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Here, the improvedexp(−Ω(η))-expansion method and extended sinh-Gordon equation expansion method are being applied on (1+2)-
dimensional non-linear Schrödinger equation (NLSE), optical metamaterials, with anti-cubic nonlinearity. Materials like photovoltaic-
photorefractive, polymer and organic consists of spatial solitons and optical nonlinearities, which can be identified by seeking help from
NLSE with anti-cubic nonlinearity. Abundant exact traveling wave solutions consisting of free parameters are established in terms of bright,
dark, singular, kink-singular, and combined dark-bright soliton solutions. Various arbitrary constants obtained in the solutions help us to
discuss the graphical behavior of solutions and also grants flexibility to formulate solutions that can be linked with a large variety of physical
phenomena. Moreover, graphical representation of solutions are shown vigorously in order to visualize the behavior of the solutions acquired
for the equation.
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1. Introduction

The nonlinear dynamics that describes the propagation of
pulses in optical metamaterials (MMs) is given by the non-
linear Schr̈odinger equation (NLSE). In the presence of
parabolic law nonlinearity, with an additional anti-cubic non-
linear term and perturbation terms that include inter-modal
dispersion (IMD), self-steepening (SS) as well as nonlinear
dispersion (ND), the governing equation reads [1–6]

iqt + aqxx +
(
b1|q|−4 + b2|q|2 + b3|q|4

)
q

= i
[
αqx + β

(|q|2q)
x

+ ν
(|q|2)

x
q
]

+ θ1

(|q|2q)
xx

+ θ2|q|2qxx + θ3q
2q∗xx. (1)

In Eq. (1), the unknown or the dependent variableq(x, t)
represents the wave profile, whilex and t are the spatial
and temporal variables respectively. The first and second
terms are the linear temporal evolution term and group ve-
locity dispersion (GVD), while the third term introduces the
anti-cubic nonlinear term, fourth and fifth terms account for
the parabolic law nonlinearity, and sixth, seventh and eighth
terms represent the IMD, SS, and ND respectively. Finally,
the last three terms withθk for k = 1, 2, 3 appear in the con-
text of metamaterials [7,8].

Metamaterials are basically artificially structured mate-
rials which are made from assemblies of multiple elements
fashioned from composite materials such as metals or plas-
tics. In just a few years, the field of optical metamaterials
has emerged as one of the most exciting topics in the sci-
ence of light, with stunning and unexpected outcomes that
have fascinated scientists and the general public alike. Its ap-
plications’ include superlenses, super-resolution devices, and
negative-indexed materials. Such applications necessitate the
presence of unnatural materials with properties that can fit
into these applications and others. The study of solitons in
optical metamaterials is trending as a hotspot in the field of
optical materials. There has been a significant amount of re-
sults that are reported in this field. However, there is still a
long way to go. There are many unanswered questions than
answers. This paper will quell the thirst partially. In the past,
solitons in optical metamaterials have been studied with var-
ious forms of non-Kerr laws of nonlinearity where several
integration schemes have been implemented [10-28]. The
interested reader also read herein references [29–45]. This
paper is going to revisit the study of solitons in optical meta-
materials for a specific form of nonlinear medium. This is
of anti-cubic (AC) type. There are three forms of integration
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algorithms that will be applied to extract soliton solutions to
metamaterials with AC nonlinearity. These schemes will re-
trieve bright, dark and singular soliton solutions that will be
very important in the study of optical materials. These soli-
tons will appear with constraint conditions that are otherwise
referred to as existence criteria of the soliton parameters. Af-
ter a quick introduction to the model, the integration tech-
niques will be applied and the details are enumerated in the
subsequent sections.

In order to solve Eq. (1), the starting hypothesis is [7,8]

q(x, t) = u(η(x, t)) exp(iφ(x, t)), (2)

where

η(x, t) = k(x− νt), (3)

and the phase componentφ is given by

φ(x, t) = −κx + ωt + θ, (4)

In Eqs. (2) and (3),u(x, t) represents the amplitude portion
of the soliton, andk andν are inverse width and velocity of
soliton. From (4),κ is the frequency of the soliton,ω is the
wave number of the soliton and finallyθ is the phase con-
stant. Inserting (2) into (1) and then decomposing into real
and imaginary parts yield a pair of relations. Imaginary part
gives

