
RESEARCH Revista Mexicana de Fı́sica65 (6) 639–650 NOVEMBER-DECEMBER 2019

Projective method for spinorial techniques: unifying
calculational framework for Dirac amplitudes
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There have been numerous methodologies to perform the calculation of spin-dependent amplitudes for Dirac particles. All of them have their
own advantages and properties, but there is no general framework to address the analytic calculation of such amplitudes. In this work, we
use the closure property of massive spinors to present a new and general approach to compute transition amplitudes for general spin states.
We argue that this perspective can be used to reformulate all other techniques and to relate all of them. Particularly, it is shown that the
massless spinor and the helicity spinor techniques can be formulated through this language. Finally, we give an example of this calculation
as a procedure by computing the spin-dependent amplitude for the Compton process and comment some of the strengths of our method.
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1. Introduction

The search for new physics and standard-model tests in high
energy physics, more than ever, demands the exploration of
highly sophisticated processes [1-8]. This brings along ex-
perimental challenges as, for example, the implementation
of multiparticle detection and measurement. In this context,
the theoretical study of the spin-dependent observables and
the analysis of high-order processes require the calculation
of transition amplitudes of increasing complexity. Because
these amplitudes involve a large number of Dirac particles,
coupled through interaction terms with several gamma ma-
trices [9-12], the textbook methods become cumbersome to
calculate with.

The algebraic structure of physical amplitudes demands
the use of bold and clever methods to provide an analyti-
cal value. Modern techniques for amplitude calculation have
been improved, especially for interactions with many parti-
cles [13-16], and are usually optimized for some computa-
tional implementations [17-20]. However, almost all of these
techniques are devoted to helicity states for fermions [21-29]
and only a few can be regarded as an analysis tool for general
spin directions [30].

Our goal in this work is to develop a fully covariant
method which allows obtainong efficient and compact ana-
lytical expressions for the spin-dependent amplitude, so that
the framework can be employed within a computational pro-
gram. Also, we want to suggest that a simple unifying frame-
work to many other approaches can be formulated with our
expressions.

The organization of this work is as follows. Section 2 sets
the basic notation and contains the central idea of our pro-
cedure: the covariance of Dirac spinors and its implications
to the closure property, along with the decomposition of an

operator in terms of spinors. Section 3 presents a system-
atic framework for spin amplitude calculation, we call this
scheme the projective method. The method is exemplified
using the spinor rest frame basis. Section 4 is devoted to for-
mulate the massless-spinor method [18] using the structures
of the Sec. 2. In Sec. 5, it is shown that the helicity-spinor
method can also be structured within this framework. We
give an example of all of these procedures by computing the
Compton Scattering amplitude in Sec. 6. Finally, Sec. 7 con-
tains the conclusions. Bjorken and Drell [31] notation and
units will be adopted throughout this text.

2. Completeness of the Dirac spinors

The Dirac equation for a free particle of massm

(/̂p− εm)ψε(x) = 0, (1)

whereε = ±1 is the sign of the energy (Ref. 31, pag. 28),
uses two different representations of the Lorentz group. On
one hand, the four-vector operatorp̂µ = i

(
(∂/∂t),−∇̄)

which transforms as the fundamental representation estab-
lishes. On the other hand, the massive-spinor representation
acts on the four-component objects (Dirac spinors) which are
used to solve Eq. (1). Namely, the positive- and negative-
energy plane-wave solutions for Eq. (1) are

ψ+(x) = u(p, s) e−ip·x, ψ−(x) = v(p, s) eip·x, (2)

wherexµ = (t, x̄), u(p, s) is a positive-energy Dirac spinor
and v(p, s) is the negative energy one. The energyE and
the three-component momentum̄p form the four-momentum
vectorpµ = (E, p̄), andsµ = (s0, s̄), the four-spin vector,
fulfill the propertiesp2 = m2 s · p = 0 ands2 = −1.

The operator/̂p contains the Dirac matricesγµ which, due
to the Lorentz invariance of the Dirac equation (1), transform
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as both spinor and four-vector object. To fully appreciate
what this implies, it is useful to recall the properties of a Dirac
spinor.

The spinorsu(p,±s) and v(p,±s) satisfy the set of
eigenequations

/p u(p,±s) = mu(p,±s),

/p v(p,±s) = −m v(p,±s),

γ5/s u(p,±s) = ±u(p,±s),

γ5/s v(p,±s) = ± v(p,±s), (3)

and form a complete basis for any four-component spinor,i.e.
an arbitrary Dirac spinorw, with four-momentump′, four-
spins′ and massm′ can be expanded in the form

w(p′, s′) =
∑

s

u(p, s) ū(p, s)w(p′, s′)

−
∑

s

v(p, s) v̄(p, s)w(p′, s′), (4)

where it is used the notation̄U(p, s) = U†(p, s)γ0 for the
adjoint spinor ofU(p, s).

The expansion (4) will not mix spinors of opposite en-
ergy if it connects spinors with the same four-momenta.
This means that the representation ofu(p, s′) or v(p, s′) will
only have non-zero terms for coefficientsū(p, s)u(p, s′) or
v̄(p, s)v(p, s′), respectively.

The orthogonality between spinorsu(p, s) and v(p, s′)
is evident in their rest reference frame, where the Dirac
spinors of different energies are mutually orthogonal, no mat-
ter which spin directions are chosen. Using a Lorentz trans-
formationS(β̄), one goes to the rest frame of the spinor with
momentum̄p = β̄ E, and then the equality

v̄(p, s)u(p, s′) = v̄(p, s)S(−β̄)S(β̄)u(p, s′)

= v̄(p0, s0)u(p0, s
′
0) = 0, (5)

is evident and shows that it will hold in any reference frame.
Also, formula (4) can be proven by taking advantage of its
fully covariant structure, as it is noticed in (Ref. 31, pag. 31),
and this suggests that its use will, in turn, generate covariant
expressions.

The transformation rule of Dirac matrices (Ref. 31, pag.
20), can be further appreciated with the insight that equation
(4) provides. Using it, one can demonstrate the expansion

γµ =
∑

rr′
Cµ

rr′(Q,Q′) ωr(Q,S)ω̄r′(Q′, S′), (6)

where r, r′ = 1, 2, 3, 4, the spinor ωr(Q,S) =
u(Q, (−1)r+1S), for r = 1, 2; and ωr(Q,S) =
v(Q, (−1)rS), for r = 3, 4. Expression (6) shows a twofold
composition of representations of the Lorentz group. While
the coefficientsCµ

rr′(Q, Q′) transform according to the four-
vector representation, the operatorωr(Q,S)ω̄r′(Q′, S′) is a

pure spinorial object, transforming with the Dirac-spinor rep-
resentation of the Lorentz group. Some remarks are in or-
der. Firstly, the selection of the dynamical variablesQ and
S may seem arbitrary. This is not the case since their free
choice reveals that Eqs. (3) constrain the spinors which con-
stitute the basis. Secondly, the anticommutation and anti-
hermitian properties of the gamma matrices are strictly ful-
filled by this expansion, although it does not seem obvi-
ous from (6). Thirdly, analogous expressions to (6) follow
but for products of gamma matrices such asγ5, γ5γµ and
σµν = (i/2)[γµ, γν ].

