectral data in a sense of inverse scatt@f-Schiodinger equation. We use here ZS and SCP relation
ing problem, as a Schdinger equation with complex poten- 0 calcylate approximate eigenvalues. For th!s, some simple
tial. For this, the scattering data of (Eq. (8-9)) can be used t§chbd|nger potential is taken as a starting point, and the rest
reconstruct ZS potential Eq. (1-2) with one of known integral'S treated as perturbation. As a test system we take a pulse
equation methods, taking into account different symmetry foivith parabolic intensity distribution. It approximates pulses
two cases. The theory of inverse scattering for both ZS probWith one hump close to their intensity maximum. The corre-
lem and Eq. (8-9) can be found in the book of Ablowitz [2]. SPonding Sctadinger problem is that one of quantum oscil-
The reconstruction of SCP from ZS can be problematic, sincéer, and matrix elements for perturbation can be calculated
for Eq. (8-9) even one-soliton solution can produce potential§XPlicitly for a number of cases. Other potentials which are
with singularity [2]. This procedure, however, does not seenfnalytically solved (Bschl-Teller, Morse, square pulse, etc)
practical for pulses with varying phase, because for reductiof@n be used as well, but it seems to us that the parabolic pulse

to SCP we need to solve the problem itself first. presents good balance between practical interest and analytic
Now, rewrite Egs. (1-2) for. = v; + vy, and using real  difficulties. . . o
and imaginary part of pulsgx) = qr + iqr (bothqg, q; are Thus, for pulses of interest the amplitude is given by:

real functions):
q(x) =i/ A2 — 22 + Cfi(x) + C*fo(x) +..., (16)
Oy = —IAU_ + qrv_ +iqrv4+ (20)
‘ _ for |z|] < A, andg(x) = 0, for || > A, C is small
Opv— = —iAvy + qrUy — iqrU—. (1) real parameter, anf}. are complex functions. The resulting
—qq* potential for Schiddinger operator is close to harmonic,
From Eg. (10), —A? + 22, but it is true only for|z| < A, thus we assume

iqruy — Ovg in the following A > 1, and considei with big imaginary

v = 7@)\ n o s (12) part.

Rev. Mex. Fis65 (6) 634—638



636 N. KORNEEYV, J.A. CATANA CASTELLANOS, AND V.A. VYSLOUKH

The eigenfunctionsy,,, where n = 0,1,2... of it is known that ZS eigenvalues for this potential are purely
Schiddinger equation with potentiat A2 + z? are Hermite  imaginary [3]. This term is eliminated when the elements
functions given by dn,nt+1 are taken into account. The elements, . and

Lo 20 dn.n+3 give corrections of higher order in small parameters
Pn(z) = (2"nly/m) " 2em R H (2), (17) ¢, A1, and the result is

where H,, are Hermite polynomials. The corresponding _ 2 ~ A2 21— 1/4A72 1 A2C?—C2(2n+1). (25)
eigenvalues are " ’

(18) The comparison with numerical solution for ZS is given in
Fig. 1. It is seen that upper eigenvalues are well approxi-

For the unperturbed matrix we take a diagonal matrix withmated. The approximation breaks for two cases: for siall

an. As Hermite functions form orthogonal basis, the pertur-and for bigC' when off-diagonal elements become important,

ap = —-A2+2n+1

bation matrix elements are given by and Eq. (21) is no more valid. For big amplitude the leading
term is A2C2, but the next order correctiof?(2n + 1) is
Sntme = /U(anl(x)wm(z)dx’ (19)  also important (here we neglectétt A~ terms). To calcu-
late eigenvalues exactly it is necessary not only to find exact

whereU (z) is the potential in Eq. (15), except for harmonic ellgenvalues.for matrix, but als]? to take L)nt(cj) account transi-
part—A2 + 22. Note, thats are generally complex and the tions to continuous spectrum of unperturbed operator.