ν = −α− 2aκ, (5)

and

3β + 2ν − 2κ(3θ1 + θ2 − θ3) = 0, (6)

while real part leads to

ak2u′′ − (ω + aκ2 + ακ)u + b1u
−3

+ (b2 − βκ + κ2θ1 + κ2θ2 + κ2θ3)u3 + b3u
5

− (3k2θ1 + k2θ2 + k2θ3)u2u′′

− 6k2θ1u(u′)2 = 0. (7)

To acquire an analytic solution, the transformationsθ1 = 0
andθ2 = −θ3 are applied in Eq. (7), and gives

ak2u′′ − (ω + aκ2 + ακ)u + b1u
−3

+ (b2 − βκ)u3 + b3u
5 = 0, (8)

where

3β + 2ν + 4κθ3 = 0. (9)

In order to obtain closed-form solutions, we employ the trans-
formation given by

u = v
1
2 , (10)

that will reduce Eq. (8) into the ordinary differential equation
(ODE)

ak2(2vv′′ − v′2) + 4b1 − 4(ω + aκ2 + ακ)v2

+ 4(b2 − βκ)v3 + 4b3v
4 = 0. (11)

The generalized (G’/G)-expansion approach [29–31] will
now be applied, in the subsequent section, to Eq. (11) to re-
trieve bright, dark and singular soliton solutions to the NLSE
with AC nonlinearity (1). Biswas and coworkers investigated
the extended nonlinear Schrödinger equation [49], the non-
linear Schr̈odinger equation with parabolic law nonlinear-
ity [50], the perturbed nonlinear Schrödinger equation with
five different forms of nonlinearity [51], the Schrödinger-
Hirota equation in birefringent fiber [52], the Gerdjikov-
Ivanov equation [53], the complex Ginzburg-Landau equa-
tion [54] and obtained new exact solutions including different
forms of optical solitons. Also, authors of [55–57] studied the
nonlinear Schr̈odinger equation and obtained optical solitons
with help of the trial and extended trial equation methods. Fi-
nally, bright optical soliton solutions from resonant nonlinear
Schr̈odinger’s equation has been gained by the aid of semi-
inverse variational principle by Biswaset al. [58].

This paper is organized as follows: Sec. 2 presented a
brief discussion about the improvedexp(−Ω(η))-expansion
method and its application for solving the aforementioned
equation. Moreover, Sec. 3 and its sub-sections deal with the
applications of the extended sinh-Gordon equation expansion
method (EShGEEM) to look for new singular, kink-singular,
and combined dark-bright soliton solutions. Physical signifi-
cance by graphical presentation of some of the obtained solu-
tions is given in Sec. 4. Also, a conclusion is given in Sec. 5.

2. The improved exp(−Ω(η))-expansion
method

This section elucidates a systematic explanation of
exp(−Ω(η))-expansion method [59, 60] so that it can be
further applied to optical metamaterials with anti-cubic non-
linearity in order to furnish its exact solutions:

Step 1. The following nonlinear partial differential equa-
tion (NLPDE)

N (u, ux, ut, uxx, utt, ...) = 0, (12)

can be transformed into an (ODE)

Q(U,BU ′,−BvU ′, B2U ′′, B2v2U ′′, ...) = 0, (13)

by using the suitable transformationη = B(x − vt), where
B andv are the free parameters which would be calculated
subsequently.

Step 2. Assuming the solution of the ODE to be of the
form:

U(η) =

∑N
j=0 AjF

j(η)
∑M

j=0 BjF j(η)
, (14)
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whereF (η) = exp(−Ω(η)) andAj(0 ≤ j ≤ N), Bj(0 ≤
j ≤ M), are constants to be determined, such that
AN , BM 6= 0, and,Ω = Ω(η) satisfying the ODE given
below

Ω′ = µF−1(η) + F (η) + λ. (15)

The special cases formed from the solutions [61, 62] of the
ODE given in Eq. (15) are mentioned below:

Solution-1: If µ 6= 0 andλ2 − 4µ > 0, then we have

Ω(η) = ln
(
−

√
λ2 − 4µ

2µ

× tanh

(√
λ2 − 4µ

2
(η + E)

)
− λ

2µ

)
, (16)

whereE is integral constant.
Solution-2: If µ 6= 0 andλ2 − 4µ < 0, then we have

Ω(η) = ln
(√

−λ2 + 4µ

2µ

× tan

(√
−λ2 + 4µ

2
(η + E)