A general spinorial operatorO will be covariant if it
transforms under the Lorentz group asO′ = SOS−1. If
O is written as

O = s + pγ5 + vµγµ + aµγ5γµ + Ωµνσµν , (7)

the covariance is verified if thes, p, vµ, aµ, andΩµν are ob-
jects that transform under the four-vector representation as a
scalar, pseudo-scalar, vector, axial-vector, and tensor quanti-
ties, respectively. If a covariant operator acts upon any spinor
ωr(Q), a new spinorOωr(Q) is obtained. In general, this
spinor is not necessarily an eigenstate of Eqs. (3), but the re-
sult can be expressed as a linear combination of a complete
spinorial basis. This idea will be extensively used in the fol-
lowing sections, but the relevance of the completeness in the
spinor space becomes now clear.

In the next section, the expressions (4) and (6) will be
used to compute a general Dirac amplitude, and that will en-
able us to understand other techniques systematically.

3. Projective method for the amplitude com-
putation: a General Framework

A Dirac amplitude is a matrix element of the, usually, covari-
ant operatorΓ. Its Lorentz scalar nature is revealed when one
looks at its explicit form. For example, with positive energy
states, it looks as

M(p′, s′, p, s) = ū(p′, s′)Γu(p, s). (8)

The main purpose of the spinorial techniques is to obtain
the analytical value of expression (8) in terms of simple ele-
ments, such as inner products between four-vectors, or the
volume subtended by four-vectorsεαβγδaαbβcγdδ (where
ε0123 = +1 is the Levi-Civita symbol of four indices). A
common trick is to rewrite Eq. (8) as

M(p′, s′, p, s) = tr u(p, s)ū(p′, s′)Γ. (9)

This procedure has the advantage of explicitly displaying
the two covariant objects that constitute the amplitude. Fur-
thermore, using the trace properties of gamma matrices it is
possible to obtain an analytical expression for the amplitude.
While theΓ operator is usually given in the representation
that is shown in Eq. (7), the operatoru(p, s)ū(p′, s′) is not
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usually represented this way. Associated with expansion (7),
or a similar decomposition (general procedures to expand any
operator in terms of covariant bilinears can be found in [32-
34]), we can point out a couple of weaknesses of the operator
u(p, s)ū(p′, s′). On one hand, the procedure requires a con-
siderable amount of work, the expressions obtained are not
as compact as one would desire and are not trivially reduced
to manifestly covariant functions ofp′, s′, p, ands. On the
other hand, the resulting elements do not have a direct phys-
ical interpretation and this obscures the overall outcome. To
deal with this, a specific basis to overcome these difficulties
is presented in the next subsection.

3.1. The rest basis

In the rest frame of the Dirac spinors, we rewrite Eqs. (3) as
(
/q + (−1)ε

)
Φετ (s) = 0,

(
γ5/s + (−1)τ

)
Φετ (s) = 0, (10)

with the spinors at restΦ11(s) = S(β̄)u(p, s), Φ12(s) =
S(β̄)u(p,−s), Φ22(s) = S(β̄)v(p,−s), Φ21(s) =
S(β̄)v(p, s) and the four-vectorsqµ = (1/m)Λµν(β̄) pν =
(1, 0̄), sµ = Λµν(β̄) sν = (0, ŝ). The Matrix Λ(β̄) is the
four-vector representation of the Lorentz transformation to
a frame moving with velocitȳβ, i.e., the frame where the
spinors are at rest.

It is easy to see that the representation of the Dirac spinors
in (Ref. 31, pag. 30) allows for a projective decomposition
of the Dirac spinors in terms of the spinors at rest

u(p, s) =

√
2m

E + m
u(p, s)ū(p, s) Φ11(s),

u(p,−s) =

√
2m

E + m
u(p,−s)ū(p,−s) Φ12(s),

v(p,−s) = −
√

2m

E + m
v(p,−s)v̄(p,−s) Φ22(s),

v(p, s) = −
√

2m

E + m
v(p, s)v̄(p, s) Φ21(s). (11)

Note that expressions (11) are easily derived using the stan-
dard gamma-matrices representation (Ref. 31, pag. 30).
They remain valid in an arbitrary representation since two
sets of gamma matrices,γµ andγ̃µ, are equivalent under sim-
ilarity transformations ([35]).

Using expressions (11), Eq. (9) takes the form

M(p′, s′, p, s) =

√
2m′

E′ + m′

√
2m

E + m
tr Φ11(s)

× Φ̄11(s′)P++(p′, s′)ΓP++(p, s), (12)

where both particles can have different masses and the op-
eratorPαβ(p, s) = Π(α, p)Σ(β, s) = = Σ(β, s)Π(α, p) is
constituted withΠ(α, p) = (α/p + m)/2m and Σ(β, s) =
(βγ5/s + 1)/2, the energy and spin projectors, respectively,

pertaining to positive spin and energy forα = β = +1. A
transition amplitude for a process between an initial spinor of
energy signα = (−1)ε+1 and spin eigenvalue in the frame
at rest(−1)ε+τ = β (−1)ε+1, and a final spinor of energy
signα′ = (−1)ε′+1 and spin eigenvalue in the frame at rest
(−1)ε′+τ ′ = β′(−1)ε′+1 is written as

M(ε′,p′, τ ′, s′, ε, p, τ, s) = (−1)ε′+ε

√
2m′

E′ + m′

√
2m

E + m

× tr Φετ (s)Φ̄ε′τ ′(s′)Pα′β′(p′, s′)ΓPαβ(p, s). (13)

To be useful, the expression in (13) needs the operator
expansion ofΦετ (s)Φ̄ε′τ ′(s′) in terms of equation (7). The
task is simple compared to the work required to compute
u(p, s)ū(p′, s′), and the reason for this lies in the simplifica-
tions allowed by the rest frame, particularly the implications
for operator expansions. To display this, it is convenient to
note that the four-component spinorsΦετ can be presented
as two couples of angular-momentum-like eigenstates, with
total angular momentum1/2, each for different complemen-
tary algebras.

