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There have been numerous methodologies to perform the calculation of spin-dependent amplitudes for Dirac particles. All of them have their
own advantages and properties, but there is no general framework to address the analytic calculation of such amplitudes. In this work, we
use the closure property of massive spinors to present a new and general approach to compute transition amplitudes for general spin state
We argue that this perspective can be used to reformulate all other techniques and to relate all of them. Particularly, it is shown that the
massless spinor and the helicity spinor techniques can be formulated through this language. Finally, we give an example of this calculation

as a procedure by computing the spin-dependent amplitude for the Compton process and comment some of the strengths of our method.
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1. Introduction operator in terms of spinors. Section 3 presents a system-
atic framework for spin amplitude calculation, we call this
The search for new physics and standard-model tests in higgcheme the projective method. The method is exemplified
energy physics, more than ever, demands the exploration osing the spinor rest frame basis. Section 4 is devoted to for-
highly sophisticated processes [1-8]. This brings along exmulate the massless-spinor method [18] using the structures
perimental challenges as, for example, the implementatioff the Sec. 2. In Sec. 5, it is shown that the helicity-spinor
of multiparticle detection and measurement. In this contextmethod can also be structured within this framework. We
the theoretical study of the spin-dependent observables ar@iive an example of all of these procedures by computing the
the analysis of high-order processes require the calculatiofompton Scattering amplitude in Sec. 6. Finally, Sec. 7 con-
of transition amplitudes of increasing complexity. Becausdains the conclusions. Bjorken and Drell [31] notation and
these amplitudes involve a large number of Dirac particlesunits will be adopted throughout this text.
coupled through interaction terms with several gamma ma-
trices [9—12], the textbook methods become cumbersome to Completeness of the Dirac spinors
calculate with.

The algebraic structure of physical amplitudes demanddhe Dirac equation for a free particle of mass
the use of bold and clever methods to provide an analyti-
cal value. Modern techniques for amplitude calculation have (P — em) ve(z) =0, (1)
been improved, especially for interactions with many parti-wheree = +1 is the sign of the energy (Ref. 31, pag. 28),
cles [13-16], and are usually optimized for some computauses two different representations of the Lorentz group. On
tional implementations [17-20]. However, almost all of theseone hand, the four-vector operatpt = i((@/at),—?)
techniques are devoted to helicity states for fermions [21-29)vhich transforms as the fundamental representation estab-
and only a few can be regarded as an analysis tool for generiidhes. On the other hand, the massive-spinor representation
spin directions [30]. acts on the four-component objects (Dirac spinors) which are
Our goal in this work is to develop a fully covariant used to solve Eq. (1). Namely, the positive- and negative-
method which allows obtainong efficient and compact anaenergy plane-wave solutions for Eq. (1) are
lytical expressions for the spin-dependent amplitude, so that B Cipa B ip
the framework can be employed within a computational pro-  ¢+(*) = ulp,s)e™™%, d_(z) = v(p,s) ™™, (2)
gram. Also, we want to suggest that a simple unifying frame-wherez* = (¢, %), u(p, s) is a positive-energy Dirac spinor
work to many other approaches can be formulated with ougnd v(p, s) is the negative energy one. The eneigyand
expressions. the three-component momentyinform the four-momentum
The organization of this work is as follows. Section 2 setsvectorp” = (E,p), ands* = (s°, ), the four-spin vector,
the basic notation and contains the central idea of our profulfill the propertiesp? = m? s - p = 0 ands? = —1.
cedure: the covariance of Dirac spinors and its implications  The operatop contains the Dirac matriceg’ which, due
to the closure property, along with the decomposition of arto the Lorentz invariance of the Dirac equation (1), transform
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as both spinor and four-vector object. To fully appreciatepure spinorial object, transforming with the Dirac-spinor rep-
what this implies, it is useful to recall the properties of a Diracresentation of the Lorentz group. Some remarks are in or-

spinor.
The spinorsu(p, +s) and v(p, £s) satisfy the set of
eigenequations

pulp,£s) = mu(p, £s),
pu(p, £s) = —mo(p, £s),
7 Hulp, £s) = £u(p, s),
7 Hu(p, £s5) = £v(p, s), (3)

and form a complete basis for any four-component spirer,
an arbitrary Dirac spinotw, with four-momentuny’, four-
spins’ and massn’ can be expanded in the form

w(p',s') =Y ulp,s)u(p, s)w(p',s)
—Zv(p,s)f)(p,s)w(p’,s/), (4)

where it is used the notatioli (p, s) = U (p, s)7° for the
adjoint spinor ofU (p, s).

der. Firstly, the selection of the dynamical variabigs@nd
S may seem arbitrary. This is not the case since their free
choice reveals that Egs. (3) constrain the spinors which con-
stitute the basis. Secondly, the anticommutation and anti-
hermitian properties of the gamma matrices are strictly ful-
filled by this expansion, although it does not seem obvi-
ous from (6). Thirdly, analogous expressions to (6) follow
but for products of gamma matrices such~as v°v* and
ot = (i/2)[y", "]

A general spinorial operato® will be covariant if it
transforms under the Lorentz group @ = SOS~!. If
O is written as

O =s+py° + 9" + @Y + Qo™ (7)

the covariance is verified if the p, v#, a#, andQ*” are ob-
jects that transform under the four-vector representation as a
scalar, pseudo-scalar, vector, axial-vector, and tensor quanti-
ties, respectively. If a covariant operator acts upon any spinor
wr (@), a new spinoO w,(Q) is obtained. In general, this
spinor is not necessarily an eigenstate of Egs. (3), but the re-
sult can be expressed as a linear combination of a complete

The expansion (4) will not mix spinors of opposite en- spinorial basis. This idea will be extensively used in the fol-
ergy if it connects spinors with the same four-momentalowing sections, but the relevance of the completeness in the

This means that the representationu@p, s") or v(p, s") will
only have non-zero terms for coefficieni$p, s)u(p, s’) or
o(p, s)v(p, s'), respectively.