)
− λ

2µ

)
. (17)

Solution-3: If µ = 0, λ 6= 0, andλ2 − 4µ > 0, then we
get

Ω(η) = − ln
(

λ

exp(λ(η + E))− 1

)
. (18)

Solution-4: If µ 6= 0, λ 6= 0, andλ2 − 4µ = 0, then we
get

Ω(η) = ln
(
−2λ(η + E) + 4

λ2(η + E)

)
. (19)

Solution-5: If µ = 0, λ = 0, andλ2 − 4µ = 0, then we
get

Ω(η) = ln (η + E) , (20)

whereAj(0 ≤ j ≤ N), Bj(0 ≤ j ≤ M), λ andµ are also
the constants to be explored later. The valuesN andM are

determined by equalizing the maximum order nonlinear term
and the maximum order partial derivative term appearing in
(13). If N andM are the rational, then the appropriate trans-
formations can be applied to conquer these hurdles.

Step 3. Putting (14) into Eq. (13) as well as the values of
N andM determined in previous step into (14). Gathering
coefficients of all the powers ofF (η), then equating every co-
efficient with zero, we derive a set of over-determined nonlin-
ear algebraic equations forA0, B0, A1, B1, ..., AN , BM , λ,
andµ.

Here, it is important to note thatE is the integration con-
stant. We have the following relations as

v(η) ' δFN−M , (21)

v′(η) ' δFN−M−1F ′ = −δ(µFN−M−1

+ λFN−M + FN−M+1) ' −δFN−M+1, (22)

(v′(η))2 ' δ2F 2N−2M+2, (23)

(v(η))4 ' δ4F 4N−4M . (24)

whereδ = (AN/BM ). Balancingv′2 with v4 in Eq. (11)
yields

F 2N−2M+2 ' (v′(ξ))2 = (v(η))4 ' F 4N−4M . (25)

We can determine values ofN andM as follows:

2N − 2M + 2 = 4N − 4M ⇒ N = M + 1. (26)

Case I: N=2, M=1
The improvedexp(−φ)-expansion method (IEFM) al-

lows us to recruit the substitutions

v(η) =
A0 + A1F (η) + A2F

2(η)
B0 + B1F (η)

=
A2 + A1e

Ω + A0e
2Ω

B0e2Ω + B1eΩ
. (27)

Plugging (27) along with (15) into Eq. (11) and equating all
the coefficients of powers ofF (η) to be zero, one gains a sys-
tem of algebraic equations. Solving this system by the help
of Mapleyields

Set I:

A0 =
3b1B

4
1 + A2

1b3(A1 −A2λ)2

A2b3(A1 −A2λ)2
, A1 = A1, A2 = A2, B0 = B0, B1 = B1, k =

2A2

B1

√
− b3

3a
,

κ =
3b2B

2
1 + 8A1B1b3 − 8A2b3B0 − 4b3A2λB1

3B2
1β

, ω = − 1
9(A1 −A2λ)2B4

1β2
(Σ1 + Σ2 + Σ3 + Σ4 + Σ5),

Σ1 = −2λA1A2(64ab2
3B

2
0A2

2 + 9b2B
4
1(ab2 + αβ) + 6b3B

2
1(5A1B1 − 4A2B0)(αβ + 2ab2)

+ 24b3A
2
1B

2
1(4ab3 + β2)− 4A2b3A1B0B1(40ab3 + 9β2)),

Σ2 = b3A
4
2B

2
1λ4(16ab3 + 3β2),
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Σ3 = −4λ3A3
2B1b3(3B2

1(αβ + 2ab2)− 2A2B0(8ab3 + 3β2) + 6A1B1(4ab3 + β2)),

Σ4 = λ2A2
2(64ab2

3B
2
0A2

2 − 48A2ab3b2B0B
2
1 − 72A2b3β

2A1B0B1 − 256A2ab2
3A1B0B1 − 24A2αb3βB0B

2
1 + 9αβb2B

4
1

+ 48αb3βA1B − 13 + 9ab2
2B

4
1 + 96ab3b2A1B

3
1 + 208ab2

3A
2
1B

2
1 + 54b3β

2A2
1B

2
1),

Σ5 = A2
1(64ab2

3B
2
0A2

2 + 24b3B
2
1(A1B1 −A2B0)(αβ + 2ab2) + b3A

2
1B

2
1(64ab3 + 15β2)− 8A2b3A1B0B1(16ab3 + 3β2)