This can be seen from the spin equation in (10)

γ5γ̄ · ŝ Φετ (s) = (−1)τΦετ (s). (14)

Equation (14) implies, via the eigenvalue equation
γ0Φετ (s) = −(−1)εΦετ (s), that the spinorsΦε1(s) and
Φε2(s) are eigenstates of the operator− 1

2γ0γ5γ̄ · ŝ = J̄ · ŝ
with eigenvalues−(−1)ε/2 and+(−1)ε/2 respectively. Op-
erators̄J fulfill the angular momentum commutation rules,

[− γ0γ5γi,− γ0γ5γj
]
Φετ (s) = − [

γi, γj
]
Φετ (s)

= 2iεijk(−γ0γ5γk)Φετ (s), (15)

but operatorsγ0J̄ do not. Using the projectorsPε =
(1− (−1)εγ0)/2, one can decompose the algebra as a direct
sum of two representations̄J1 = P1J̄ and J̄2 = P2J̄, in
such a way that

J̄ = J̄1 + J̄2, (16)

and[Jl
1,J

m
2 ] = 0 ∀ l, m. This shows that the four-component

spinorsΦετ are a basis for a reducible representation of a
groupSU(2)⊗ SU(2).

From Eq. (16) and the definition ofPε, an operator act-
ing in the subspace of spinors of definite energyε can be de-
composed in terms of the operator basis with four elements
Vk

ε =
{
Pε, J̄ε

}
, k = 0, 1, 2, 3. Then, it is possible to expand

Φετ (s)Φ̄ετ ′(s′) as

Φετ (s)Φ̄ετ ′(s′) =
∑

k

−(−1)εck
εττ ′ V

k
ε , (17)

where no summation over theε index is implied and the
coefficientsck

εττ ′ = ck
εττ ′(s, s′) will be obtained as the ex-

pressionck
εττ ′(s, s′) = −(−1)ε(1/2)trVk

ε Φετ (s)Φ̄ετ ′(s′)
establishes. For some representation of the gamma matri-
ces, Eqs. (14) are reduced to two-component eigenequations
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642 E. SÁNCHEZ AND M. MORENO

(1/2)ŝ · σ̄ φετ = (−1)ε+τ (1/2)φετ and, if we use the rest
spin vector parametrization(sinϑ cosϕ, sin ϑ sin ϕ, cos ϑ),
the coefficients can be easily obtained up to a nonphysi-
cal phase. Their explicit expressions can be found in Ap-
pendix A.

Expression (17) can be arranged in a covariant form

Φετ (s)Φ̄ετ ′(s′) = −(−1)εč · q + /̌c

− (−1)εi γ5σµνqµc.ν + γ5
/c. , (18)

with the four-vectoršcµ = čµ(ε, τ, τ ′) = (1/2)(c0
εττ ′ , 0̄),

c.
µ = c.

µ(ε, τ, τ ′) = (1/2)(0, c1
εττ ′ , c

2
εττ ′ , c

3
εττ ′) and qµ =

(qµ + q′µ)/2.
The expansion of the operatorΦετ (s)Φ̄ε′τ ′(s′), for ε 6= ε′,

can be obtained with the operatorγ5. After multiplying the
first equation in (10) byγ5, the energy effectively changes its
sign but, the eigenvalue for the spin equation keeps its sign

/q γ5Φετ (s) = (−1)εγ5Φετ (s),

J̄ · ŝ γ5Φετ (s) = (−1)ε+τ 1
2

γ5Φετ (s). (19)

Notice that, up to an unphysical phase, the operators (18)
transform underγ5 as

γ5Φ11(s)Φ̄1τ ′(s′) → Φ22(s)Φ̄1τ ′(s′),

γ5Φ12(s)Φ̄1τ ′(s′) → Φ21(s)Φ̄1τ ′(s′),

Φ1τ (s)Φ̄11(s′)γ5 → −Φ1τ (s)Φ̄22(s′),

Φ1τ (s)Φ̄12(s′)γ5 → −Φ1τ (s)Φ̄21(s′).

(20)

It is important to note that Eqs. (13), (18) and (B.1) (see ap-
pendix B) have no arbitrary phases; this is relevant when one
is interested in the relative phases of a multiparticle process.

As an elementary application of expressions (13) and
(18), the transition amplitude for a vector operatorΓ = vµγµ

and for spinors with the same energy sign is shown in Ap-
pendix B. However, by using the formulas (13), (A.1), (18),
and (20), it is possible to perform calculations for any kind
of transition amplitude with a systematic methodology. Nev-
ertheless, this is a special case of the more general projective
method.

3.2. General projective method

When one deals with an analytic amplitude calculation, like
the one in equation (13), the implementation of a specific ba-
sis is useful to optimize the overall procedure. Particularly,
the rest basis is a powerful tool to obtain the spin-dependent
amplitude. A specific interaction termΓ could be success-
fully treated with a suitable election of the spinorial basis.
Such a basis will be used in the generalized formula (13)

M(α′p′, β′s′, αp, βs) =
∑

rr′
κrκr′ c∗r′(Q

′, S′; α′p′, β′s′)

× cr(Q, S;αp, βs) tr ωr(Q, S)ω̄r′(Q′, S′)Γ, (21)

where the spinorsωr(Q,S) were defined above and the no-
tation of the spin-energy projectors are used, with

cr(Q, S; +p, βs) = ω̄r(Q,S)u(p, βs),

cr(Q, S;−p, βs) = ω̄r(Q,S)v(p, βs). (22)

Formula (21) reflects the main idea of this work. Al-
though it is written with a general basis, it shows formidable
characteristics of the completeness of a spinorial basis,i.e.,
the reduction of the amount of work needed, and the explicit
covariance of the expressions obtained. Instead of working
with the squared modulus of the amplitude|M |2, formula
(21) allows one to deal with the transition amplitudeM it-
self, without invoking non-physical quantities, and using a
decomposition of the original transition amplitude in terms
of elementary amplitudes̄ωr′(Q′, S′)Γωr(Q,S). In the next
two sections, we will use two popular bases to express for-
mula (21) and, exploiting their main properties and symme-
tries, we will obtain closed and compact expressions.