resulting matrix is non-Hermitian. Thus, even for corrections A Simple pulse with real part is given by:
of the lowest order irC' it is necessary to take into account

non-diagonal elements, as well as diagonal dhes,; . q(z) =iV A? — 22 exp(iCx). (26)
In what follows we assume thatare small. Consider
two diagonal elements with numbets, ns, wherens > n; It is easy to see from ZS equations, that in this case
and corresponding off-diagonal element. Then, the matrixA(C) = A(0) + C/2, thus it can be used as a test. The re-
reduced to the interaction of these two elements is: sult by perturbation, if terms proportional @&, CA~2 are
neglected, really can be written in this form for
< Gnl 6711,712 ) ) (20)
Ontnz an+2(nz —m) M(0)? = —A2 4 242y on 41 (27)
Its eigenvalues are trivially found as,; + no — n; + 4
\/(m — )2 482, 5. For smallg, andn, # ng the lower Thus the exactitude of this approximation is determined
eigenvalue becomes by the exactitude of eigenvalues f6r= 0, as seen in Fig. 1.
52 A pulse with chirp is represented by
nl,n2
an1 — ————, (21)
2(n2 —n1) q(z) = i/ A2 — 22 + Ca®. (28)

and the higher one has opposite sign displacement. For
purely imaginary they are mutually attracted. To the lowest The approximation for eigenvalues is:
order ind the energy additions to each level can be obtained
by adding contributions from each pair involved.

The matrix elements for termi$ = =™ can be calculated
usingn times recursion equation for Hermite functions:

T = A/ 2UWn_1 + /(0 +1)/2¢511, (22)

together with their orthogonality property.
Let us begin with a simple example of a pulse with
slightly distorted amplitude, and no phase changes.

q(z) =iV A% — 22 +iCuz, (23)

The SCP potential Eq. (15) expanded to terrhiss given
by

eigenvalue

—A? 4+ 2% —2AC2+Ca® +CA '3 +i(C—xA™Y). (24)  FicURE 1. Numerically calculated imaginary parts of eigenvalues

for parabolic pulse with addition to amplitude Eq. (23) (crosses),

The additions to diagonal matrix elements,, areC?*(n +  and the approximation of Eq. (25) (lines) in function of small pa-
1/2) +iC' , but the dominant terriC is not physically valid;  rameterC. The amplitude isA = 5.
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5

One can formulate approximate criteria for level colli-
45 sions close to the maximum of the real pulse with high am-
s plitude and weak phase modulation

P/ —

q(z) = igo(z) exp(iC f (x)) (32)

3.5 bt

’ — e A P

eigenvalue

for PT symmetrig;, whenf(x) andgq(x) are even real func-
tions, andyy(0) = A is big. If only the most important term
for big A is considered in SCP potential we get an addition
—igqr of an order of—i(C A/iA\)Jf. Then the coefficient
with C? in level displacement foh,, is determined by off-
) . . diagonal terms,, ,, . The “natural” case ofy|* ~ A2 —1?2,
0 0.05 o 015 02 0.25 and quadratic chirpCz? for this approximation is neutral -
¢ all levels are displaced to the same amount withThe chirp
FIGURE 2. Imaginary part of eigenvalues fgfx) = iv/52 — x2 + f = z* gives boths,, ,, ;1 proportional to(n + 1)3/2 , thus
Cz? (crosses) and approximation (lines). all eigenvalues become lower for biggér and the distance
between them grows, collisions are avoided. The combina-
tion of #2 + Bx*, however, can produce collisions for neg-
) 9 1 A2C? ative 3. Making chirp, that grows slower as*, for exam-
AR A-2n—1— — — — 9 9 o
4A%  (i\,)? ple saturates:®/(1 + Bz*), or behaves agr|” for a < 2
o2 1 3 1 favours collisions, because then for bignatrix elements
- <n + ) + 202 <n2 +n+ > , (29) grow slower withn. With quadratic chirp, it is possible to
(iAn)? 2 2 2 manipulate level spacing by changing pulse intensity. If the
and.,, in the right hand side is taken from Eq. (27). The va- distance between levels grows withas it happens for super-
lidity range of this approximation is determined by the lead-gaussian and square pulses, the collisions are also favoured.
ing gq; term2C Az/(i)\). This term gives off-diagonal ma- Two-hump potentials have even-odd pairs nearly degenerate,

X7 S —

trix element thus those levels tend to collide with chirp. This explains
qualitatively numerics of Klaus and Shaw [6]. However, for
Ol = _i2CA ntl (30)  moderate values ot, as those considered here for numerical

n,n /\ ) 9

examples, the leading term quite rapidly becomes insufficient
and Eq. (21) loses validity faf ~ 1, which gives an estima- for biggern, The corrections, as it is seen frang Eq. (29)
tion for C. Forn = 7 we haveC,,.x = 0.15, in agreement haven/A? as a small parameter.
with Fig. 2 data. It is possible to solve Eq. (29) with respect A curiuos case i (z) = log(|x|) chirp. Then the term
to \ exactly, but this gives important corrections only for big i¢C A/x is obtained in derivative. The odd Hermite functions,
C and two lowest eigenvalues, which already have an erroif divided by z, give a polynomial one degree lower, thus they
because of the above mentioned restriction. are expanded in only lower functions. For even polynomials