The orthogonality between spinotgp, s) and v(p, s)

spinor space becomes now clear.

In the next section, the expressions (4) and (6) will be
used to compute a general Dirac amplitude, and that will en-
able us to understand other techniques systematically.

is evident in their rest reference frame, where the Dirac

spinors of different energies are mutually orthogonal, no matg
ter which spin directions are chosen. Using a Lorentz trans-

formationS(;3), one goes to the rest frame of the spinor with

momentunmp = § E, and then the equality

o(p, s)u(p, ") = v(p, s)S(—B)S(B)u(p, s")
= 9(po, s0)u(po, s5) = 0, (5)

is evident and shows that it will hold in any reference frame.

. Projective method for the amplitude com-
putation: a General Framework

A Dirac amplitude is a matrix element of the, usually, covari-
ant operator’. Its Lorentz scalar nature is revealed when one
looks at its explicit form. For example, with positive energy
states, it looks as

M(p',s',p,s) = a(p', s")Tu(p, s). (8)

Also, formula (4) can be proven by taking advantage of its

fully covariant structure, as it is noticed in (Ref. 31, pag. 31),

The main purpose of the spinorial techniques is to obtain

and this suggests that its use will, in turn, generate covariant,q analytical value of expression (8) in terms of simple ele-

expressions.

ments, such as inner products between four-vectors, or the

The transformation rule of Dirac matrices (Ref. 31, pag.,gjume subtended by four-vectoes aabscyds (Where

20), can be further appreciated with the insight that equatiog0123 = +1 is the Levi-Civita symbol of four indices). A
(4) provides. Using it, one can demonstrate the expansion -ommon trick is to rewrite Eq. (8) as

Y= Ch(Q, Q) wn(Q, 9@ (Q, ), (6)

rr!

where r,v/ = 1,2,3,4, the spinor w,.(Q,S) =
w(@, (=1)"*L8), for r = 1,2; and w.(Q,S) =

M(p',s',p, s) = tru(p, s)u(p’,s") T 9)

This procedure has the advantage of explicitly displaying
the two covariant objects that constitute the amplitude. Fur-

v(@, (—=1)"S), forr = 3,4. Expression (6) shows a twofold thermore, using the trace properties of gamma matrices it is
composition of representations of the Lorentz group. Whilepossible to obtain an analytical expression for the amplitude.
the coefficient””’ , (Q, Q') transform according to the four- While theT' operator is usually given in the representation
vector representation, the operatgn @, S)w,-(Q’,S’) isa  that is shown in Eq. (7), the operatofp, s)u(p’, s) is not
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usually represented this way. Associated with expansion (7)pertaining to positive spin and energy for= 5 = +1. A
or a similar decomposition (general procedures to expand anyansition amplitude for a process between an initial spinor of
operator in terms of covariant bilinears can be found in [32-€nergy sigm = (—1)¢*! and spin eigenvalue in the frame
34]), we can point out a couple of weaknesses of the operatat rest(—1)*™ = 3(—1)¢*!, and a final spinor of energy
u(p, s)u(p', s'). On one hand, the procedure requires a consigna’ = (—1)¢ ! and spin eigenvalue in the frame at rest
siderable amount of work, the expressions obtained are ngt-1)<+7 = #/(—1)< ! is written as
as compact as one would desire and are not trivially reduced
to manifestly covariant functions ¢f, s’, p, ands. On the M 7 c +e\/ 2m’ \/
X A €E,p,T 7S €E,p,T, S

other hand, the resulting elements do not have a direct phys- E + E+m
ical interpretation and this obscures the overall outcome. To =
deal with this, a specific basis to overcome these difficulties X e (3)@err ()P (¢, ') T Pas (b 5). (13)
is presented in the next subsection. To be useful, the expression in (13) needs the operator

) expansion of®..(s)®..,(s') in terms of equation (7). The
3.1. The rest basis task is simple compared to the work required to compute
u(p, s)u(p’, s'), and the reason for this lies in the simplifica-
tions allowed by the rest frame, particularly the implications

In the rest frame of the Dirac spinors, we rewrite Egs. (3) as

<¢ + (=1)° ) +(s) = for operator expansions. To display this, it is convenient to
note that the four-component spinabs, can be presented
(VP + (1)) @cr(s) = (10)  as two couples of angular-momentum-like eigenstates, with
) . total angular momenturh/2, each for different complemen-
with the spinors at resbyi(s) = S(B)u(p,s), Pi2(s) = tary algebras.
ggg;zg: : ;hd(lt)ﬁze(fc))ur jector;ﬂﬂ)vf(pk1/Sr21)ALI)"2(1[(3)) ” z This can be seen from the spin equation in (10)
(1,0), s* = A*(B)s, = (0,8). The Matrix A(3) is the P58 Der(s) = (1) Der (s). (14)

four-vector representation of the Lorentz transformation to

a frame moving with velocity3, i.e., the frame where the Equation (14) implies, via the eigenvalue equation

spinors are at rest. Vo, (s) = —(—1)®..(s), that the spinorsd,(s) and
Itis easy to see that the representation of the Dirac spinoré.,(s) are eigenstates of the operatof1°+°5 - § = J - 8