4. The massless-spinor method

Any massive spinorial basis possesses the interesting symme-
try provided by the operatorγ5. Multiplying Eqs. (3) byγ5

shows that the spinorsγ5ωr(Q,S) are also its solutions. Ac-
tually, the spinorγ5ωr(Q,S) corresponds to an energy sign
−κr and spin sign−δr as follows

/p γ5ωr(Q,S) = −κrm γ5ωr(Q,S),

γ5/s γ5ωr(Q,S) = −ηr γ5ωr(Q,S), (23)

whereκr = +1, ηr = +1 for r = 1, 2 and κr = −1,
ηr = −1 for r = 3, 4. This is a consequence of the PCT
transformation over the spinor part of the wave functions (2).
Nothing prevents the use of the set of eight linearly depen-
dent massive spinors

{
ωr(Q,S), γ5ωr(Q,S)

}
as an over-

complete basis.
There are multiple ways to reduce this set to a complete

basis. For example, the linear combinationsωr(Q,S) ±
γ5ωr+2(Q,S), with r = 1, 2, form a complete basis. How-
ever, some useful linear combinations are

W
(r)
λ = W

(r)
λ (Q,S) =

1
2

(
1 + λγ5

)
ωr(Q,S), (24)

with λ = ±1. The eight states (24) are not anymore eigen-
states of Eqs. (3), but they fulfill

γ5W
(r)
λ = λW

(r)
λ , (25)

and, with an appropriate phase selection, have the nontrivial
orthogonality properties

W̄
(r′)
λ′ W

(r)
λ =

κr

2
δ−λ′λ (δr′r+λ(δr′ r+2+δr′+2 r)) . (26)

Equations (24), (25) and (26) suggest that a decompo-
sition of the massive spinor space into two complemen-
tary spaces can be made. This approach emerges when
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one reinterprets equation (24) as the result of projecting the
state ωr(Q,S) with the chiral projector operatorspλ =
(1 + λγ5)/2. Effectively, an operatorO can be decomposed
into the direct sum of two operators, which are acting, sep-
arately, on thepλ andp−λ subspaces. This can be seen ex-
plicitly in each splitting of the covariant operators

s → spλ + sp−λ,

p γ5 → ppλγ5pλ + pp−λγ5p−λ,

vµγµ → vµ p−λγµpλ + vµ pλγµp−λ,

aµγ5γµ → aµ p−λγ5γµpλ + aµ pλγ5γµp−λ,

Ωµνσµν → Ωµν pλσµνpλ + Ωµν p−λσµνp−λ,

(27)

and it means that two independent bases can be constructed
in each of these subspaces.

A general eigenstate of Eq. (25) can be dentoed asπζ
λ.

The respective basis will be generated when the equation for
the quantum numberζ is found and the degeneration in state
πζ

λ is avoided. Since[αi, γ5] = 0, one can impose the equa-
tion

k̄ · ᾱ πζ
λ = ζ k0 πζ

λ, (28)

wherek2 = (ζ k0)2 − k2
1 − k2

2 − k2
3 = 0, k0 > 0 and

ζ = ±1. Equation (28) is known as the Weyl equation and
it can be interpreted as a (dynamical) constriction over the
spinorsπζ

λ = πζ
λ(k). Due to the condition (dispersion rela-

tion) k2 = 0, it is common to use the termmassless spinorto
designateπζ

λ.
As a consequence, a basis will be formed by spinorsπ+1

λ ,
π−1

λ over thepλ subspace, while the subspacep−λ will have
the basisπ+1

−λ, π−1
−λ. However, the orthogonality rules are

now
π̄ζ′

λ′π
ζ
λ =

1
2
δζ′ζδ−λ′λ, (29)

where we have used the normalization of the states (24); this
implies that the expansion of any operator in each subspace
will be

Oλ =
∑

ζ′ζ

CO
λζ′ζ πζ′

λ π̄ζ
−λ. (30)

The differentλ signs in the spinors in expression (30) are re-
quired by expression (29). This is an evidence that both, an
operatorO (acting over the four-dimensional spinor space)
and a spinorωr(Q,S), need the four Weyl spinorsπζ

λ to be
expanded. The main reason behind the structure of Eq. (30)
follows from the form in which the orthogonality between
spinors is imposed. The covariace of Eqs. (29) introduces
the operatorγ0, which does not commute withγ5.

Then, a covariant expression for the expansion of any
spinorw in terms of Weyl spinors is

w = 2
∑

ζ

πζ
λ π̄ζ

−λw + 2
∑

ζ

πζ
−λ π̄ζ

λw, (31)

wherew can be a massive or massless spinor.
Equation (31) is useful to select a complete basis from the

eight states (24) but, as can be seen, there is no unique way

to form a complete basis using states (24). Equation (28)
helps in the task. The combination of the dynamical quanti-
ties kt = p + tm s, with t = ±1, are two, nonorthogonal,
light-like four-vectors. The application of the operators/kt on
the states (24) yields

/ktW
(r)
λ =

(
/p + tm /s

)
W

(r)
λ = m (κr − λtηr) W

(r)
−λ . (32)

A remarkable property of the operators/kt is shown by the
right-hand side of the Eq. (32). Imposing the condition
κr−λtηr = 0, it is possible to establish a Weyl-like equation
over the states (24).

For example, if we explicitly choose the basisW
(R)
λ with

R = 1, 2, two of them,W (1)
+1 andW

(2)
−1 , fulfill the Weyl equa-

tion with /k+1, while the others,W (1)
−1 and W

(2)
+1 , satisfy a

similar equation with/k−1. Other selections can be found, for
example, in [?]. We can change the label(R) → R and then,
the orthogonality rules among them reduce to

W̄R′
λ′ WR

λ =
1
2
δR′Rδ−λ′λ. (33)

The expansion of an arbitrary, massive or massless, spinorw
can be written as

w = 2
∑

R

WR
λ W̄R

−λw + 2
∑

R

WR
−λ W̄R

λ w. (34)

As a first elementary application of formula (34), we
present the massive spinors in terms of massless spinors

u(p, s) = W 1
+1 + W 1

−1,

u(p,−s) = W 2
+1 + W 2

−1,

v(p,−s) = W 1
+1 −W 1

−1,

v(p, s) = W 2
+1 −W 2

−1,

(35)

where the same dynamical quantitiesQ = p, S = s have
been used in formula (34); this means thatWR

λ = WR
λ (q, s)

in expression (35). Another application of formula (34) is the
expression for a transition amplitude with a vector interaction
Γ = vµγµ,

M(r′, p′, s′, r, p, s) = vµ

(
W̄ ρ′

+1γ
µW ρ

+1

+ κr′κr W̄ ρ′
−1γ

µW ρ
−1

)
, (36)

with ρ = r + κr − 1, andW ρ′

λ′ = W ρ′

λ′ (p
′, s′). A similar

procedure as the one used in Sec. 3.1 can be applied to ob-
tain closed formulas for the terms̄W ρ′

λ γµW ρ
λ , though, it is

convenient to use a specific form of spinorsW ρ
λ and calcu-

late it directly, but we do not give explicit expressions for
W̄ ρ′

λ γµW ρ
λ here.

