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Here, the improveaxp(—(n))-expansion method and extended sinh-Gordon equation expansion method are being applied on (1+2)-
dimensional non-linear Schdinger equation (NLSE), optical metamaterials, with anti-cubic nonlinearity. Materials like photovoltaic-
photorefractive, polymer and organic consists of spatial solitons and optical nonlinearities, which can be identified by seeking help from
NLSE with anti-cubic nonlinearity. Abundant exact traveling wave solutions consisting of free parameters are established in terms of bright,
dark, singular, kink-singular, and combined dark-bright soliton solutions. Various arbitrary constants obtained in the solutions help us to
discuss the graphical behavior of solutions and also grants flexibility to formulate solutions that can be linked with a large variety of physical
phenomena. Moreover, graphical representation of solutions are shown vigorously in order to visualize the behavior of the solutions acquired
for the equation.
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1. Introduction Metamaterials are basically artificially structured mate-

) ) ) _ rials which are made from assemblies of multiple elements
The nonlinear dynamics that describes the propagation Ghshijoned from composite materials such as metals or plas-
pulses in optical metamaterials (MMs) is given by the non-ics. |n just a few years, the field of optical metamaterials
linear Schédinger equation (NLSE). In the presence of ha5 emerged as one of the most exciting topics in the sci-
parabolic law nonlinearity, with an additional anti-cubic non- apce of light, with stunning and unexpected outcomes that
linear term and perturbation terms that include inter-modahaye fascinated scientists and the general public alike. Its ap-
dispersion (IMD), self-steepening (SS) as well as nonlineapjications’ include superlenses, super-resolution devices, and

dispersion (ND), the governing equation reads [1-6] negative-indexed materials. Such applications necessitate the
iq; + ages + (bi]g) ™ + balq|? + bsla*) presence of un_nat_ural materials with properties that_ can _fit
' ) ) into these applications and others. The study of solitons in
=i [og. + 6 (lal*q),, + v (lal°), 4 optical metamaterials is trending as a hotspot in the field of

2 2 2 optical materials. There has been a significant amount of re-
+ 61 (lgl q)m 02191 gue + 0507020 (1) sults that are reported in this field. However, there is still a

In Eq. (1), the unknown or the dependent variafile,t)  long way to go. There are many unanswered questions than
represents the wave profile, while and ¢ are the spatial answers. This paper will quell the thirst partially. In the past,
and temporal variables respectively. The first and secongolitons in optical metamaterials have been studied with var-
terms are the linear temporal evolution term and group veious forms of non-Kerr laws of nonlinearity where several
locity dispersion (GVD), while the third term introduces the integration schemes have been implemented [10-28]. The
anti-cubic nonlinear term, fourth and fifth terms account forinterested reader also read herein references [29-45]. This
the parabolic law nonlinearity, and sixth, seventh and eightipaper is going to revisit the study of solitons in optical meta-
terms represent the IMD, SS, and ND respectively. Finallymaterials for a specific form of nonlinear medium. This is
the last three terms wit, for k£ = 1,2, 3 appear in the con-  of anti-cubic (AC) type. There are three forms of integration
text of metamaterials [7, 8].
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algorithms that will be applied to extract soliton solutions tothat will reduce Eq. (8) into the ordinary differential equation
metamaterials with AC nonlinearity. These schemes will re{ODE)
trieve bright, dark and singular soliton solutions that will be

very important in the study of optical materials. These soli-

tons will appear with constraint conditions that are otherwise
referred to as existence criteria of the soliton parameters. Af-

ter a quick introduction to the model, the integration tech-The generalized (G'/G)-expansion approach [29-31] will
niques will be applied and the details are enumerated in theow be applied, in the subsequent section, to Eq. (11) to re-

ak?(2uv" —v'?) + 4by — 4(w + ak® + ak)v?

+ 4(by — Br)V® + 4bsv* = 0. (11)

subsequent sections.

trieve bright, dark and singular soliton solutions to the NLSE

In order to solve Eq. (1), the starting hypothesis is [7, 8] with AC nonlinearity (1). Biswas and coworkers investigated

q(z,t) = u(n(z, 1)) exp(ig(z, t)), )
where
n(x,t) = k(z —vi), ©)
and the phase componefits given by

¢(z,t) = —kx + wt + 0, (4)

In Egs. (2) and (3)u(x,t) represents the amplitude portion
of the soliton, ands andv are inverse width and velocity of

soliton. From (4) x is the frequency of the soliton; is the

wave number of the soliton and finallyis the phase con-

the extended nonlinear Scitinger equation [49], the non-
linear Schodinger equation with parabolic law nonlinear-
ity [50], the perturbed nonlinear Sddinger equation with
five different forms of nonlinearity [51], the Sdbdinger-
Hirota equation in birefringent fiber [52], the Gerdjikov-
Ivanov equation [53], the complex Ginzburg-Landau equa-
tion [54] and obtained new exact solutions including different
forms of optical solitons. Also, authors of [55-57] studied the
nonlinear Schivdinger equation and obtained optical solitons
with help of the trial and extended trial equation methods. Fi-
nally, bright optical soliton solutions from resonant nonlinear
Schibdinger’'s equation has been gained by the aid of semi-
inverse variational principle by Biswas al.[58].

This paper is organized as follows: Sec. 2 presented a

stant. Inserting (2) into (1) and then decomposing into reaprief discussion about the improvesp(—£2(»))-expansion
and imaginary parts yield a pair of relations. Imaginary partmethod and its application for solving the aforementioned

gives
v =—a— 2ak, (5)
and
30 +2v — 2k(301 + 02 — 03) =0, (6)
while real part leads to
ak*u” — (w + ak® 4+ ar)u + byu™3
+ (b — Bk + K20, + K205 + n293)u3 + byu®
— (3k2%01 + k%0, + k205)uu”
— 6k201u(u)? = 0. 7

To acquire an analytic solution, the transformatiéns= 0
andf, = —03 are applied in Eqg. (7), and gives

ak*u" — (w + ak® + ak)u + bju~>
+ (by — Br)u® + b3u® =0, (8)
where

36+ 2v + 4kf3 = 0. (9)

equation. Moreover, Sec. 3 and its sub-sections deal with the
applications of the extended sinh-Gordon equation expansion
method (EShGEEM) to look for new singular, kink-singular,
and combined dark-bright soliton solutions. Physical signifi-
cance by graphical presentation of some of the obtained solu-
tions is given in Sec. 4. Also, a conclusion is given in Sec. 5.