in (Ref. 31, pag. 30) allows for a projective decompositionwith eigenvalues-(—1)¢/2 and+(—1)¢/2 respectively. Op-

of the Dirac spinors in terms of the spinors at rest erators]J fulfill the angular momentum commutation rules,
. 5) =\ g )il 5) @), (= =2 )R 0) = = [V ] ()
= 2ie"* (—7"7°7") @ er (3), (15)
2m B
ulp, —s) = E+ mu(p’fs)u(p’fs) ®12(s), but operatorsvoj do not. Using the projector®, =
(1 — (=1)%4°)/2, one can decompose the algebra as a direct
v(p, —s) = — 2m v(p, —s)v(p, —s) Paa(s), sum of two representation, = P;J andJ, = P,J, in
E+4+m such a way that
2m j:jl +j27 (16)
v(p,s) = — v(p, $)0(p, s) Pay(s). (12)

E+m and[J,J3] = 0V [, m. This shows that the four-component

Note that expressions (11) are easily derived using the stasPINOrS®., are a basis for a reducible representation of a

dard gamma-matrices representation (Ref. 31, pag. 30§roUPSU(2) @ SU(2).

They remain valid in an arbitrary representation since two oM EQ. (16) and the definition @, an operator act-
sets of gamma matrices” and3*, are equivalent under sim- ing in the subspace of spinors of definite energyan be de-
ilarity transformations ([35]). composed in terms of the operator basis with four elements

. - = S .
Using expressions (11), Eq. (9) takes the form Vi ={PJc},k=0,1,2,3. Then, itis possible to expand
O, (3)Pc,(s') @S

M p s' Dy 8 \/E/ \/ tI‘ q)ll ) q)e‘r(s)é)e‘r’(s/) = Z _(_1)661;'7'/ V§7 (17)

k
x ®11(s)P s)TP ,s), (12
(P ¢, TP prs). (12) where no summation over theindex is implied and the
where both particles can have different masses and the opeefficientsc® k _(s,s') will be obtained as the ex-
eratorP,s(p, s) = I(a,p)X(8,s) = = (8, s)I(a, p) is pressmnceTT,(S s) = —(=1)(1/2)tr VE &, (s)Pcr ()
constituted withll(a,p) = (ap+m)/2m andX(3,s) =  establishes. For some representation of the gamma matri-

(Bv°# +1)/2, the energy and spin projectors, respectively,ces, Egs. (14) are reduced to two-component eigenequations
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(1/2)8 - 7 ¢per = (—=1)T7(1/2) ¢ and, if we use the rest where the spinors,.(Q, S) were defined above and the no-
spin vector parametrizatiofsin 9 cos ¢, sin J sin ¢, cos¢),  tation of the spin-energy projectors are used, with
the coefficients can be easily obtained up to a nonphysi-
cal phase. Their explicit expressions can be found in Ap- ¢ (Q, S5 +p, Bs) = 0 (Q, S)u(p, Bs),
pendix A, _ | | e (Q.5:~p.s) = @r(@Q. S)u(p.s).  (22)
Expression (17) can be arranged in a covariant form
_ Formula (21) reflects the main idea of this work. Al-
Per(8)Perr (8') = —(—1)C- g + ¢ though it is written with a general basis, it shows formidable
o 1\es B v 5 characteristics of the completeness of a spinorial basis,
(=17 aue, +77¢, (18) the reduction of the amount of work needed, and the explicit
with the four-vectors# = & (e,7,7') = (1/2)(c2,..,0), covariance of the expressions obtained. Instead of working

¢t = ¢e,7,7) = (1/2)(0,ct ., c2 ., ) andgt = with the squared modulus of the amplitude |2, formula
(o + g'*)/2. (21) allows one to deal with the transition amplitudlé it-
The expansion of the operatdg.. (s) @,/ (s'), for e # ¢, self, without invoking non-physical quantities, and using a

can be obtained with the operatpt. After multiplying the ~ decomposition of the original transition amplitude in terms
first equation in (10) by;%, the energy effectively changes its Of elementary amplitudes, (Q’, S")T'w,.(Q, S). In the next

sign but, the eigenvalue for the spin equation keeps its sign two sections, we will use two popular bases to express for-
mula (21) and, exploiting their main properties and symme-

d VB (5) = (1) Per(s), tries, we will obtain closed and compact expressions.
_ 1

LA AP — (_1\eTTZ A5 .
J:8770cr(s) = (=1)77 5 7" ®Per (o). (190 4. The massless-spinor method

Notice that, up t5° an unphysical phase, the operators (18}, massive spinorial basis possesses the interesting symme-
transform under;” as try provided by the operatoy®. Multiplying Egs. (3) byy®
shows that the spinorg’w,.(Q, S) are also its solutions. Ac-

5B (3) P11 (8)) — Dog(s) Py, (s),
7 8u )71 ) 2a( )71 ©) tually, the spinory®w,.(Q, S) corresponds to an energy sign
VP D15(35)P1r (8') — o1 (s) D1, (s), 20) —k, and spin sign-4,. as follows
D1 (8)P11()y” — — P17 (s)Paa(s), P (@, S) = —k,myPw,(Q, S),
P17(8)P12(5)7° = —Pir(8) P21 (5). P wn(Q, 8) = =1 Y Pwn(Q, 9), (23)
It is important to note that Egs. (13), (18) and (B.1) (see aPwherer, = +1, 7, = +1forr = 1,2 andk, = —1,
pendix B) have no arbitrary phases; this is relevant when Ong — _1for r = 3,4. This is a consequence of the PCT

is interested in the relative phases of a multiparticle processyransformation over the spinor part of the wave functions (2).
As an elementary application of expressions (13) antothing prevents the use of the set of eight linearly depen-