Having established the connection with the massless
spinor basis, now we will study the helicity formalism re-
lation with the formalism of this work.
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5. Helicity-spinor method

5.1. Helicity amplitude

An helicity spinor [36]wh
κ(p, sh), of energy signκ = ±1, is

defined through equations

/pwh
κ(p, sh) = κmwh

κ(p, sh),

p̄ · Σ̄
|p̄| wh

κ(p, sh) = hwh
κ(p, sh), (37)

with Σk = εklmσlm, the helicity signh±1, and helicity-spin
four-vector

sh =
( |p̄|

m
,
E
m

p̂
)

. (38)

It is essential to be careful with the noncovariant appearance
of the second Eq. (37). This equation can be translated to the
apparently covariant expression

γ5/sh wh
κ(p, sh) = κh wh

κ(p, sh), (39)

where both Eqs. (37) are involved in its deduction. For
Lorentz-boost transformations that do not reverse the direc-
tion of p̄, Eq. (39) is a covariant expression. We restrict our
analysis to this case.

It is useful to define the helicity associated rest basis of a
helicity spinorwh

κ(p, sh)

Φh
κ(p̂) = S(β̄)wh

κ(p, sh)

=
(
cosh

χ

2
− h γ5 sinh

χ

2

)
wh

κ(p, sh). (40)

The correspondence between the basesΦh
κ(p̂) andΦετ (p̂) is

Φ11 → Φ+1
+1, Φ12 → Φ−1

+1, Φ21 → Φ−1
−1, Φ22 → Φ+1

−1. Def-
inition (40) allows us to write the helicity amplitude for an
operatorΓ, for finalwh′

κ′ (p
′, s′h) and initialwh

κ(p, sh) helicity
states, as

M(κ′p′, s′h′ , κ p, s) = cosh
χ′

2
cosh

χ

2
Mh′h

κ′κ + h′ sinh
χ′

2

× cosh
χ

2
Mh′h
−κ′κ + h cosh

χ′

2

× sinh
χ

2
Mh′h

κ′−κ + h′ h sinh
χ′

2

× sinh
χ

2
Mh′h
−κ′−κ, (41)

where the notationMh′h
κ′κ = Φ̄h′

κ′ΓΦh
κ and the PCT transfor-

mation have been used (see Eq. (19)).

The elementsMh′h
κ′κ can be obtained with the formalism

developed in Sec. (3.), particularly using formulas (18) and
(20). For example, when formula (41) is used for interaction
through a vector operatorΓ = vµγµ, we obtain

M(κp′, s′h′ , κ p, sh) = 4
(

cosh
χ′

2
cosh

χ

2
č(εκ, τκh, τκh′) · v + h′ sinh

χ′

2
cosh

χ

2
c.(εκ, τκh, τκh′) · v

+h cosh
χ′

2
sinh

χ

2
c.(εκ, τκh, τκh′) · v + h′ h sinh

χ′

2
sinh

χ

2
č(ε−κ, τ−κh, τ−κh′) · v

)
, (42)

M(−κp′, s′h′ , κ p, sh) = 4
(

cosh
χ′

2
cosh

χ

2
c.(εκ, τκh, τκh′) · v + h′ sinh

χ′

2
cosh

χ

2
č(εκ, τκh, τκh′) · v

+h cosh
χ′

2
sinh

χ

2
č(ε−κ, τ−κh, τ−κh′) · v + h′ h sinh

χ′

2
sinh

χ

2
c.(εκ, τκh, τκh′) · v

)
, (43)

with εκ = (3− κ)/2 andτκh = (3− κh)/2.

Formula (40) can be used to express a general spinor
ωr(Q,S) in terms of the helicity associated rest basis

ωr(Q,S) = κr

( (
cosh

χ

2
Kh

κrr + h sinh
χ

2
Kh
−κrr

)

×
(
cosh

χ

2
Φh

κr
+ h sinh

χ

2
Φh
−κr

)

+
(
cosh

χ

2
K−h

κrr − h sinh
χ

2
K−h
−κrr

)

×
(
cosh

χ

2
Φ−h

κr
− h sinh

χ

2
Φ−h
−κr

) )
, (44)

where the helicity spinorial basiswh
κ has the same four-

momentum qµ = Qµ = (Q0, Q̄), and Kh
κrr =

Φ̄h
κr

(Q̂)ωr(Q,S). In practice, it is straightforward to directly
evaluate the symbolsKh

κrr using an explicit representation of
the respective spinors. Finally, the formula for a general spin
amplitude can be found in Appendix C.

In the next section an elementary use of the formulas de-
veloped in Secs. (3-5) is presented. There, multiple expres-
sions for the amplitude of the Compton process are derived.
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FIGURE 1. Feynman diagram for Compton scattering.

6. An example: the Compton effect

The transition amplitude for the Compton process (see Fig. 1)
is

M(p′, s′, p, s) = −ie2 ū(p′, s′)
(

/ε′
∗ 1
/p + /k −m

/ε

+ /ε
1

/p− /k
′ −m

/ε′
∗
)

u(p, s), (45)

wherekµ = k(1, k̂), k′µ = k′(1, k̂) are the initial and fi-
nal photon four-momentum, andεµ, ε′µ are the four-vectors
that represent their respective polarizations, which are in a
complex-number representation and allow the treatment of
elliptical polarization.

Using the Mandelstam variables

s = (p + k)2,

u = (p− k′)2, (46)

t = (k − k′)2,

s + u + t = 2m2,

and after some manipulations, one can rewrite equation (45)
as

M(p′, s′, p, s) = −ie2 ū(p′, s′)
(

2ε· p /ε′
∗ − /ε′

∗
/ε/k

s−m2

− 2ε· p′ /ε′∗ + /k/ε/ε′
∗

m2 − u

)
u(p, s). (47)

The use of the equation/pu(p, s) = mu(p, s), the four-
momentum conservationp + k = p′ + k′ and the gamma
matrices identityγαγβγδ = gαβγδ − gαδγβ + gβδγα +
iεαβδµγ5γµ, reduces the number of gamma matrices. If the
final terms are arranged, expression (47) looks as

M(p′, s′, p, s) = −ie2ū(p′, s′)(/V + γ5/A)u(p, s), (48)

where

Vµ =
(s− u)(−ε · ε′∗kµ + ε′∗ · k εµ) + 2tε · p′ε′∗µ

(m2 − u)(s−m2)

+
2ε · k′ε′∗µ

s−m2
, (49)

Aµ = it
εαε′∗β kδε

αβδµ

(m2 − u)(s−m2)
. (50)

Using the spinor techniques, and the compact expression
(48), efficient treatment of the amplitude can be made as it
is shown below.

6.1. The helicity-spinor method

With formulas (18) and (42), the helicity amplitude for this
process is
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M(p′, s′h′ , p, sh) = −4ie2

(
cosh

χ′

2
cosh

χ

2
(č(1, τ+1h, τ+1h′) · V− c.(1, τ+1h, τ+1h′) · A)

+ h′ sinh
χ′

2
cosh

χ

2
(c.(1, τ+1h, τ+1h′) · V− č(1, τ+1h, τ+1h′) · A)

+ h cosh
χ′

2
sinh

χ

2
(c.(1, τ+1h, τ+1h′) · V− č(1, τ+1h, τ+1h′) · A)

+h′ h sinh
χ′

2
sinh

χ

2
(č(2, τ−1h, τ−1h′) · V− c.(2, τ−1h, τ−1h′) · A)

)
.