+ 9b2B
4
1(ab2 + αβ)),

µ =
3B5

1b1 + b3(A2λ−A1)2(4B0A
2
2λ− 4A1B0A2 + B1A

2
1)

4A2
2b3(A1 −A2λ)2B1

,

λ = λ, (28)

whereA1, A2, B0 andB1 are arbitrary constants. Imposing the solution set (28) into (27), the solution formula of Eq. (11) can
be concluded in the following cases:

Subcase IA:
By the help of (16), the exact solutions to the model are deducted as

q(η)=





A2−A1

(√
λ2−4µ

2µ tanh
(√

λ2−4µ

2 η̃

)
+ λ

2µ

)
+ 3b1B4

1+A2
1b3(A1−A2λ)2

A2b3(A1−A2λ)2

(√
λ2−4µ

2µ tanh
(√

λ2−4µ

2 η̃

)
+ λ

2µ

)2

B0

(√
λ2−4µ

2µ tanh
(√

λ2−4µ

2 η̃

)
+ λ

2µ

)2

−B1

(√
λ2−4µ

2µ tanh
(√

λ2−4µ

2 η̃

)
+ λ

2µ

)





1
2

× e
i

(
− 3b2B2

1+8A1B1b3−8A2b3B0−4b3A2λB1
3B2

1β
x− 1

9(A1−A2λ)2B4
1β2 (Σ1+Σ2+Σ3+Σ4+Σ5)t+θ

)

(29)

where

η̃ =
2A2

B1

√
− b3

3a

(
x +

(
α + 2a

3b2B
2
1 + 8A1B1b3 − 8A2b3B0 − 4b3A2λB1

3B2
1β

)
t

)
+ E.

It should be noted that these solitons exist for

λ2 − 4µ = λ2 − 3B5
1b1 + b3(A2λ−A1)2(4B0A

2
2λ− 4A1B0A2 + B1A

2
1)

A2
2b3(A1 −A2λ)2B1

> 0.

Subcase IB:
By the help of (17), the exact solutions to the model are deducted as

q(η) =





A2 + A1

(√
λ2−4µ

2µ tan
(√

4µ−λ2

2 η̃

)
− λ

2µ

)
+ 3b1B4

1+A2
1b3(A1−A2λ)2

A2b3(A1−A2λ)2

(√
λ2−4µ

2µ tan
(√

4µ−λ2

2 η̃

)
− λ

2µ

)2

B0

(√
4µ−λ2

2µ tan
(√

4µ−λ2

2 η̃

)
− λ

2µ

)2

+ B1

(√
4µ−λ2

2µ tan
(√

4µ−λ2

2 η̃

)
− λ

2µ

)





1
2

× e
i

(
− 3b2B2

1+8A1B1b3−8A2b3B0−4b3A2λB1
3B2

1β
x− 1

9(A1−A2λ)2B4
1β2 (Σ1+Σ2+Σ3+Σ4+Σ5)t+θ

)

(30)

where

η̃ =
2A2

B1

√
− b3

3a

(
x +

(
α + 2a

3b2B
2
1 + 8A1B1b3 − 8A2b3B0 − 4b3A2λB1

3B2
1β

)
t

)
+ E.

It should be noted that these solitons exist for

λ2 − 4µ = λ2 − 3B5
1b1 + b3(A2λ−A1)2(4B0A

2
2λ− 4A1B0A2 + B1A

2
1)

A2
2b3(A1 −A2λ)2B1

< 0.
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Subcase IC:
By the help of (18), the exact solutions to the model are obtained as

q(η)=





λ2A2+λA1 (exp(λ(η+E))−1)+ 3b1B4
1+A2

1b3(A1−A2λ)2

A2b3(A1−A2λ)2 (exp(λ(η+E))−1)2

B0 (exp(λ(η+E))−1)2 +λB1 (exp(λ(η+E))−1)





1
2

× e
i

(
− 3b2B2

1+8A1B1b3−8A2b3B0−4b3A2λB1
3B2

1β
x− 1

9(A1−A2λ)2B4
1β2 (Σ1+Σ2+Σ3+Σ4+Σ5)t+θ

)

(31)

where

η =
2A2

B1

√
− b3

3a

(
x +

(
α + 2a

3b2B
2
1 + 8A1B1b3 − 8A2b3B0 − 4b3A2λB1

3B2
1β

)
t

)
.