(18), the transition amplitude for a vector operdfo= v, 7"  gent massive spinoréw,(Q, S),7°w,(Q, S)} as an over-

and for spinors with the same energy sign is shown in Ap'complete basis.

pendix B. However, by using the formulas (13), (A.1), (18),  There are multiple ways to reduce this set to a complete

and (20), it is possible to perform calculations for any kindpssis.  For example, the linear combinatiangQ, S) +

of transition amplitude with a systematic methodology. Nev-,5,, (@, S), with » = 1,2, form a complete basis. How-

ertheless, this is a special case of the more general projectiVer some useful linear combinations are

method. )

) _ ™ — 5
3.2. General projective method T =W@s) =5 (1527w (@5). (24

. ) . . . with A = £1. The eight states (24) are not anymore eigen-
When one deals with an analytic amplitude calculation, "kestates of Egs. (3), but they fulfil

the one in equation (13), the implementation of a specific ba-
sis is useful to optimize the overall procedure. Particularly, 75W,£T) - /\WA(T), (25)
the rest basis is a powerful tool to obtain the spin-dependent
amplitude. A specific interaction terifi could be success- and, with an appropriate phase selection, have the nontrivial
fully treated with a suitable election of the spinorial basis.orthogonality properties
Such a basis will be used in the generalized formula (13) (Yo (r) K
W)\/ WA :757/\’/\ (6r’r+)\(6r' r+2+6r’+2 r)) . (26)

M(dp,B's' ap, Bs) = kpkir ¢(Q, S5 0'p, B'S)

rr!

Equations (24), (25) and (26) suggest that a decompo-
~ o sition of the massive spinor space into two complemen-
x ¢ (@, S5 ap, Bs) trwp(Q, S)wr (@, ST, (21)  tary spaces can be made. This approach emerges when
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one reinterprets equation (24) as the result of projecting théo form a complete basis using states (24). Equation (28)
statew,. (Q, S) with the chiral projector operatorp, = helps in the task. The combination of the dynamical quanti-
(1 + \v°)/2. Effectively, an operato® can be decomposed tiesk, = p + tms, with t = +1, are two, nonorthogonal,
into the direct sum of two operators, which are acting, sepfight-like four-vectors. The application of the operat@fon
arately, on the, andp_, subspaces. This can be seen ex-the states (24) yields

plicitly in each splitting of the covariant operators

(r) _ (r) _ o (r)
S—Spy+SP_x, kWY = (p+tm$) Wy =m (ky — M) WZLL (32)

P’ = pPAYPA + PP_AY P, A remarkablg property of the operatofs is_ shown by thg
right-hand side of the Eq. (32). Imposing the condition
v = v PP + U PAY P, (27) kK, — Mz, = 0, itis possible to establish a Weyl-like equation

over the states (24).

5.1 5.1 5.1
apY V" = G PV Y PA T au PAY Y P . . .
g g g ’ For example, if we explicitly choose the bakiéA(R) with

Q0™ — Qu PAT" PN + QP Py, R = 1,2, two of them, W) andw ?), fulfill the Weyl equa-
o . 1 2 -
and it means that two independent bases can be constructi@n with £__,, while the otherspy) and w'?, satisfy a
in each of these subspaces. similar equation with¢_, . Other selections can be found, for

A general eigenstate of Eq. (25) can be dentoedsas €xample, inf]. We can change the labgk) — R and then,
The respective basis will be generated when the equation fdhe orthogonality rules among them reduce to
the quantum numbef is found and the degeneration in state 1
75 is avoided. Sincén’,~5] = 0, one can impose the equa- WE W = iaR/Ra_M_ (33)
tion
k-a 7T§ = (ko 7T§7 (28)  The expansion of an arbitrary, massive or massless, spinor

wherek? = (Cko)2 —k? — k2 — k2 = 0, ko > 0 and Canbewritten as
¢ = +£1. Equation (28) is known as the Weyl equation and - -
it can be interpreted as a (dynamical) constriction over the @ =2 Z WEWEw +2 Z WE Witw. (34)
spinorsm§, = 75 (k). Due to the condition (dispersion rela- R R
tion) k2 = 0, itis common to use the termassless spindo
designaters.

As a consequence, a basis will be formed by spimg“ﬁs

As a first elementary application of formula (34), we
present the massive spinors in terms of massless spinors

W;I over thep,, subspace, while the subspaee, will have u(p, s) = W + Wi,
the basist ™}, 7). However, the orthogonality rules are ’ - -
now . u(p, —s) = Wi + W2, @)
¢ ¢ _
T T\ — 55(/(5,)\/)\, (29) ’U(p, —S) _ W_A,l.l _ Wil,
where we have used the normalization of the states (24); this 2 2
o . . v(p,s) = Wi — W2,
implies that the expansion of any operator in each subspace
will be o _¢.¢ where the same dynamical quantiti@s= p, S = s have
Oy =) CRcmimly (30)  been used in formula (34); this means thaft = WE(q, 5)
¢’¢

in expression (35). Another application of formula (34) is the
The differenth signs in the spinors in expression (30) are re-expression for a transition amplitude with a vector interaction
quired by expression (29). This is an evidence that both, al" = v,,+*,
operatorO (acting over the four-dimensional spinor space)

and a spinow,. (@, S), need the four Weyl spinors§ to be M(r' p' s p,s) = v, (Wi/ﬂuwil

expanded. The main reason behind the structure of Eq. (30) ,

follows from the form in which the orthogonality between + Kby WEAHWP ), (36)

spinors is imposed. The covariace of Egs. (29) introduces

the operaton", which does not commute witr. with p = r + k. — 1, and Wf,' = Wf,' (p',s"). A similar