2. The
method

improved  exp(—£2(n))-expansion

This section elucidates a systematic explanation of
exp(—£(n))-expansion method [59, 60] so that it can be
further applied to optical metamaterials with anti-cubic non-
linearity in order to furnish its exact solutions:

Step 1 The following nonlinear partial differential equa-
tion (NLPDE)

N (u, ug, ug, Ugy, U, -..) = 0, (12)
can be transformed into an (ODE)
Q(U,BU',—BvU’', B*U", B%*U",..) =0,  (13)

by using the suitable transformatign= B(x — vt), where
B andwv are the free parameters which would be calculated
subsequently.

Step 2 Assuming the solution of the ODE to be of the

In order to obtain closed-form solutions, we employ the transform:

formation given by

(10)

o Z;’V:O A;F ()

(14)
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whereF(n) = exp(—Q(n)) and4;(0 < j < N),B;(0 <
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determined by equalizing the maximum order nonlinear term

j < M), are constants to be determined, such tha&nd the maximum order partial derivative term appearing in

An,By # 0, and,Q = Q(n) satisfying the ODE given

below

O = pF~(n) + F(n) + A (15)

(13). If N and M are the rational, then the appropriate trans-

formations can be applied to conquer these hurdles.

Step 3 Putting (14) into Eq. (13) as well as the values of

N and M determined in previous step into (14). Gathering
coefficients of all the powers df(n), then equating every co-

The special cases formed from the solutions [61, 62] of th‘?ef“ficientwith zero, we derive a set of over-determined nonlin-

ODE given in Eqg. (15) are mentioned below:
Solution-1: If 4 # 0 and\? — 4y > 0, then we have

A2 —4p
Qn) =1 -
o= (- V2

2 _
x tanh <)\24M(n + E)) - 2);)7 (16)

whereF is integral constant.
Solution-2: If 11 # 0 and\? — 4. < 0, then we have

() = n (V=
1

X tan (M(n + E)> — )\). a7
2 2u

Solution-3: If ;= 0, A # 0, and\? — 4 > 0, then we
get

Qn) = ~In (18)

A
(exp(A(n +E)) - 1) '
Solution-4: If 1 # 0, A # 0, and\? — 4y = 0, then we
get

_2)\(17+E)+4> (19)

) = 1’“( X0+ B)

Solution-5: If = 0, A = 0, and\? — 4 = 0, then we
get

Q) =In(n+E), (20)

whereA;(0 < j < N),B;(0 < j < M), A andy are also
the constants to be explored later. The valdegand M are
|

Set I

A 3biBi+ ARbs (A — As))?
07 T Agbs(Ay — AoN)2
o — 31)28% + 8A131b3 - 8A2b3B0 - 4b3A2)\B1
- 3B13 ’

7A1 :A17

A2 :A27

w =

ear algebraic equations foty, By, A1, By, ..., Ax, By, A,
and.

Here, it is important to note tha is the integration con-
stant. We have the following relations as

v(n) = 6PN, (21)

vl(n) ~ 5FN—]V[—1FI _ _5(/14FN_M_1
+ )\FN_]VI +FN_]\J+1) ~ _5}71\7—]\/[4—17 (22)
(/)2 = G2FEN-2M42 @3
(vln))* = 5 PN @4)

wheres = (Ax/By). Balancingu’? with v* in Eq. (11)
yields

F2N—2M+2 ~ (Ul(f))Q — (v(n))4 ~ F4N—4J\4. (25)
We can determine values of and M as follows:
2N —2M +2=4N —4M = N =M +1. (26)

Case I: N=2, M=1
The improvedexp(—¢)-expansion method (IEFM) al-
lows us to recruit the substitutions

_ Ao+ ALF(n) + A2 F3(n)
vin) = By + B1F(n)

o A2 + AleQ + A062Q
 Bype2? + Byef

(27)

Plugging (27) along with (15) into Eqg. (11) and equating all
the coefficients of powers df () to be zero, one gains a sys-
tem of algebraic equations. Solving this system by the help
of Mapleyields

2y [

By =B, By =B k=—=1/—
0 0 1 1 Bl 3aa

1

- A= AT (Z1+ 2o+ T3 4+ 2y + 5),
1

$1 = —2AA; A»(64ab3 B3 A3 + 9ba By (absy + o) + 6b3 Bf (541 By — 4A2Bo) (a8 + 2abs)
+ 24b3 A3 B (4abs + %) — 4Asbs Ay Bo B (40abs + 96%)),

Yy = by A3 B\ (16abs + 362),
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Y3 = —4X3A3B1b3(3BE(aff + 2aby) — 245 Bo(8abs + 36%) + 6 A1 By (4abs + %)),

Y4 = N2 AZ(64ab3 B2 A3 — 48 Ayabsby Bo B} — 72A5b33% Ay By By — 256 Agab3 A1 By By — 24Asab3 3By B + 9aby B}
+ 48ab3 A1 B — 13 4 9ab3 B} + 96abzby A B3 + 208ab3 A2 B + 54b332 A2 B?),

Y5 = A3(64ab3 B2 A3 + 24b3 B3 (A1 By — A3 Bo)(af + 2aby) + b3 A2 B} (64abs + 153?) — 8 Azbz A By By (16abs + 35?)
+ 9by B (aby + a3)),

_ 3B3by + ba(Ash — Ay)2(ABoAZX — 44, ByAy + By A2)
r= 4A2b3(A; — AsN)2B, ’

; (28)

A=A

whereA,, A, By and B, are arbitrary constants. Imposing the solution set (28) into (27), the solution formula of Eq. (11) can
be concluded in the following cases:

Subcase IA:

By the help of (16), the exact solutions to the model are deducted as

Nl

QM E Azbg(AlfAz)\)Q QM E

Ay A, (\//\2—4u tanh (\//\22—4u77> LA ) 30 B AThy (A1 —A))? (\//\2—4u tanh (x/vz—émﬁ) Lo )

q(n)=

2n 2p 2n

2
By (A;M_M tanh (” A22_4#17> +2 > -B (A2_4# tanh < Y Az_4“ﬁ> +2 )

( 3by B +8A1 By b3 —8Agb3 Bg—4b3 AgAB]
| — xr
X e

1
5575 T oA —ANTEIAe (Z1+22+23+E4+E5)t+9)

(29)

where

24, [ b 36y B2 + 84, B1by — 8Asbs By — dbs As\B,
— _3 2 t E.
=B,V 34 (”H <a+ “ 3820 *

It should be noted that these solitons exist for

| 385y + by(AsA — A1)2(4Bo A3\ — 44, BoAs + B1A})
A%bg(Al — AQ)\)QBl

A —d4p =\ > 0.