It should be emphasized that these solitons exist forλ 6= 0.
Subcase ID:
By the help of (19), the exact solutions to the model are gained as

q(η) =





A2 −A1

(
2λ(η+E)+4

λ2(η+E)

)
+ 3b1B4

1+A2
1b3(A1−A2λ)2

A2b3(A1−A2λ)2

(
2λ(η+E)+4

λ2(η+E)

)2

B0

(
− 2λ(η+E)+4

λ2(η+E)

)2

−B1

(
2λ(η+E)+4

λ2(η+E)

)





1
2

× e
i

(
− 3b2B2

1+8A1B1b3−8A2b3B0−4b3A2λB1
3B2

1β
x− 1

9(A1−A2λ)2B4
1β2 (Σ1+Σ2+Σ3+Σ4+Σ5)t+θ

)

(32)

where

η =
2A2

B1

√
− b3

3a

(
x +

(
α + 2a

3b2B
2
1 + 8A1B1b3 − 8A2b3B0 − 4b3A2λB1

3B2
1β

)
t

)
.

It should be noted that these solitons exist for

3B5
1b1 + b3(A2λ−A1)2(4B0A

2
2λ− 4A1B0A2 + B1A

2
1 − λ2A2

2B1) = 0.

Subcase IE:
By the help of (20), the exact solutions are obtained as

q(η) =





A2 + A1 (η + E) + 3b1B4
1+A4

1b3
A2b3A2

1
(η + E)2

B0 (η + E)2 + B1 (η + E)





1
2

e
i

(
− 3b2B2

1+8A1B1b3−8A2b3B0
3B2

1β
x− Σ5

9A2
1B4

1β2 t+θ

)

, (33)

where

η =
2A2

B1

√
− b3

3a

(
x +

(
α + 2a

3b2B
2
1 + 8A1B1b3 − 8A2b3B0

3B2
1β

)
t

)
.

It should be pointed out that these solitons exist for3B5
1b1 + b3A

3
1(B1A1 − 4B0A2) = 0.

Set II:

A0 =
B0(A1B1 −A2B0)

B2
1

, A1 = A1, A2 = A2, B0 = B0, B1 = B1, k =
2A2

B1

√
− b3

3a
,

κ =
3b2B

2
1 + 8A1B1b3 − 16A2b3B0

3B2
1β

,

ω = − 1
9B4

1β2
(Σ1 + 6β2Σ2),

Σ1 = 9B4
1b2(ab2 + βα) + 2A1B1b3(A1B1 − 4A2B0)(32ab3 + 9β2) + 2A2

2B
2
0b3(128ab3 + 33β2)

+ 24B2
1b3(A1B1 − 2A2B0)(2ab2 + βα),

Σ2 = B4
1

√
−3b3b1 ± (B2

1A2
1b3 − 4B1A2B0b3A1 + 3A2

2B
2
0b3),

µ =
1

B2
1A2

2b3

(
B4

1

√
−3b3b1 ± (B2

1A2
1b3 − 4B1A2B0b3A1 + 3A2

2B
2
0b3)

)
,

λ = λ, (34)
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whereA1, A2, B0 andB1 are arbitrary constants. Plugging the solution set (34) into (27), the solution formula of Eq. (11) can
be concluded in the following:

Subcase IIA:
By the help of (16), the exact solutions are in the following:

q(η) =





A2 −A1

(√
λ2−4µ

2µ tanh
(√

λ2−4µ

2 η̃

)
+ λ

2µ

)
+ B0(A1B1−A2B0)

B2
1

(√
λ2−4µ

2µ tanh
(√

λ2−4µ

2 η̃

)
+ λ

2µ

)2

B0

(√
λ2−4µ

2µ tanh
(√

λ2−4µ

2 η̃

)
+ λ

2µ

)2

−B1

(√
λ2−4µ

2µ tanh
(√

λ2−4µ

2 η̃

)
+ λ

2µ

)





1
2

× e
i

(
− 3b2B2

1+8A1B1b3−16A2b3B0
3B2

1β
x− 1

9B4
1β2 (Σ1+6β2Σ2)t+θ

)

(35)

where

η̃ =
2A2

B1

√
− b3

3a

(
x +

(
α + 2a

3b2B
2
1 + 8A1B1b3 − 16A2b3B0

3B2
1β

)
t

)
+ E.