(51)

Equation (51) explicitly shows three parts: kinematic elements through the hyperbolic functions, the spin direction ele-
ments c.

µ, čµ, and the dynamical elementsVµ, Aµ. This separation could be useful, for example, to analyze some kinematic
configuration of interest, as the center of mass high energy limit, in which this process preserves helicity. If one takes the
approximationscoshχ/2 ≈ cosh (χ′/2) andsinh (χ/2) ≈ sinh (χ′/2) in Eq. (51), the desired resultM(p′, s′−h, p, sh) = 0
is easily obtained. There exist systems where this limit is interesting, as the inverse Compton Light Source (details of this
machine can be found in the literature, for example in [37]). Then, in this limit, and assuming helicity conservation, equation
(51) reads

M(p′, s′h, p, sh) = −4ie2

(
cosh χ

(
č(1, τ+1h, τ+1h) · V− c.(1, τ+1h, τ+1h) · A

)

+ h sinh χ

(
c.(1, τ+1h, τ+1h) · V− č(1, τ+1h, τ+1h) · A

))
. (52)

Using expressions (48), (49), (50) and formula (C.1), the amplitude for general spin directions is

M(r′, p′, s′, r, p, s) =
(

ah′
+1r′(χ

′)ah
+1r(χ)

(
cosh

χ′

2
cosh

χ

2
Mh′h

+1+1 + h′ sinh
χ′

2
cosh

χ

2
Mh′h
−1+1

+h cosh
χ′

2
sinh

χ

2
Mh′h

+1−1 + h′h sinh
χ′

2
sinh

χ

2
Mh′h
−1−1

)
+ a−h′

+1r′(χ
′)ah

+1r(χ)
(

cosh
χ′

2
cosh

χ

2
M−h′h

+1+1

−h′ sinh
χ′

2
cosh

χ

2
M−h′h
−1+1 + h cosh

χ′

2
sinh

χ

2
M−h′h

+1−1 − h′h sinh
χ′

2
sinh

χ

2
M−h′h
−1−1

)

+ah′
+1r′(χ

′)a−h
+1r(χ)

(
cosh

χ′

2
cosh

χ

2
Mh′−h

+1+1 + h′ sinh
χ′

2
cosh

χ

2
Mh′−h
−1+1 − h cosh

χ′

2
sinh

χ

2
Mh′−h

+1−1

−h′h sinh
χ′

2
sinh

χ

2
Mh′−h
−1−1

)
+ a−h′

+1r′(χ
′)a−h

+1r(χ)
(

cosh
χ′

2
cosh

χ

2
M−h′−h

+1+1 − h′ sinh
χ′

2
cosh

χ

2
M−h′−h
−1+1

−h cosh
χ′

2
sinh

χ

2
M−h′−h

+1−1 + h′h sinh
χ′

2
sinh

χ

2
M−h′−h
−1−1

))
, (53)

with Mh′h
+1+1 = −4ie2 (č(1, τ+1h, τ+1h′) · V− c.(1, τ+1h, τ+1h′) · A), Mh′h

−1−1 = −4ie2 (č(2, τ−1h, τ−1h′) · V −c.(2, τ−1h, τ−1h′) · A)
andMh′h

−1+1 = Mh′h
+1−1 = −4ie2 (c.(1, τ+1h, τ+1h′) · V− č(1, τ+1h, τ+1h′) · A).

6.2. The massless-spinor method

Using equations (34) and (36), the transition amplitude is

M(r′, p′, s′, r, p, s) = −ie2

(
(Vµ − Aµ)W̄ r′

+1γ
µW r

+1 + (Vµ + Aµ)W̄ r′
−1γ

µW r
−1

)
. (54)
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As stated above, it is easy to obtain expressions forW̄ r′
λ γµW r

λ with an explicit representation of the spinors. For example, if
one uses the standard representation (Ref. 31, pag. 30), the first element looks like

W̄ r′
λ γ0W r

λ =
1
2

√
E + m

2m

√
E′ + m

2m

(
arar′∗

(
1 +

λpz

E + m
+

λp′z
E′ + m

+
p′zpz + (p′x − ip′y)(px + ipy)

(E + m)(E′ + m)

)

+brbr′∗
(

1− λpz

E + m
− λp′z

E′ + m
+

p′zpz + (p′x + ip′y)(px − ipy)
(E + m)(E′ + m)

)
+ λbrar′∗

(
px − ipy

E + m
+

p′x − ip′y
E′ + m

+λ
p′z(px − ipy)− pz(p′x − ip′y)

(E + m)(E′ + m)

)
+ λarbr′∗

(
px + ipy

E + m
+

p′x + ip′y
E′ + m

+ λ
pz(p′x + ip′y)− p′z(px + ipy)

(E + m)(E′ + m)

))
,

(55)

wherea1 = e−i(%/2)A, a2 = −e−i(%/2)B∗, b1 = ei(%/2)B, b2 = ei(%/2)A∗ and (Ref. [31], pag. 547)

A =

√√√√1− γβ3s0 + (γ−1)β1β3

β̄2 s1 + (γ−1)β2β3

β̄2 s2 +
(
1 + (γ−1)(β3)2

β̄2

)
s3

2

B =

√√√√1 + γβ3s0 − (γ−1)β1β3

β̄2 s1 − (γ−1)β2β3

β̄2 s2 −
(
1 + (γ−1)(β3)2

β̄2

)
s3

2
, (56)

tan % =
−γβ2s0 + (γ−1)β1β2

β̄2 s1 + (γ−1)β2β3

β̄2 s3 +
(
1 + (γ−1)β2

2
β̄2

)
s2

−γβ1s0 + (γ−1)β1β2

β̄2 s2 + (γ−1)β1β3

β̄2 s3 +
(
1 + (γ−1)β2

1
β̄2

)
s1

, (57)

whereβ̄ = (β1, β2, β3) = (p̄/E), γ = (1/
√

1− β̄2), s0 = (β̄ · ŝ/
√

1− (β̄ · ŝ)2) ands̄ = (s1, s2, s3) = (ŝ/
√

1− (β̄ · ŝ)2).

6.3. The projective method: The rest basis

Because this formula is too long, it can be found in Ap-
pendix D.