Subcase IB:
By the help of (17), the exact solutions to the model are deducted as

2/1, 2 - ﬂ Azbg(Alng)\)Q 2/1,

2 2
Ayt Ay (\//\2—4u tan <\/4u—v ﬁ) A ) 4 3hi B AT (A A5 (\//\2—4u tan <\/4M—>‘2 ﬁ) _ A)

q(n) =

20 2 2/ 2

2
By < VAN fan (V X 17) - A) +B (V 42 tan (V‘*’;‘” 17) — 2 )

( 3by B +8A1 Byb3 —8Agbs Bg—4bz AxABy
| — x
X e

1
5525 T 5(A, AN 7E1T (E1+Z2+23+Z4+E5)t+9>

(30)

where

24, [ b 36y B2 + 841 B1by — 8Asbs By — dbs As\B,
— _3 2 t E.
=B,V 3 (“ <a+ “ 3B20 *

It should be noted that these solitons exist for

| 389 + by(AsA — A1)2(4Bo A3\ — 44, BoAs + B1A})

2 gy, = )\2
AT A=A A2b5(A; — AN)2B,

< 0.
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Subcase IC:
By the help of (18), the exact solutions to the model are obtained as

Nl

A2 A5+ M A; (exp(A(n+E))—1) + 2Bt Ao (o (\(n4-E))—1)°

q(n): Azbz(A1—A2N)?
By (exp(A(n+E))—1)* +ABy (exp(A(n+E))—1)
2 3 203 —203 2 1 1
y ei<73b2B1+8AlB1b3 3;?;380 b3 ApABy S AL TEIR (21+22+23+E4+E5)t+9) (31)
where
. % _bi S 2a3b23% + 8A1B1b3g — 8A3b3Bg — 4b3 Ao\ B, '
It should be emphasized that these solitons exishfgr0.
Subcase ID:
By the help of (19), the exact solutions to the model are gained as
1
IA(+E)+4 361 B4 A2b3 (A1 —AsN)? [ 22(n+E)+4)2 ) 2
Ay = Ay ( ,\(2727;+1)~J) ) + = Algbg(faxf’fAlg,\)Z2 ( A217(77+E) )
a(m) B AN+ E) 44> By (2B
O\" " Rm+E)y ) T P\ TRm+E)
2 9 — 2 b3 —_ q 2 1
y ei(f”ﬁ““lBl”J 3;‘%‘;330 3 A2ABL ST ASTET (21+22+23+24+25)t+9> (32)
where
. % _bi T 2a3b23% + 8A1B1b3 — 8A3b3Bg — 4b3 Ao\ B, ¢
It should be noted that these solitons exist for
3B2by + bg(Ag\ — A1)2(4Bo A2\ — 4A1ByAy + B1A? — N2 A2B,) = 0.
Subcase IE:
By the help of (20), the exact solutions are obtained as
3by Bf+A%b: 2) 2 -
q(n) _ As + Ay (77 + E) + o 3 (77 + E) ei(73b23%+8A13i1%b;, 8AgbgBo QA%%%ﬁ2 t+0> (33)
Bo(n+E)*+ B, (n+E) ’
where )
2A2 b3 3b2.Bl + 8A131b3 — 8A2b330
=== 2 t).
B,V 3a (x + (O‘ +2a 3B23
It should be pointed out that these solitons existXBPb; + b3 A3 (B A; — 4BgAs) = 0.
Set Il:
Bo(AlBl - AQB()) 2A2 b3
Ag = A=A, Ay=A,, By=DBy, B =B, k=—"4/——
0 B% ) 1 1, 2 25 0 0> 1 1 B] Sa’
o — 3b2B% + 8A1B1bs — 16A5b3 By
- 3870 ’
1 2
= *W(El +68°%2),
¥y = 9B}ba(abs 4 Ba) + 24, Bibs(A1 By — 4A5By)(32abs + 96%) + 243 B2b3(128abs + 3357)
+ 24B7b3(A1 By — 242 By)(2aby + fa),
Yy = Bi\/—3b3b; + (B?A?b3 — 4B, Ay Bobs Ay + 3A2B2b3),
1
W= Zrime (Bf\/f?)bgbl + (B2A2by — 4B Ay Bobs A, + 3A§ng3)) ,
144293
A=A, (34)
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whereA,, A, By and B, are arbitrary constants. Plugging the solution set (34) into (27), the solution formula of Eq. (11) can
be concluded in the following:

Subcase lA:

By the help of (16), the exact solutions are in the following:

1
- 2y 3
AQ _ Al (\/ A;H_‘lﬂ tanh (\/ )‘22_4H,,"7') + A) + BO(AlBl—AZBU) V )‘2_4N tanh ( V A2_4N~> + 2);]{)

o 21 B2 20 2 N
q\n) =

o (5 v (55) 1 2 ) (5 v (55 4 )
where 245 | b3 3byB? + 8A1 B1bs — 16 A2b3 By

ﬁ:B—l —3a<x+(a+2a 1 3575 >t>+E.

It should be emphasized that these solitons exist for

N dp =\ ijgbg (B;L “3bsby £ (B2A2%bs — AB; Ay Bobs Ay + 3A§ng3)) > 0.