Then, a covariant expression for the expansion of anyprocedure as the one used in Sec. 3.1 can be applied to ob-

spinorw in terms of Weyl spinors is tain closed formulas for the termi& ' v#W?, though, it is

convenient to use a specific form of spin and calcu-
w= 22 TR A W 2 Z TS, B ate it directly, but Wepdo not give exglic?gxpressions for
¢ ¢ W v here.
wherew can be a massive or massless spinor. Having established the connection with the massless

Equation (31) is useful to select a complete basis from thepinor basis, now we will study the helicity formalism re-
eight states (24) but, as can be seen, there is no unique wéation with the formalism of this work.
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5. Helicity-spinor method
5.1. Helicity amplitude

An helicity spinor [36]w" (p, s1,), of energy signc = +1, is
defined through equations

pw:(pa Sh) = Kkm 'UJ:(p, Sh)7

p-x

|I_)‘ w:(pa Sh) = th(pv Sh)a (37)

with 3¢ = eFmglm the helicity signh+ 1, and helicity-spin

four-vector 5l B
= (2L2). (38)
m m

E. SANCHEZ AND M. MORENO

@3(D) = S(B) wy (v, sn)

= (coshg — h’sinh g) wh(p, sp,). (40)

The correspondence between the basg®) and®,, (p) is
Py — @I, B1p — Oy, oy — T}, Py — T, Def-
inition (40) allows us to write the helicity amplitude for an
operatoiT, for finalw’, (p', s}, ) and initialw’ (p, s;) helicity
states, as

!

1 o X X 2 rh'h /o X'
M(K'p', sy, kp,s) = cosh;cosh§MH,N +h smh;

/

x cosh % Mfz',ﬁ + h cosh XE

It is essential to be careful with the noncovariant appearance ’

of the second Eq. (37). This equation can be translated to the

apparently covariant expression

Vé, wl(p,sp) = Khw!(p, sp), (39)

where both Egs. (37) are involved in its deduction.

analysis to this case.

For .
Lorentz-boost transformations that do not reverse the dire¢here the notatio
tion of p, Eq. (39) is a covariant expression. We restrict our

x sinh % MM+ B b sinh XE

(41)

x sinh X Mﬁ/,ih/,ﬁ,
2
h = &M Td" and the PCT transfor-
mation have been used (see Eqg. (19)).
The elements\/”,” can be obtained with the formalism

It is useful to define the helicity associated rest basis of &leveloped in Sec. (3.), particularly using formulas (18) and

helicity spinorw” (p, s;,)
|

!/

(20). For example, when formula (41) is used for interaction
through a vector operatdt = v,v*, we obtain

/

M (kp', s}/, kp,sp) =4 (cosh X? cosh % &€y Tiohs Tonr) - v+ B/ sinh X? cosh % C€py Thohs Tih?) - ¥
+ h cosh XEI sinh % C(€w, Trhs Teh') - v + h' b sinh XE/ sinh % (€ 1oy T rohy T—rh) * v) , (42)

M (—kp', 8}, kD, sp) =4 (cosh XEI cosh g Cl€xs Trohs Tuhr) - v + A’ sinh XEI cosh g €y Trohy Tkt ) * U
+h cosh XE/ sinh g (€, T—why T—wh) - v+ h' h sinh XE/ sinh g Cl€rs Trhs Trch!) - v) , (43)

with e, = (3 — k)/2 andr,, = (3 — kh)/2.

Formula (40) can be used to express a general spinqr

wr (@, S) in terms of the helicity associated rest basis

wr(@, ) = Fir ( (cosh g K] .+ hsinh % Kﬁ,.w)

X (cosh % CDZT + hsinh % " )

— Ky

+ <cosh X K= _ hsinh g K=" )

2 Ky — KT

P )
X (cosh 5 &, " — hsinh 5 @,KJ >7 (44)

where the helicity spinorial basig” has the same four-
momentum ¢* = Q" = (Qo,Q), and K =
o (Q)w, (@, S). In practice, itis straightforward to directly
evaluate the symbol&’[grr using an explicit representation of
the respective spinors. Finally, the formula for a general spin
amplitude can be found in Appendix C.

In the next section an elementary use of the formulas de-
veloped in Secs. (3-5) is presented. There, multiple expres-
sions for the amplitude of the Compton process are derived.
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e k! ‘q»'pf <!t prl
A + A
\ d
e k sp € k sp
FIGURE 1. Feynman diagram for Compton scattering.
6. Anexample: the Compton effect The use of the equatiopu(p,s) = mu(p,s), the four-

- . __momentum conservation+ k£ = p’ + k' and the gamma
The transition amplitude for the Compton process (see Fig. Ihatrices identityy®1%+0 = ¢®#7° — g@048 + gy 4

IS ie“Pon~5~,, reduces the number of gamma matrices. If the
M@, s\ p,s) = —ie® a(p', s') (Q//* 1 ¢ final terms are arranged, expression (47) looks as
P+ F—m
1 . M(p',s',p,s) = —ie*u(p’,s") (¥ + v’ Ku(p,s), (48)
o )u(p,s» (45) ( ) ot )
pKm

wherek” = k(1,k), ¥’ = k'(1,k) are the initial and fi- where

nal photon four-momentum, ar, ¢’* are the four-vectors

. . . . . . _ _./*p /*. 1 .//*,u.
that represent their respective polarizations, which are ina y+* = (s —u)(—e- "k + €™ - ke) +2te-ple

complex-number representation and allow the treatment of (m? —u)(s —m?)
elliptical polarization. % k!l P
Using the Mandelstam variables t T (49)
s = (p + k)Q, N " €a€/ﬁ*k5€aﬁ5” (50)
=1 .
u=(p—FK)?, (46) (m? —u)(s —m?)