6.4. The projective method: Using the Lorentz-
invariant property of the amplitude

The amplitude (48) is a Lorentz scalar and it allows us to
compute its analytical value in the reference frame where the
electron is initially at rest. The result is general because it is
possible to rewrite all the variables in another frame using a
Lorentz transformation. With the aid of equation (21) and the
covariance of amplitude (48), we get

M(p′, s′, p, s) = −ie2
(
a tr φφ′† + i tr φφ′†σ̄ · b̄) . (58)

The (two-component) spinorsφ′, φ have their spin quantiza-
tion directions defined by the finalŝ′ and initial ŝ spin three-
dimensional vectors in their respective rest frames. The no-
tation fora andb̄ is

a =
m

(m2 − u)(s−m2)
√

4m2 − t

× (−(s− u)2ε̂∗f · ε̂i + 2 t ε̂∗f · k̄iε̂i · k̄f

)
, (59)

b̄ =
1√

4m2 − t

(
(k̄f − k̄i)×

(
− ε̂∗f · ε̂i k̂i + ε̂∗f ·k̂i ε̂i

− ε̂∗f · ε̂i k̂f + ε̂∗f ε̂i·k̂f

)
+ (k̂i · ε̂∗f × ε̂i − k̂f · ε̂∗f × ε̂i)

× (k̄f − k̄i)
)

, (60)

where we have used the radiation gaugeε = (0, ε̂). Since the
spin dependenciesφφ′† are clearly separated from any other
kind of term, expression (58) can be useful when trying to
analyze the spin properties of the amplitude.

7. Conclusions

The notion of covariant-spinorial operator helps to under-
stand the importance of massive spinors’ closure property.
An important consequence of this is shown by Eq. (6). Al-
though we do not take advantage of this equation, Eq. (6)
clarifies the arguments that are employed in the text. It shows
the origin of the covariance and generality of our results.

Our procedure, the projective method, allows computing
transition amplitudes using a decomposition of a (massive or
massless) spinor as a linear combination of others (massive
or massless) spinors which, in principle, are not related to the
problem. However, to avoid unnecessary phases, it is helpful
to use a spinorial basis related to the problem.

We have shown that most common spinor techniques, as
the helicity- and massless-spinor methods, can be formulated
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using the idea of a complete spinorial basis. This frame-
work allows us to exploit the symmetries and properties of
the spinors, without the need for a specific representation for
them or for the gamma matrices, allowing a wider under-
standing of the formalism. The framework thus proposed is
free of unphysical singularities, therefore it could be fruitful
to implement it within a computational code.

For instance, the spinorial basis at rest allows for obtain-
ing closed formulas, which are fully covariant, for transi-
tion amplitudes. Thus, without requiring a particular four-
component spinor representation and with no need to fix arbi-
trary phases. The use of this particular basis is a great exam-
ple of how spinor symmetries help on the obtaining of useful
formulas; at the same time, it permits to get analytical values
of any amplitude using, simultaneously, two or more differ-
ent bases. This is relevant, particularly if one has an inter-

est in evaluating the efficiency, or shortcomings, of different
schemes, like those related to singularity issues in the ampli-
tude.

As an example of our procedures, formulas for the Comp-
ton amplitude, for helicity states and general spin states, were
obtained. It can be noted that Eq. (51) has not been computed
for a particular frame as our procedure does not depend on
such an election. Also, the structure of Eq. (51) shows sep-
arately the kinematic, spin direction and dynamical factors,
which are useful in the analysis of any process. The covari-
ance of the framework is exploited with the formula (58), a
compact expression for general spin configurations. It could
be useful studying polarization effects, such as the electron
spin asymmetry using polarized photons, or the photon helic-
ity asymmetry using unpolarized electrons.

Appendix

A.

The coefficientsck
εττ ′ look explicitly as

c0
111 = c0

222 = c0∗
122 = c0∗

211 =
1
2

(
cos

ϑ

2
e−i ϕ

2 cos
ϑ′

2
ei ϕ′

2 + sin
ϑ

2
ei ϕ

2 sin
ϑ′

2
e−i ϕ′

2

)
,

c1
111 = c1

222 = −c1∗
122 = −c1∗

211 =
1
2

(
cos

ϑ

2
e−i ϕ

2 sin
ϑ′

2
e−i ϕ′

2 + sin
ϑ

2
ei ϕ

2 cos
ϑ′

2
ei ϕ′

2

)
,

c2
111 = c2

222 = −c2∗
122 = −c2∗

211 =
i

2

(
cos

ϑ

2
e−i ϕ

2 sin
ϑ′

2
e−i ϕ′

2 − sin
ϑ

2
ei ϕ

2 cos
ϑ′

2
ei ϕ′

2

)
,

c3
111 = c3

222 = −c3∗
122 = −c3∗

211 =
1
2

(
cos

ϑ

2
e−i ϕ

2 cos
ϑ′

2
ei ϕ′

2 − sin
ϑ

2
ei ϕ

2 sin
ϑ′

2
e−i ϕ′

2

)
,

c0
121 = c0

212 = −c0∗
112 = −c0∗

221 =
1
2

(
cos

ϑ

2
ei ϕ

2 sin
ϑ′

2
e−i ϕ′

2 − sin
ϑ

2
e−i ϕ

2 cos
ϑ′

2
ei ϕ′

2

)
,

c1
121 = c1

212 = c1∗
112 = c1∗

221 =
1
2

(
cos

ϑ

2
ei ϕ

2 cos
ϑ′

2
ei ϕ′

2 − sin
ϑ

2
e−i ϕ

2 sin
ϑ′

2
e−i ϕ′

2

)
,

c2
121 = c2

212 = c2∗
112 = c2∗

221 = − i

2

(
cos

ϑ

2
ei ϕ

2 cos
ϑ′

2
ei ϕ′

2 + sin
ϑ

2
e−i ϕ

2 sin
ϑ′

2
e−i ϕ′

2

)
,

c3
121 = c3

212 = c3∗
112 = c3∗

221 = −1
2

(
cos

ϑ

2
ei ϕ

2 sin
ϑ′

2
e−i ϕ′

2 + sin
ϑ

2
e−i ϕ

2 cos
ϑ′

2
ei ϕ′

2

)
.

(A.1)

B.