It should be emphasized that these solitons exist for

λ2 − 4µ = λ2 − 4
B2

1A2
2b3

(
B4

1

√
−3b3b1 ± (B2

1A2
1b3 − 4B1A2B0b3A1 + 3A2

2B
2
0b3)

)
> 0.

Subcase IIB:
By the help of (17), the exact solutions are concluded in the form:

q(η) =





A2 + A1

(√
λ2−4µ

2µ tan
(√

4µ−λ2

2 η̃

)
− λ

2µ

)
+ B0(A1B1−A2B0)

B2
1

(√
λ2−4µ

2µ tan
(√

4µ−λ2

2 η̃

)
− λ

2µ

)2

B0

(√
4µ−λ2

2µ tan
(√

4µ−λ2

2 η̃

)
− λ

2µ

)2

+ B1

(√
4µ−λ2

2µ tan
(√

4µ−λ2

2 η̃

)
− λ

2µ

)





1
2

× e
i

(
− 3b2B2

1+8A1B1b3−16A2b3B0
3B2

1β
x− 1

9B4
1β2 (Σ1+6β2Σ2)t+θ

)

(36)

where

η̃ =
2A2

B1

√
− b3

3a

(
x +

(
α + 2a

3b2B
2
1 + 8A1B1b3 − 16A2b3B0

3B2
1β

)
t

)
+ E.

It should be noted that these solitons exist for

λ2 − 4µ = λ2 − 4
B2

1A2
2b3

(
B4

1

√
−3b3b1 ± (B2

1A2
1b3 − 4B1A2B0b3A1 + 3A2

2B
2
0b3)

)
< 0.

Subcase IIC:
By the help of (18), the exact solutions are given as

q(η) =





λ2A2 + λA1 (exp(λ(η + E))− 1) + B0(A1B1−A2B0)
B2

1
(exp(λ(η + E))− 1)2

B0 (exp(λ(η + E))− 1)2 + λB1 (exp(λ(η + E))− 1)





1
2

× e
i

(
− 3b2B2

1+8A1B1b3−16A2b3B0
3B2

1β
x− 1

9B4
1β2 (Σ1+6β2Σ2)t+θ

)

(37)

where

η =
2A2

B1

√
− b3

3a

(
x +

(
α + 2a

3b2B
2
1 + 8A1B1b3 − 16A2b3B0

3B2
1β

)
t

)
.

It should be pointed out that these solitons exist forλ 6= 0.
Subcase IID:
By the help of (19), the exact solutions are gained as

q(η) =





A2 −A1

(
2λ(η+E)+4

λ2(η+E)

)
+ B0(A1B1−A2B0)

B2
1

(
2λ(η+E)+4

λ2(η+E)

)2

B0

(
− 2λ(η+E)+4

λ2(η+E)

)2

−B1

(
2λ(η+E)+4

λ2(η+E)

)





1
2

e
i

(
− 3b2B2

1+8A1B1b3−16A2b3B0
3B2

1β
x− 1

9B4
1β2 (Σ1+6β2Σ2)t+θ

)

(38)
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where

η =
2A2

B1

√
− b3

3a

(
x +

(
α + 2a

3b2B
2
1 + 8A1B1b3 − 16A2b3B0

3B2
1β

)
t

)
.

It should be noted that these solitons exist for

B2
1A2

2b3λ
2 = 4

(
B4

1

√
−3b3b1 ± (B2

1A2
1b3 − 4B1A2B0b3A1 + 3A2

2B
2
0b3)

)
.

Subcase IIE:
By the help of (20), the exact solutions are concluded as

q(η) =





A2 + A1 (η + E) + B0(A1B1−A2B0)
B2

1
(η + E)2

B0 (η + E)2 + B1 (η + E)





1
2

e
i

(
− 3b2B2

1+8A1B1b3−16A2b3B0
3B2

1β
x− 1

9B4
1β2 (Σ1+6β2Σ2)t+θ

)

, (39)

where

η =
2A2

B1

√
− b3

3a

(
x +

(
α + 2a

3b2B
2
1 + 8A1B1b3 − 16A2b3B0

3B2
1β

)
t

)
.