_ _1.\2
t=(k—k)" Using the spinor techniques, and the compact expression
s+ u+t=2m?2 (48), efficient treatment of the amplitude can be made as it

. . . . is shown below.
and after some manipulations, one can rewrite equation (4é§

as
2e-pd” —{'*yf}é

M, s p,s) = —ie u(p, 8’)< 2 6.1. The helicity-spinor method

C2epd" + Wf/*)u(p 9. (a7)  With formulas (18) and (42), the helicity amplitude for this
m2 —u ’ process is
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/
M(p, s}, p,sp) = —4ie? (cosh XE coshg (1, o1n, Tean) -V — (1, To1h, To1n) - A)

!
+ h/ sinh XE COSh% (c,:(177-+1h>7—+1h’) -V - é(l,TJrlh,TJrlh/) . A)
(51)

!/
+h cosh Xg sinh % (¢(L, Tans Tan) -V = E(1, 71, Tyans) - A)

!/
41’ h sinh X? sinh % (&2, Torps Toanr) -V — C(2, To1hs To1pr) - A)) .
Equation (51) explicitly shows three parts: kinematic elements through the hyperbolic functions, the spin direction ele-
ments ¢, ¢*, and the dynamical elemer¥é’, A*. This separation could be useful, for example, to analyze some kinematic
configuration of interest, as the center of mass high energy limit, in which this process preserves helicity. If one takes the
approximations:osh x/2 ~ cosh (x’/2) andsinh (x/2) ~ sinh (x'/2) in Eq. (51), the desired result/ (p’, s" ,,p,sp) = 0
is easily obtained. There exist systems where this limit is interesting, as the inverse Compton Light Source (details of this
machine can be found in the literature, for example in [37]). Then, in this limit, and assuming helicity conservation, equation
(51) reads

M(p', s}, p, sn) = —4ie® (COShX(é(17T+1h7T+1h) V= ¢(1, Ty 1n, TH1n) - A)
+h sinhx(g(1,7+1h, Ti1n) - Y — &(1, T41h, T41n) /A)) (52)

Using expressions (48), (49), (50) and formula (C.1), the amplitude for general spin directions is

!/ /

M@, p', s rp,s)= (aifr/lr, (x")al 1, (x) (cosh X? cosh gMﬁ/th + h’ sinh XE cosh %Mﬁ/ﬁl

/

1h CO‘th/" hXMh’h + BB si h&/ . hXMh’h + —h/( /) h ( ) th ‘hXM_h/h
sh - sinh S M2, sinh T-sinh 5 M2, ayp (X)ais, (x) | cosh 5 cosh S MG

~ / /!
—h/ sinh XE cosh gM:{Zﬁ + h cosh XE sinh %M;{th — h'h sinh X? sinh ;(M_lh}i)

+al (xaz" (x) cosh&cosh X pghin + A SinhX—/coshKMth —h coshX—lsinthhlfh
+1r\X )1 (X B 9 141 B o M-1+41 B 9 H1-1

/

o X X —n - Lo X o X X
—h'h sinh 5 sinh 2Mf1_h1> +ail. (et (x) (cosh 0 cosh §M+1h+1h — I/ sinh 5 cosh §M_1h+1h

/ /
—h cosh XE sinh g]\/[;fl]h + h'h sinh X? sinh ;(M_fzh)> ) (53)
with MJ}VL;% = 74?62 (1, Tyan, 7ane) -V = €1, T, Toaw) - A), M = —die? (6(2, 7 1n, Toan) Y —C(2, 7o 1n, o) - A)
andMﬁfﬁrl = M—}&flh—l = —4ie? (C(l,T+1h,T+1h/) -V — é(l, 7-+1h77—+1h/) . A)

6.2. The massless-spinor method

Using equations (34) and (36), the transition amplitude is

M@, p, s rp,s) = —ie? ((vu — M)W AW+ (Y, + Au)Wﬁ/ﬂ“WL). (54)
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As stated above, it is easy to obtain expressionWQ'm”W; with an explicit representation of the spinors. For example, if
one uses the standard representation (Ref. 31, pag. 30), the first element looks like

_ 1 [E+m [E+m / Ap- ApL | Pipz + (P — ipy)(Pe + iDy)
wr Owr P Tam* (1 z Y
ATWAT 3 2m 2m @a +E—&—erE’—i—m+ (E4+ m)(E' +m)

, ADs Ap. "p.+ (P, +ipl)(pr — , o — 1 —ip!
E4m E+m (E+ m)(E +m) E+4+m E' +m
+/\p’z(px —ipy) — P=(Py — ip;)) G (px +ip, = Dy +ip;, N /\pz(p; +ipy) — P, (Px + ipy))> 7
(E+ m)(E +m) E+4+m E' +m (E+ m)(E +m)

wherea! = e (2/2) A, ¢ = —e=e/2) B* pl = ¢H(e/2) B p? = ¢(e/2) A* and (Ref. [31], pag. 547)

U it OPhilleg, 4 Oubeg, ¢ (14 D=1
- 2
By g — Ophing, — (14 D ) s 56
- 2 : (56)
2
*76250 + (7*15)25152 1+ (77%)2@53 S5 + (1 i (,Y,B#) 5
tan o = 7 (57)

32
—yB10 + (7*16)2[31[3282 + ("/*%)2[315353 + (1 + (v 52)31) S

where = (51, B2, 83) = (b/E), v = (1/v/1 = $?),s" = (3-8/y/1 = (8-58)%) ands = (s1,52,83) = (3/y/1 — (8- 5)?).