The explicit view of the formula for the transition amplitude between particle states and the interaction term/v is

M(ε, p′, τ ′, s′, ε, p, τ, s) =
1

4mm′

√
2m′

E′ + m′

√
2m

E + m

(
− (−1)εč · q(−(−1)τ ′i[s′p′vp]− (−1)τ ′+ε+τm〈p′s′vs〉

− (−1)τ i[p′vsp]− (−1)εm p′ · v +−(−1)εm′p · v + (−1)τ ′+τ+εm′〈s′vps〉)
− (−1)τ ′+τ 〈〈čp′s′vps〉〉+ (−1)τ ′+εim[čp′s′v] + 〈čp′vp〉 − (−1)ε+τ im[čp′vs]

− (−1)τ ′+εim′[čs′vp] + (−1)τ ′+τm′m〈čs′vs〉 − (−1)τ+εim′[čvps] + m′m č · v
− (−1)τ ′+τ i[[c.p

′s′vps]] + i[c.p
′vp] + (−1)τ ′+εm〈c.p′s′v〉 − (−1)ε+τm〈c.p′vs〉
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− (−1)τ ′+εm′〈c.s′vp〉+ (−1)τ ′+τ im′m[c.s
′vs]− (−1)τ+εm′〈c.vps〉+ (−1)ε((−1)τ ′〈〈qc.p

′s′vp〉〉
− (−1)ε+τ ′+τ im[[qc.p

′s′vs]] + (−1)τ 〈〈qc.p
′vps〉〉+ (−1)τ ′+ε+τ im′[[c.s

′vps]]

− (−1)εim[qc.p
′v]− (−1)τ ′m′m〈qc.s

′v〉 − (−1)εim′[qc.vp] + (−1)τm′m〈qc.vs〉)
)

, (B.1)

with the notation[abcd] = εµ1µ2µ3µ4a
µ1bµ2cµ3dµ4 , [[abcdef ]] = −a·b[cdef ]+a·c[bdef ]−b·c[adef ]+d·e[abcf ]−d·f [abce]+

e·f [abcd], 〈abcd〉 = a·b c·d− a·c b·d + a·d b·c, 〈〈abcdef〉〉 = a·b〈cdef〉− a·c〈bdef〉+ a·d〈bcef〉− a·e〈bcdf〉+ a·f〈bcde〉.

C.

The formula for a general spin amplitude using our approach to the helicity formalism is

M(r′, p′, s′, r, p, s) = κr′κr

(
ah′

κr′r′
(χ′)ah

κrr(χ)
(

cosh
χ′

2
cosh

χ

2
Mh′h

κr′κr
+ h′ sinh

χ′

2
cosh

χ

2
Mh′h
−κr′κr

+ h cosh
χ′

2
sinh

χ

2
Mh′h

κr′−κr
+ h′h sinh

χ′

2
sinh

χ

2
Mh′h
−κr′−κr

)
+ a−h′

κr′r′
(χ′)ah

κrr(χ)

×
(

cosh
χ′

2
cosh

χ

2
M−h′h

κr′κr
− h′ sinh

χ′

2
cosh

χ

2
M−h′h
−κr′κr

+ h cosh
χ′

2
sinh

χ

2
M−h′h

κr′−κr

− h′h sinh
χ′

2
sinh

χ

2
M−h′h
−κr′−κr

)
+ ah′

κr′r′
(χ′)a−h

κrr(χ)
(

cosh
χ′

2
cosh

χ

2
Mh′−h

κr′κr

+ h′ sinh
χ′

2
cosh

χ

2
Mh′−h
−κr′κr

− h cosh
χ′

2
sinh

χ

2
Mh′−h

κr′−κr
− h′h sinh

χ′

2
sinh

χ

2
Mh′−h
−κr′−κr

)

+ a−h′
κr′r′

(χ′)a−h
κrr(χ)

(
cosh

χ′

2
cosh

χ

2
M−h′−h

κr′κr
− h′ sinh

χ′

2
cosh

χ

2
M−h′−h
−κr′κr

− h cosh
χ′

2
sinh

χ

2
M−h′−h

κr′−κr
+ h′h sinh

χ′

2
sinh

χ

2
M−h′−h
−κr′−κr

))
, (C.1)

where the notationah
κrr(χ) = cosh (χ/2)Kh

κrr + h sinh (χ/2) Kh
−κrr has been used.

D.

With the aid of expressions (20) and (B.1), the amplitude is written as

M(1, p′, τ ′, s′, 1, p, τ, s) =
−ie2

4mm′

√
2m′

E′ + m′

√
2m

E + m

(
č · q(−(−1)τ ′i[s′p′Vp] + (−1)τ ′+τm〈p′s′Vs〉 − (−1)τ i[p′Vsp]

+ m p′ · V + m′p·V− (−1)τ ′+τm′〈s′Vps〉)− (−1)τ ′+τ 〈〈čp′s′Vps〉〉 − (−1)τ ′im[čp′s′V]

+ 〈čp′Vp〉+ (−1)τ im[čp′Vs] + (−1)τ ′im′[čs′Vp] + (−1)τ ′+τm′m〈čs′Vs〉+ (−1)τ im′[čVps]

+ m′m č·V− (−1)τ ′+τ i[[c.p
′s′Vps]] + i[c.p

′Vp]− (−1)τ ′m〈c.p′s′V〉+ (−1)τm〈c.p′Vs〉
+ (−1)τ ′m′〈c.s′Vp〉+ (−1)τ ′+τ im′m[c.s

′Vs] + (−1)τm′〈c.Vps〉 − ((−1)τ ′〈〈qc.p
′s′Vp〉〉

+ (−1)τ ′+τ im[[qc.p
′s′Vs]] + (−1)τ 〈〈qc.p

′Vps〉〉 − (−1)τ ′+τ im′[[c.s
′Vps]] + im[qc.p

′V]

− (−1)τ ′m′m〈qc.s
′V〉+ im′[qc.Vp] + (−1)τm′m〈qc.Vs〉) + (−1)τm〈čp′As〉+ č · q(−(−1)τ ′〈s′p′Ap〉

+ (−1)τ ′+τ im[p′s′As] + (−1)τ 〈p′Asp〉+ (−1)τ ′m′m s′ ·A + (−1)τm′ms·A− (−1)τ ′+τ im′[s′Aps])

+ (−1)τ ′+τ i[[čp′s′Aps]] + (−1)τ ′m〈čp′s′A〉+ i[čp′Ap] + (−1)τ ′m′〈čs′Ap〉+ (−1)τ ′+τ im′m[čs′As]
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− (−1)τm′〈čAps〉 −m′m c. ·A + (−1)τ ′+τ 〈〈c.p′s′Aps〉〉+ 〈c.p′Ap〉+ (−1)τ ′im[c.p
′s′A]

+ (−1)τ im[c.p
′As] + (−1)τ ′im′[c.s

′Ap] + (−1)τ ′+τm′m〈c.s′As〉 − (−1)τ im′[c.Aps]

− ((−1)τ ′i[[qc.p
′s′Ap]] + (−1)τ ′+τm〈〈qc.p

′s′As〉〉 − (−1)τ i[[qc.p
′Aps]] + (−1)τ ′+τm′〈〈qc.s

′Aps〉〉

−m〈qc.p
′A〉+ (−1)τ ′im′m[qc.s

′A] + m′〈qc.Ap〉+ (−1)τ im′m[qc.As])
)

. (D.1)

Using equations (56) and (57), the four-vectorsčµ and c.
µ are built with the correspondence

A → cos
ϑ

2
, B → sin

ϑ

2
, % → ϕ. (D.2)

Acknowledgments
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