Subcase IIB:

By the help of (17), the exact solutions are concluded in the form:

Ay + Ay <@tan (@ﬁ) A> + Bo(A1B1—42Bo) (‘/mt

an

(=) 4)|

( ) 2 Bf 2 2 2u
q\n) = D)
By ( i 457)‘2 tan ( v 4éAzﬁ) — 2’\) + B, ( Y 457)‘2 tan ( v 4’;>\2ﬁ) - 2’\>
Iz Iz Iz Iz
y ei(— 31’25%*“15;%’2*1“21’330 2= 5Eim (21+66222)t+9> (36)
where )
~ 2142 b3 3b231 + 8AlBlb3 - 16A2b3BQ
= —\/—— 2 t E.
=B,V 34 (m+ (‘H “ 3820 +
It should be noted that these solitons exist for
4
A2 —dp = A2 — ST (B;l —3bsby + (B2A2bs — AB; A3 Bobs A1 + 3A§B§b3)) <o0.
Subcase IIC:
By the help of (18), the exact solutions are given as
1
o N2 Az + A (exp(A(n + E)) — 1) + BoliBroA2Bo) (oxp(\(n + E)) —1)° ] °
q(n) = .
By (exp(\(n+ E)) = 1)* + ABy (exp(A(n + E)) — 1)
i _ 3b9BY+8A1 B1b3—16A5b3Bg o1 ) 2
< e ( 1 5525 05352 (X468 22)t+9) (37)
where ,
2A2 b3 3b231 + 8A1B1b3 - 16A2b3B0
=—\/—— |z 2 t).
n B, 30 <sr+<oz+ a 3823
It should be pointed out that these solitons exist¥g# 0.
Subcase IID:

By the help of (19), the exact solutions are gained as

1
2 2
Ay — Ay (2/\(7I+E)+4> + Bo(A1B1—A2By) (2/\(77+E)+4> i(f3sz%+SA1B1b3—16A2bBBOx

a(n) = A2 (n+E) B} A2(n+E) 3528 - 93%@2 (21+6’8222)t+0>
B (22 +E)+4 2 B, (2+E)+4
o\~ 0rm N6

(38)
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where
2A2 b3 3[)23% + 8A1B1[)3 - 16A2b3B0
—_ — 2 t .
n B, 3, <x+<oz+ a 3823
It should be noted that these solitons exist for
B2A2b;\% = 4 (B;L “3bsby £ (B2A2%bs — AB; Ay Bobs Ay + 3A§ng3)) :

Subcase IIE:
By the help of (20), the exact solutions are concluded as

1
Bo(A1B1—AsB 2 2
q(n) _ As + Ay (77 + E) + W (77 + E) 2 ei(_3b23%+8AlfBl§Z—16A2b3BU o 93%52 (21+65222)t+9) (39)
By(n+E)* + By (n+ E) ’
where
245 bs 3by B? + 8 A1 B1bs — 16 A3b3 By
= —-— 2 t .
=3 3a<+<+ 3825
It should be noted that these solitons exist for
Bi\/—3bsby = b3(B?A? — 4B Ay By A + 3A3BY).
Set I :
V/—27b3b3 (AT — 8A2Ag Ay + 16A2A2)

1
Ag = A, Ay = A, Ay = Ay, By = -\By, B =
2 3b;

3

. 24b3AoA1A2 + 3AOA2b2B1 - 8b3A? - BbgBlA%
3B18(ApAs — A?)
1
=— Y43
Y OB (A, — AT )
S1 = 9By (AgAs — AT)*(aba + Ba) + 2b3AT(— AT + 3A0A2)?(32abs + 957)
+ 24B1b3 A1 (— A2 + 3A0A2)(Ag Az — A)(2aby + Ba),  Xo = —24b3A3B% A3,
A% 2AOA1 214231 b1 2 4A8A2
H= iy — a2 T T AgA,— a2 P A, o M= oa, a0
whereAy, A; and A, are arbitrary constants. Substituting the solution set (40) into (27), the solution formula of Eqg. (11) can

be written in the following cases:

Subcase llIA:
By the help of (16), the exact solutions can be stated as

2 2
A+ Ay (,/ﬁ—itanh(“‘“{oﬁg) ﬁ—;)Jer( %tanh<A0vA_0;‘“§) %)

2
3By (/42 tanh (42adzy) — 41) " + By (/42 tanh (4222357) - 41)

q(n) =

Y1+32)t+0
(145246 1)

) 24b3A0 A1 Ag+3A0Agby By —8b3 A3 —3by By A? 1
1| — xr—
x e 3B18(AgAz— A7) 9BfB2(AgAy— A7)

where

~ 2A5 B4 by 24b3 AgA1Ag + 3AgAsbo By — 8[)3143 — 3b2B1A2

7= i) o (o (o 3B,(Ao Az — A7) e
andAgA; > 0.
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Subcase IlIB:
By the help of (17), the exact solutions can be obtained as

Nl=

2
A Ao/ —AgAs ~ A A AgvV/—AgAs ~ A
o= | A2 A (e (RIS ¢ ) + o (i n (050557 + )
- 2
Ao AoV —ApgAs ~ Aq Ao AoV —AgAs ~ A,
By (/42 tan (A 2ea) + 41) - By (/42 tan (45 00) + 41)
2 . _ 3_. 2
« ei(_24b3A0AlAQZEQS?ZZZA?fj;AI P22 93%@2(,4;1427,4%)2 (21""22)'5"‘9) (42)
where X ,
24,8 /b 24b3 Ag A1 A AgAsba By — 8b3A3 — 3byB1 A
= 2_12—1x+ o+ 2 3012+30221_8231 3211t—|—E,
4AOA2 Al a 3Blﬁ(AOA2 Al)
with AgA0.
Subcase IlIC:
By the help of (20), the exact solutions to the model as follows:
Ay + A1 (n+ E) 3 i(78b3A§+3th1A%z+ 1 (21+22)t+0>
4 = T ¢\ s e , (43)
iAB1(n+E)"+Bi(n+E)
2
where s ,
—2A3B1 by 8b3 A3 + 3byB1 Af
==z 2 t).
e R N e VT
It should be pointed out that these solitons for = 0.
3. Algorithm of the extended sinh-Gordon
equation expansion method Case-I: Takep = 0 andg = 1, then Eq. (47) gets
w’ = sinh (w). (48)

Take the sinh—Gordon equation as:
Simplifying Eq. (48), the following results are gained [63]:

Ugy = asinh (u), (44) sinh (w) = +isech (£), cosh (w) = —tanh (&) (49)

whereu=u(z,t) and « is a constant. By utilizing the re- and

lations u(z,t) =U(§) and{ = kx — wt, then Eq. (44) sinh (w) = #cesch (€), cosh (w) = —coth (§).  (50)
transforms to the following NODE:
where,i = v/—1 represent an imaginary number.