6.3. The projective method: The rest basis

|

7 1 1. 1. Ak oA T Ak 1A
Because this formula is too long, it can be found in Ap- b= TR <(kf — ki) x (_ € kit ki
pendix D.

é;'éil::er(?;éflA{f) (ki & x & —kp & x &)

6.4. The projective method: Using the Lorentz- s
invariant property of the amplitude x (e =) ), (60)

where we have used the radiation gauge (0, ¢). Since the
The amplitude (48) is a Lorentz scalar and it allows us tOspin dependenciew/f are C|ear|y Separated from any other
compute its analytical value in the reference frame where thRind of term, expression (58) can be useful when trying to
electron is initially at rest. The result is general because it iginalyze the spin properties of the amplitude.
possible to rewrite all the variables in another frame using a
Lorentz transformation. With the aid of equation (21) and th

covariance of amplitude (48), we get e7 Conclusions

The notion of covariant-spinorial operator helps to under-
M©y, s, p,s)=—ie* (atr o't +itr po'ia - b). (58) stand the importance of massive spinors’ closure property.
An important consequence of this is shown by Eq. (6). Al-
The (two-component) spinots, ¢ have their spin quantiza- though we do not take advantage of this equation, Eq. (6)
tion directions defined by the final and initials spin three- ~ clarifies the arguments that are employed in the text. It shows
dimensional vectors in their respective rest frames. The ndthe origin of the covariance and generality of our results.

tation fora andb is Our procedure, the projective method, allows computing
transition amplitudes using a decomposition of a (massive or
B m massless) spinor as a linear combination of others (massive
= (m2 —u)(s — m2)v/4am2 — ¢ or massless) spinors which, in principle, are not related to the
9ae Y o= problem. However, to avoid unnecessary phases, it is helpful
X (—(s—u)’éf & +2te; kidi-kp), (59 tousea spinorial basis related to the problem.

We have shown that most common spinor techniques, as
the helicity- and massless-spinor methods, can be formulated
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using the idea of a complete spinorial basis. This frameest in evaluating the efficiency, or shortcomings, of different
work allows us to exploit the symmetries and properties ofschemes, like those related to singularity issues in the ampli-
the spinors, without the need for a specific representation faude.
them or for the gamma matrices, allowing a wider under-
standing of the formalism. The framework thus proposed is As an example of our procedures, formulas for the Comp-
free of unphysical singularities, therefore it could be fruitful ton amplitude, for helicity states and general spin states, were
to implement it within a computational code. obtained. It can be noted that Eq. (51) has not been computed
For instance, the spinorial basis at rest allows for obtainfor a particular frame as our procedure does not depend on
ing closed formulas, which are fully covariant, for transi- Such an election. Also, the structure of Eq. (51) shows sep-
tion amplitudes. Thus, without requiring a particular four- arately the kinematic, spin direction and dynamical factors,
component spinor representation and with no need to fix arbiwhich are useful in the analysis of any process. The covari-
trary phases. The use of this particular basis is a great exarance of the framework is exploited with the formula (58), a
ple of how spinor symmetries help on the obtaining of usefulcompact expression for general spin configurations. It could
formulas; at the same time, it permits to get analytical value$€ useful studying polarization effects, such as the electron
of any amplitude using, simultaneously, two or more differ-Spin asymmetry using polarized photons, or the photon helic-
ent bases. This is relevant, particularly if one has an interity asymmetry using unpolarized electrons.

Appendix
A.

The coefficients*

erT’

look explicitly as

1 9 i ie Y e ¥ !
o _ 0 _ 0% 0 —ie L2 . L . e
€l = Cozp = C13p = Co11 = 5 | cos 572 cos 56 T tsingetTsinen ),
1 9 _. v - 9 L
1 1 _ 1% 1% ) —ig - —iL ) i i2-
Cli = €z = —Clzp = —Ca1y = 5 (Cos e Tsinem T +singetF cos etF )
. / / ,19[ ’
2 _ 2 2 2%« _ 1 —i% —i . i2 i
Ci11 = Co99 = —Cigg = —Cy11 = 5 (COS 56 2 S 56 2 SIn —e”’ 2 CcoS 56 2 ) y
1 0 9 9 ¥ e
3 _ 3 _ 3% 3x —ie ‘L . e . e
Cin = ¢z = —Cizp = —Co11 = 5 | Cos e cos Ee T —singeTsingent ),
Al
0 0 0 0 1 . ! © @ 9 L ( )
_ _ * * iL —i —iL i
Cla1 = €212 = —Cli2 = —Cop1 = 5 (cos €T sin —e™"E — sin 5¢ PeosoetT |,
1 Y e LA 9 ¥ e
Cloy = Chig = Cllo = Coiy = 5 | cos 5612 cos gez 2 —sin 5¢€ ~i% sin ¢ e )
i 9 e 9 0 9 L
2 _ 2 2% _ 2% __ it —i 5
Cia1 = €12 = Ci12 = Gm = 5 (cos 5¢'* cos 56 E + sin 56 % sin ze T,
1 9 e 9 e 9 Ve
3 3 3% _ 3% __ L . e . @’
Ciz1 = €12 = Ci1p = ;1 = —5 | cos je' T sinoe™" = +sin §e % cos ?e 7 .