This is an example of PT-symmetric pulse, the eigenvalthis is not true. Thus, all odd eigenvalues diminish with

ues for smallC' are purely imaginary, for bigger chirp eigen- and all even eigenvalues grow. This gives characteristic neat
value pairs with opposite real parts are possible. Again weairwise collision picture (Fig. 3).

have reasonable approximation for Bigind smaliC. From a practical point of view, it is also interesting
The cubic variation in phasgz) = iv/A2 — 22 + C2®  to consider sinusoidal chirp and amplitude patterns, since
to the first order gives a real addition to eigenvalue they are naturally produced in nonlinear media by inter-
3CA(n +1/2) ference fringes. As an example, we consider hgre)

i (31) of the type given by Eq. (32) witlgy = VA% — 22 and
(iAn) f(z) = cos(Yx),sin(Yx). First, consider phase perturba-
thus with cubic chirp smaller solitons have higher velocities.tion f(x) = sin(Yx). The leading term in correction for
The SCP potential in this case has a leadinglependent )2, is here purely imaginary, linear witfi , and can be ex-
term —3i(C' A/i\)x2, thus formally the potential is close to pressed a§C A)Y F,,(Y'), and the displacementF,, (V) is
ax?, with complexa. The eigenvalues are simply calculated shown in Fig. 4. The matrix elements are given by Fourier
by consideringe along a straight line in complex plane - the transform of products of Hermite functions, and expressed
spectrum of harmonic oscillator is just rotated in complexin Laguerre polynomials [14], but practically it is easier to
plane, which agrees with Eq. (31). Such potentials are knowialculate them directly with Eq. (19). For sm&llwe have
to have interesting instability properties related to so callechearly equal velocities for all three solitons, but for bigger
pseudospectra [13]; in particular, higher eigenvalue displacespatial frequencies they behave quite differently. Thus, it is
ment with perturbation scales asp(n). The discussion of possible to separate the solitons by choosing an appropriate
this topic is out of the scope of this paper. Y, for example fo®y” = 3.5, the soliton withn = 0 has small
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FIGURE 4. Relative soliton velocities for 3 biggest solitons with
sine law phase modulation.

velocity, and solitons witmm = 1 andn = 2 are deflected
in opposite directions. The behaviour for sm&llcan be
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obtained from above discussed cases of linear and cubic ad-
ditions to real part of potential. Fof(x) = cos(Yz), the
lowest addition to\? is real and proportional t6'2. Again,
relative magnitudes of displacement are oscillating functions
of Y, and by choosing different spatial frequencies it is pos-
sible to obtain collisions of different pairs in function 6f
parameter. For bi§y” d,, .+ With big £ become more impor-
tant here.

For real sinusoidal additions to potentialx)
(VA2 — 2?2 4+ Csin(Yz)) and g(z) = (VA% —22 +
C cos(Yx)), the eigenvalue shift is proportional @, and
the coefficient is complicated oscillating function ®fn.
The behaviour fosin(Yz) and smally” is reduced to the case
of Fig. 1, the amplitude of higher intensity solitons grows
with Y C product.

4. Discussion and conclusion

The reduction of ZS scattering problem to Satinger equa-

tion with complex potential permits to use known exact so-
lutions, which are more numerous, than for ZS. We use here
the approximate equivalence; the exact correspondence ex-
ists between Satsuma and Yajima solution of ZS equation
[15] with g(z) = A/ cosh(z) and complex Scarf potential of
Schibdinger equationy/ cosh?(x) + i3sinh(z)/ cosh?(z).

This case, however, seems to be more complicated, than the
harmonic oscillator.

For multisoliton pulses with small chirp, the proposed
method gives reasonable estimation for parameters of the
biggest solitons, and the approximations serve as a useful
guide for numerics. In particular, it is possible to predict
to some extent if the solitons from a symmetric initial pulse
will or not diverge on propagation (PT symmetry breaking).
Parabolic pulses are analysed in detail, but similar analysis
can be made foA/ cosh(z) and square pulses, also leading
to analytically solvable Scidinger problems. We also es-
tablish a relation of SCP and ZS, which can be interesting for
testing experimentally SCP equations.
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