Case-ll: Takep = 1 andq = 1, then Eq. (47) gets

U= 7% sinh (U) . (45) w' = cosh (w). (51)

Again, simplifying Eqg. (51), the following results are
achieved [63]:

sinh (w) = tan (§), cosh (w) = %sec () (52)

By using of the integrating process of Eq. (45) gets

el

wherep is an integration constant. _ .
PuttingU'2 = w(€), and—a/kw = g in Eq. (46), we We assume that the given nonlinear PDE

(67

= —— sinh? (g) + p, (46)

and

sinh (w) = —cot (&) , cosh (w) = %esc (£) . (53)

galn F(uautauwauttauajiauaﬁa"') :07 t>0. (54)
o — g sinh? (w) 47) In Eq. (54),u = u(z, t)_ls an annown funcno_nF is a pon-_
pTq ’ nomial inu(z,t) and its various partial derivatives are in-

volved. Consider the following transformation:
by choosing the parametessandq in Eq. (47) can be found

the further results of solutions [63-67]: u(z,t) =U(§) £ =k —wt. (55)
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Implementing the transformation of (55) into Eq. (54), thenand
Eq. (54) converted to the following NODE

’ ’ 1" " N
GU, —wU , kU , W°U , K*U ,....) =0, (56) Z (£ csc (€
1

whereG is a polynomial ofU = U(¢) and its derivatives
with respect t&.

Jj=
. [—Bjcot (§) £ Aj csc (§)] + Ao, (61)
Suppose the exact solution be as

X

- the value ofN can be determined by using the homogeneous
=Y cosh’ ™" (w) balance principle.

x [Bj sinh (w) + A; cosh (w)] + Ay. (57) 31 The EShGEEM
Base on the relations (48)-(50), then (57) can be written

in the following forms 3.1.1. For Case-l: Eq. (48)
N
U (€)= Z (—tanh (£))’ " Base on the Egs. (57)-(59), the solution of Eq. (11) can be
j=1 presented as

X [£iB; sech (&) — Aj tanh (§)] + Ao, (58) U (€) = +iBysech (€) — Aytanh (€) + Ao, 62)

and
and

N

Z —coth (¢

=t U (¢) = +Bjesch (€) — Ajcoth (§) + A9,  (63)
x [£Bjesch (§) — Aj coth (€)] + Ao. (59)

Similarly, base on the relations (51)-(53), then (57) can bé"d SO

written in the foIIowing forms
U (w) = By sinh (w) + Aj cosh (w) + Ag,  (64)

= Z (£ sec (

= whereA; # 0 or By # 0.
‘ Inserting (64) and its derivatives into Eq. (11), we can
[Bjtan (§) & Aj sec ()] + Ao, 60)  optain the following results by solving the nonlinear algebra
| system with the help of symbolic computation package as:

X

Set I-1:

b b ba(ab
A():O, A1:07 BlzBlv k231F7 [{:EQ, w:—w
a

The bright and singular soliton solutions for the Eq. (1) are achieved as

=

B : by . bo(abotapB)
q1(x,t) = {—iBlseCh<2B”/ —%‘3 [m + (a+ Qab;)t]> } el(_ﬁl 52 t+9) 7 (65)
and
% . by ba(abataf)
Q1 2(z,t) = {—iBlcSCh(2BH/ —%3 [Jc + (a+ 2ab;)t]> } el(’?I e t+9). (66)
Set |-2:

1 b b V—2b3B
A0=¢7_—2317A1=0, B, = By, k:2Bl\/—E3, H=§+%,
4(1()331[)2 + ab2 + QQﬂbgBl + O[bgﬂ — 23%&[)2
/_ 62
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The bright and singular soliton solutions for the Eq. (1) are presented as

Go,1(2,t) = {J%Bl —iBlsech<QBlﬁ [H( +2a5 4% \ﬁﬂbgBl) D}

y ei(—(%—&-ﬁéBBl) 4ab3Blb2+ab2+23ﬁi:;§1+abzﬁ 2B%ab3 t+0>
and
1

1 . b3 2b3 By

q2,2 r,t) =< —B; — 1Bicsch| 2B/ —— |:J?—|— —|—2a— + 2a
(2.1) { e V2 ot o+ 20 20y
Xei(f(%+ VZ203B1 )i fracdabs Biba+ab3+2a8bs By +abyf— 2Bfabsz32t+9)

Set I-3:

A():O, A1:A17 B1:0, kZQAHI,bi, ,{:%7 wsz,
a

Therefore, we conclude the following dark and singular soliton solutions for the Eq. (1) respectively:

1
bs [ by T\ |7 i(t2e_tatavsian
Q3,1(x,t)={—A1tanh <2A1\/>; x+(a+2aﬁ2)t >} e( R t+a)7

and
1
ba [ bo ] 2 - by (abg+af)
gs2(z,t) = {—Al coth (2141\/ Ble+ (a+ 2aﬁ2)t )} e ( Fo— t+0).
a
Set |-4:
b by + 2b3 A
Ag=+A;, A=A, B =0, k=24, =3 ,{:M,
a’ B
4ab§A% + 4absA1by + ab% + 2a8b3 A1 + absf3

W= —

ﬂQ

The dark and singular soliton solutions for the Eq. (1) are deduced as

qai1(x,t) = {:I:A1 — Ay tanh <2A1\/ —b—S [:r + (a+ Qaszzg):sAl)t}) }
a

[ byt2b34, 4ab2 A2 £4abg A1by+abdt2a8b3A1 +abyf
il — 5 r— t+0
X e

B2
b

and
%
b- by £+ 203 A
qa2(x,t) = {j:Al — Ay coth <2A1\ [-23 {x + (a+ 2a2ﬂ31)t}> }
a
. ei<* 52i2;3,41 o 4ab§A%i4ab3A1h2;;b§:«:2aﬁb3,41+abgﬁt+9>
Set I-5:

[ b b bz (ab
AOZO, A1::|:Bl, BlzBl, k:4Bl —i, K:g7 w:—W.
a
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The combined dark-bright and singular soliton solutions for the Eq. (1) are concluded as

gs1(z,t) = {¥Bl tanh (431\/—1); |:3? + (a+ 2alg)t}> — 1B sech <4B1\/ —%3 [33 + (a+ 2a%)t]> }

x i - a2l (73)
and
gs5.2(x,t) = {:FB1 coth (431\/—7’; [a: + (o + Qabg)tD - iBlcsch<4Blﬁ [a: +(a+ 2abﬁ2)tD } ’
N (74)
Set I-6:

[ b by £ 203 B
AOZiBl, A1::|:Bl, BliBl, k:4Bl 7*37 I{:%,
a

. _Oébgﬁ + 2a8b3 B + ab% + dabyb3 By + 4B%ab§
= 7 .

Thus, we deduce the following combined dark-bright and singular soliton solutions for the Eq. (1) respectively:

q6’1(1',t) = { + B1 F Bl tanh (431\/—7&3 |:£l' + (Oé + QGbQZEifd‘Bl)t]>
a
1
b by £+ 2b3B 2
- iBlsech<4B”/—a?’ [x + (a+ 2a2531)t]> }

% ei(—%x—abgﬂizaabwl+ab§i4ab2b331+4Bfab§ﬂ2t+9)7 (75)

and

+ 2b3 B
g ,2(z,t) = { 4+ By F Bj coth (4311/—[;3 [m + (a4 QabQ’f?’l)t}>
— z'B1CSCh<ZlBM/—b3 [m + (a+ 2@1)2:&2()331)4) }
a

» ei(f’Qﬂ%zfabz,ﬁizaﬁbgBlJrabgﬂabzb3Bl+4Bfab§52t+0). (76)

3.1.2. For Case-ll: Eq. (48)

Base on the Egs. (60)-(61), the solution of Eq. (11) can be presented as

V (&) = Bytan (§) £+ Ajsec (€) + Ao, (77)
and
V (€) = —Bicot (€) £ Ayesc (€) + Ao, (78)
and so
V (w) = By sinh (w) + A; cosh (w) + Ag, (79)

whereA; # 0or By # 0.
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Plugging (94) and its derivatives into Eqg. (11), we can gain the following results by solving the nonlinear algebra system
with the help of symbolic computation package as:
Set I-1:

b b bo(ab
Ag=0. A =0, Bi—B,. k2B ”:52’ wsz,
a

The periodic and singular periodic solutions for the Eq. (1) are shown as

b b 2 (_bpg balabytas)

a7 (w,t) = {Bl tan <2B1\/7; {x + (a+ 2aﬁ2)tD } ol Fe e t+0>, (80)
b b P (_ba g tbalabyran)

Q772(I’,t) = {Bl cot <2B1\/7; |:IZ’ + (Oé + 2aﬁ2)t:|> } e ( 52 2 522 t+9>7 (81)

b b 2ibs B
Ag=iBi, Ay=0, By=By, k=2B/-2, n:%,

and

Set I-2:

 diabs Bibs + ab + 2iafbs By + abyf — 453ab3
B2 '

Therfore, we conclude the following periodic and singular periodic solutions for the Eq. (1) respectively:

1
[ b by + 2ibs B ’
gs,1(x,t) = {z’Bl + Bj tan (231 - {x + (a+ 2a2+ﬂm)t]> }
a

[ by+2ibg By diabg Bybg+ab3+2iaBbg By +abyf—4B7ab3
i — 5 T— t4+60
X e

’ : (82)
and
1
[ b by + 2ib3 B ’
gs2(z,t) = {iBl + By cot <2B1 —;3 [x + (a+ 2aﬁﬂm)t}) }
i —b2t2ib3By diab3 B1bg+ab3+2iaBbs By +abyB—4BFab?
e = ) (83)
Set I-3:
[ b b ba(ab
AOZO, A1:A1, B1:O, k:2A1 —i, Ii:ﬁz, w:—w.
a
The periodic and singular periodic solutions for the Eq. (1) are presented as
1
[ b b P (b2 balebrtas)
go1(z,t) = {—A1 sec <2A1 —;3 {x + (a+ 2a5)t}> } e ( g 52 t+9)7 (84)
and
1
[ b b 2 (b2, balabytap)
qo2(z,t) = {—A1 cse <2A1 _ZS {x + (a+ 2a5)t}> } e ( %o n2le t+9)_ (85)
Set I-4:
1 [ b by + v/2b3A
AozﬁAla A=A, B =0, k=24 —;3, H=%7
_ 2V2ab3 A1y + ab3 + vV2a8bs Ay + aby3 + 2A%ab3

ﬁQ
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The periodic and singular periodic solutions for the Eq. (1) are shown as
ab2 +V2b3 A4

1 [ b
qlo,l(x,t) = {\/5141 — Al sec <2A1 —Eg ﬁ

i(— b2+\/gl73A1 o 2v/2abz A1by+ab3+vZafbg Aq +absB+24%abd t+9>
e

x4+ (a+2

)t

]

) : , (36)
and
1
Qro0,.2(x,t) = {\}ﬁfh — Ajcsc <2A1M z+ (a+ 2ab2+§b3Al)t ) }
y €i<7 batVBbady, 2\/§n,b3A1b2+ab§+\/§ﬁa2ﬁb3A1+abQﬁ+2A%ab§ t+9> o
Set I-5:

[ b b ba (ab
A():O, A1::|:Bl, BlzBl, k:4Bl —j, 52527 w:—W.
a

Therefore, we conclude the following combined periodic-singular and singular periodic solutions for the Eq. (1) respec-

tively:
b3 bg b3 b2 :
q1,1(x,t) =< Brtan [ 2414/ —— |z + (a+2a—3)t| | Fsec | 2414/ —— |z + (o +2a—)t
a B a B
« i~ Famtre=tlro) (88)
and
b3 bg b3 b2 :
qu1,2(z,t) =< Brcot | 2414/ —— |z + (a + 2aﬁ)t Fosc | 2414/ —— |z + (a+ QaE)t
a a
w o Ba- g e). (89)
Set |-6:

b by + 2ibs B
Ag=iB;, Ay =+B;, By =B, k=4B\/--2, /{:72+53 L
a

_ 4iab3B1by + abj + 2iafby By + abyf — 4Biaby
p? '