B.

The explicit view of the formula for the transition amplitude between particle states and the interactighigerm

’

2m, € > T 5 'T/ €ETT
M(e,p', 7', 5" e,p,7,5) = Ty \/E’ \/E+ m( —1) - q(—(=1)7i[s'p'vp] — (—=1)" T m(p's'vs)

(—1)7ilp'vsp] = (1) mp v+ —(=1)m'p - v+ (=1)7 T (svps))
— (=17 {(eps'vps)) + (—1)7 Feim(ep's'v] + (ep'vp) — (=1)“TTim[epvs]
— (=1)7 Fim’[esvp] + (1) TTm’m(eés vs) — (=1)7Tim! [éups] + m'mé - v

(1)

)™ ¥ illep's'vps]] + ilep'vp] + (—1)7 T m(ep's'v) — (1) m(cp'vs)
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— (=17 m’(gs'vp) + (=1)7 FTim mgsvs] — (—1)7Tm’ (gups) + (=1)°((=1)" ((agp's'vp))

— (1) Tim(lggys'vs]) + (=1)7{ag vps)) + (—1)7 i [[g vps]

— (=1)%imlgep’v] — (—1)7 m’m{ges'v) — (~1)“im’[gcup] + (1)Tm'm<(JGUS>)>, (B.1)
with the notatior{abed] = €4, g g 6* 0*2 3 dH, [[abede f]] = —a-blede f]+a-clbde f] — b-clade f]+ d-e[abc f] — d- f [abee] +

e- flabed], (abed) = a-b c-d— a-c b-d+ a-d b-c, {{abedef)) = a-b{cdef) — a-c(bdef) + a-d{bcef) — a-e{bcdf) + a- f (bede).

C.

The formula for a general spin amplitude using our approach to the helicity formalism is

—Rypr Ky

M@, p',s',r,p,8) = Ky ky (aZ (X al,  (X) (coshé cosh = M,’j P smh); cosh = Mh h
+ h cosh & sinh = M,f b «. + h'h sinh & sinh = MﬁKh, m) + a:f;, (X/)GZTT(X)

/ /
X (cosh X? cosh = 5 MH if,f B/ sinh X 5 cosh = 5 Mﬁ: b +h cosh X 5 sinh = 5 M,i },‘ h

/ /

—h'h sinh sinh & M_h ) +a o (x’)ah.(x)(c05h2 cosh & Mh ~h

— K =K KpT Kyt Ky

! / I
+hn sthEcosh M R fhcosh—smh Mh —h hhsmh—smh Mh >

—RKpr Ky Kyt —Kgr —K,/){T

/ /

-i-a,{}f;,(x’)a,:fr(x)(coshQCosh M="=P _ b sinh X cosh & M W=

Kyt Ky 2 —k, /K/T

Kyt —Kp — Kt =K

/
—h cosh = ginh = M_h h e w'h smh = smh M_h )), (C.1)

where the notation” . (x) = cosh (x/2) K , + hsinh (x/2) K",. . has been used.

D.

With the aid of expressions (20) and (B.1), the amplitude is written as

MO ) = i [ [ (e a0 vl + (07 i) — (1Yo
+mp V4 m'p-V = (=1)7Fm!(s'Vps)) — (=1)7 T ((eps'Vps)) — (—1)7 im[cp's'V]
+(Ep'Vp) + (=1)Tim[ep'Vs] + (=1)7 im’[¢és'Vp] + (=1)7 T7m/m(és'Vs) + (—1)7im’[éVps]
+m'm &V — (=1)7F7i[[ep's'Vps]] + ilep'Vp] — (—1)7 m{ep's'V) + (=1)"m({cp'Vs)
(=1)7 m'{gs'Vp) + (=1)7 Fim’m[es'Vs] + (=1)7m’ (¢Vps) — ((=1)7 ({gcp's' V)
(=) *Tim[lqeps'Vs]] + (=1)"({gcp'Vps)) — (—1)7 +Tim'[[cs'Vps]] + im]gcp'V]
— (1) m'm{ges'V) + im’[qgVp] + (=1)"m'm(qgVs)) + (—1)m(ep/As) + & - q(—(—1)" (s'p'Ap)
(=17 *im[p's' As] + (—1)7(p'Asp) + (—1)7 m'm 5" A+ (=1)"m'ms- A — (=1)7 T7im'[s'Aps])
(-1)

—1)"*Ti[[ep’ s Aps]] 4+ (—1)7 m{ép's' A + i[ep' Ap] 4+ (—1)7 m'(es'Ap) 4+ (—1)7 TTim’ m[és' As]
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— (=1)7m/(eAps) — m'me-A+ (—1)7 T ({ep's Aps)) + (ep' Ap) + (—1)7 im(cp's Al

+ (=1)Tim[ep' As] + (—1)7 im’[cs' Ap] + (—1)7 tTm’m(cs'As) — (—1)7im’ [cAps]

— (=) il[qep’s'Ap]] + (1) FTm((gcp’s As)) — (—1)7i[[qcp Aps]] + (—1)7 FTm' ({qcs' Aps))

— m{gGp'A) + (—1)7 im'm[qes'A] + m'(gchp) + (—1)Tim’m[qgﬁ\8])>-

(D.1)

Using equations (56) and (57), the four-vect&tsand ¢ are built with the correspondence

v, 0,
A—»cos§, B—>sin§,g—>(p.
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