Thus, we deduce the following combined periodic-singular and singular periodic solutions for the Eq. (1) respectively:

qi1,1(x,t) = {iA1 + Bj tan <2A1\/ —b—3 [m + (a+ 2@1&—&-2};1);:,31)15})
a
[b by + 2ibs B 3
F Bj sec <2A1 —;3 [x + (a+ Qaﬁﬁm)t]> }

] bo+2ibsy B 4iabg B bo+ab3+2iaBbg By +abyB—4B2ab?
7(_2+:3 1, AiabzBybytaby iafBbg By +abyf 1953, .19

B

Xe ! o , (90)
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/ 2ibs B
qu’g(m,t) = {ZAl + B cot <2A1 —bj |:!L‘ + (Oé + 2ab2+gbsl)t:|>
a
1
; 3
F Bj csc <2A1\/b3 [er (o + 2al)2+2ﬁlb3B1)t}> }
a

. . 2 . 2 32
. 2ibg B 4iabz B1b ab 2iaBbg B ab —4B7ab
74<7l>2+ ibg . 3B1batabs+ :3 3B1+abap 193, 0)
X e

and

” ; (91)
3.1.3. For Case-ll: Eq. (48)
Base on the Eqs. (60)-(61), the solution of Eq. (11) can be presented as
V (§) = Bitan (§) & Assec (§) + Ao, (92)
and
V (§) = —Bjcot (€) &+ Ajesc (£) + Ao, (93)
and so
V (w) = By sinh (w) + A; cosh (w) + Ag, (94)

whereA; # 0or By # 0.
Plugging (94) and its derivatives into Eq. (11), we can gain the following results by solving the nonlinear algebra system with
the help of symbolic computation package as:

Set I-1:

140:07 A1:0, BlzBl, kJZQBlH—%, /{,:%, LU:—W.

The periodic and singular periodic solutions for the Eq. (1) are shown as

% . bo 7b2(ab2+(¥l3)

gr1(z,t) = {Bl tan <2B1\/—bj {x + (a+ Qabﬂz)t}> } el(*?m B R tJrﬁ)7 (95)
H ([ by by(abytaB)

qr2(z,t) = {Bl cot (231\/ —%3 [Jc + (a+ 2ab;)t]> } el(’?l’ 5z t+'9)’ (96)

and

Set I-2:

b b 2ibs B
Ay =1B,, A1 =0, B;=5B, k:2Bl\/_£7 KZ%,
a

4iab3Ble + abg + 27;Oéﬂb3B1 + Olbgﬂ — 4B%ab§
p? '

Therfore, we conclude the following periodic and singular periodic solutions for the Eq. (1) respectively:

1
[ b by + 2ibs B :
gs1(z,t) = {iBl + Bj tan (231 —;3 {aj + (a+ 2a2+531)t]> }

. bo+2iby B 4iabg Bbo+ab24+2iaBbyBl+abyB—4B2abl
Z(_2+:3 1o 3851062 2 3B1 2 1995419

B

x e : : , (97)
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and

1

[ b by + 2ib3 B ’
gs2(x,t) = {i31 + Bj cot (231 3 {:c + (a+ 2a2+/8m)t}> }
a
i _bat2ibzBy diabg B1bo+ab3+2iafbg By +abyf—4B3ab3
Lo 5 ) 98)
Set |-3:

A():O, A1:A1, B1:0, k:2A1\/—b£, KJ:%, w:—w.
a

The periodic and singular periodic solutions for the Eq. (1) are presented as

[ 1 B ([ by by(abptapB)

go1(z,t) = {—Al sec <2A1\/ —%3 x+ (a+ Qa%)t ) } el(’?f B R t+0) ) (99)
[ ] 5 (_ by by(abgtap)

go2(z,t) = {A1 csce <2AH / —%3 z+ (a+ Qa%)t ) } el(_ﬁw 572 t+9> ) (100)

1 b3 by + V203 A,
Ag=—=A1, A=Ay, B1 =0, k=2A/—-—, K= ——
0= 5 1 1 1 RV 3

_ 2\/5(1[)31411)2 + ab% —+ ﬁaﬂbgAl —+ Oébgﬂ —+ QA%abg
B '

The periodic and singular periodic solutions for the Eq. (1) are shown as
ab2 +V/2b3 A4

A; — Aj sec <2A1\/ —b—3
a B

i<7 b2+\/3b3A1 o 2v/2ab3 A1by+ab3+v2aBbg Aq+absB+24%abd t+9>
e

and

Set I-4:

4+ (a+2 )t

]

qi0,1(x,t) = {

Sl

X o , (101)
and
1 bs by + \/§b3A1 :
x,t) = ¢ —=A; — Arcsc | 2414/ —— |z + (o + 2a——F——)1
Q10,2( ) {\@ 1 1 ( 1 a ( 3 )
i —b2tv3b3ay xi2\/§ab3A1b2+ab%+\/§aﬂb3A1+ab25+2A%ab§
L (5 G +0) (102)
Set I-5:

b b by (ab
Ay=0, A =+B,, B, =B, k:4BM/—;3, mzﬁ, w:—w.

Therefore, we conclude the following combined periodic-singular and singular periodic solutions for the Eq. (1) respectively:

qu(z,t) = {Bltan <2A1M[x+(a+2al§)t]>  sec <2A1M {m—i-(a—kzab;)t})}%

b by (abg+aB)
R t+9)

x gl amtregtet , (103)
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and
b3 b2 b3 b2 :
qu1,2(z,t) =< Bycot [ 2414/ —— |z + (a+2aﬁ)t Fese [ 244/ ——= x—l—(a—l—?ag)t
a a
x (e BE0) (104)
Set I-6:

2ibs B
Ag=1iBy, Ay ==+B1, B =By, k’=431\/—%37 ﬁz%,

74iab331l)2 + ab% + 2ia5b331 + abgﬂ - 4B%ab§
p? '

Thus, we deduce the following combined periodic-singular and singular periodic solutions for the Eq. (1) respectively:

/ 21b3 B
q11,1(ﬂc,t) = {ZAl + B tan <2A1 —% i:.i? + (Oé + 2ab2+5b31)t:|>
T By sec <2A1i/ _bs i:c + (a+ 2ab2+2’;b331)ti> }
a

. . 2 5; 2.2
. b 2iba B 4iabgz B1bo+ab5+4+2iaBbg B +abyB—4B7 ab?
1( 2+2ibg 1y 35102 2 351 2 1973 4 9)
X e

w =

, (105)
and
[ bs by + 2ibs B
Q1172($,t) = {’LAl + Bl cot <2A1 3 i:(E + (a + QGT’_Bm)t:i>
a
1
b bs + 2ib3 B 2
F By csc <2A1 -3 ix + (a+ 2a2+l31)ti> }
T B
i _b2+2ib331rL__4iab3}31b2+ab%+2ia5b3}31+ab26—4B%ab§

(e e o) (106)

4. Physical significance by graphical presenta-
tion of some of the obtained solutions lperiodic-singular wave solution (103). Graphical representa-
tions of the accomplished solutions are as follows Figs. (1-7):
In this portion of the paper, we seek to draw attention on the
physical conduct of some of the obtained solutions. We hav®emark 4.1
examined the nature of the solutions by assuming appropri-
ate values of involved unknown parameters and plotted thedeoroutan et al. [4] employed the generalizeds’/G-
solutions graphically. Resultant solutions for the Eq. (1)expansion method to obtain the solitary wave solutions of the
consist of kink, singular, dark, combined dark-bright, kink- NLSE with dual power law nonlinearity. On the other hand,
singular, and bell soliton solutions as well as periodic solu-2uthors of [5] have used improvedn(¢(¢)/2)-expansion
tions. Solitons are a unique kind of solitary wave having amethod with the aim of exploring new solutions of Eq. (1).
very important property of not |05ing its identity upon the in- The two methods mentioned above assume different forms
teraction with various other solitons. Particle-like structuresof solutions which contain functions gf These functions of
and extended structures such as magnetic monopoles, domairn exp(—(n)) satisfies an ODE with hyperbolic, trigono-
walls as well as cosmic strings, whose repercussions lie in th@€tric, and rational functions. On the other hand, the
cosmology of the early universe, are exhibited by soliton soODE used in improvedan(¢(§)/2)-expansion method and
lutions. The obtained solutions including the bright solitonthe generalized:’ /G-expansion method contain polynomial
(65), singular soliton (66), dark soliton (69), combined dark-functions and all the cases of solutions of the ODE have not

bright soliton (73), periodic wave solutions (95) and (99), andoeen explored in [4,5]. Some of the obtained complex expo-
nential solutions are in harmony with the already existing
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(@

(b)

5 10 15

FIGURE 1. Graph of (65) by taking31 = 1,a = 1,b2 = 0.5, b3 = —0.6, « = 2, 3 = 3,6 = 1 (a) 3D plot and (b)) 2D plot (redt(= 0.1),
blue ¢ = 0.5) and greeny = 1)).

[Ei g

-15 -10

FIGURE 2. Graph of (66) by takingB; = 1,a =1,b2 = 0.5,b3 = —0.6,« = 2,3 = 3,60 = 1 (a) 3D plot and (b)) 2D plot (red:(= 0.1),
blue ¢ = 0.5) and green{(= 1)).

(a) (b)

]

400000
300000+
200000-

100000

FIGURE 3. Graph of (69) by takingd; = 1,a =1,b2 = 0.5,b3 = —0.6,« = 2,3 = 3,6 = 1 (a) 3D plot and (b)) 2D plot (red{ = 0.1),
blue (t = 0.5) and green { = 1))

Rev. Mex. Fs. 65 (6) 658-677



ANALYTICAL TREATMENT IN OPTICAL METAMATERIALS WITH ANTI-CUBIC LAW OF NONLINEARITY BY... 675

(b

(a)

!

|

\
|

-12 -10

FIGURE 4. Graph of (73) by takingd; = 1,a = 1,b2 = 0.5, b3 = —0.6, « = 2, 3 = 3,6 = 1 (a) 3D plot and (b)) 2D plot (redt(= 0.1),
blue ¢ = 1.5) and greeny = 5)).

(@) (b)

it Blen” e — — — — —

-4 “Z 0 2 4

FIGURE 5. Graph of (95) by takingd; = 1,a = 1,b2 = 0.5, b3 = —0.6, « = 2, 3 = 3,6 = 1 (a) 3D plot and (b)) 2D plot (redt (= 0.1),
blue ¢ = 0.5) and greeny = 1)).
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FIGURE 6. Graph of (99) by takingd; = 1,a = 1,b2 = 0.5, b3 = —0.6, « = 2, 3 = 3,6 = 1 (a) 3D plot and (b)) 2D plot (redt(= 0.1),
blue ¢ = 0.5) and greeny = 1)).
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solutions [5]. The number of arbitrary constants in the sotions prevail in various fields namely; signal propagation in
lutions mentioned in [5] is less than those obtained in thisoptical fibers, wave propagation, IMD, SS as well as ND etc.
paper. The extra arbitrary parameters might have potentidt is worthy to note that several already published solutions of
applications in various fields of science which would makeoptical metamaterials, with anti-cubic nonlinearity, can be re-
our solutions better than the already published ones. Thusovered by taking appropriate values of the involved arbitrary
it can be stated that solutions obtained in this manuscript besonstants. Various explicit physical structures such as soli-

stow valuable supplements to the existing literature.

5. Conclusion

In this work, we have investigated the nonlinear Sclimger
equation with anti-cubic nonlinearity by employing the im-
proved exp(—£(n))-expansion method and extended sinh-

tary wave, kink, and bell-shaped wave solutions are graphi-
cally represented distinctly which reveal the competence and
high applicability of the obtained solutions. These solutions
may be helpful in validating several numerical schemes and
their accuracy.
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