It should be noted that these solitons exist for

B4
1

√
−3b3b1 = b3(B2

1A2
1 − 4B1A2B0A1 + 3A2

2B
2
0).

Set III :

A0 = A0, A1 = A1, A2 = A2, B0 =
1
2
λB1, B1 =

4
√
−27b3b3

1(A
4
1 − 8A2

1A0A2 + 16A2
0A

2
2)

3b1
,

κ =
24b3A0A1A2 + 3A0A2b2B1 − 8b3A

3
1 − 3b2B1A

2
1

3B1β(A0A2 −A2
1)

,

ω = − 1
9B2

1β2(A0A2 −A2
1)2

(Σ1 + Σ2),

Σ1 = 9B2
1b2(A0A2 −A2

1)
2(ab2 + βα) + 2b3A

2
1(−A2

1 + 3A0A2)2(32ab3 + 9β2)

+ 24B1b3A1(−A2
1 + 3A0A2)(A0A2 −A2

1)(2ab2 + βα), Σ2 = −24b3A
3
0β

2A3
2,

µ = − A2
0

A0A2 −A2
1

, λ = − 2A0A1

A0A2 −A2
1

, k =
2A2B1

4A0A2 −A2
1

√
b1

a
, ∆ = λ2 − 4µ =

4A3
0A2

(A0A2 −A2
1)2

, (40)

whereA0, A1 andA2 are arbitrary constants. Substituting the solution set (40) into (27), the solution formula of Eq. (11) can
be written in the following cases:

Subcase IIIA:
By the help of (16), the exact solutions can be stated as

q(η) =





A2 + A1

(√
A2
A0

tanh
(

A0
√

A0A2
A0A2−A2

1
η̃
)
− A1

A0

)
+ A0

(√
A2
A0

tanh
(

A0
√

A0A2
A0A2−A2

1
η̃
)
− A1

A0

)2

1
2λB1

(√
A2
A0

tanh
(

A0
√

A0A2
A0A2−A2

1
η̃
)
− A1

A0

)2

+ B1

(√
A2
A0

tanh
(

A0
√

A0A2
A0A2−A2

1
η̃
)
− A1

A0

)





1
2

× e
i

(
− 24b3A0A1A2+3A0A2b2B1−8b3A3

1−3b2B1A2
1

3B1β(A0A2−A2
1)

x− 1
9B2

1β2(A0A2−A2
1)2

(Σ1+Σ2)t+θ

)

(41)

where

η̃ =
2A2B1

4A0A2 −A2
1

√
b1

a

(
x +

(
α + 2a

24b3A0A1A2 + 3A0A2b2B1 − 8b3A
3
1 − 3b2B1A

2
1

3B1β(A0A2 −A2
1)

)
t

)
+ E,

andA0A2 > 0.
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Subcase IIIB:
By the help of (17), the exact solutions can be obtained as

q(η) =





A2 −A1

(√
A2
A0

tan
(

A0
√−A0A2

A0A2−A2
1

η̃
)

+ A1
A0

)
+ A0

(√
A2
A0

tan
(

A0
√−A0A2

A0A2−A2
1

η̃
)

+ A1
A0

)2

1
2λB1

(√
A2
A0

tan
(

A0
√−A0A2

A0A2−A2
1

η̃
)

+ A1
A0

)2

−B1

(√
A2
A0

tan
(

A0
√−A0A2

A0A2−A2
1

η̃
)

+ A1
A0

)





1
2

× e
i

(
− 24b3A0A1A2+3A0A2b2B1−8b3A3

1−3b2B1A2
1

3B1β(A0A2−A2
1)

x− 1
9B2

1β2(A0A2−A2
1)2

(Σ1+Σ2)t+θ

)

(42)

where

η̃ =
2A2B1

4A0A2 −A2
1

√
b1

a

(
x +

(
α + 2a

24b3A0A1A2 + 3A0A2b2B1 − 8b3A
3
1 − 3b2B1A

2
1

3B1β(A0A2 −A2
1)

)
t

)
+ E,

with A0A<0.
Subcase IIIC:
By the help of (20), the exact solutions to the model as follows:

q(η) =

{
A2 + A1 (η + E)

1
2λB1 (η + E)2 + B1 (η + E)

} 1
2

e
i

(
− 8b3A3

1+3b2B1A2
1

3B1βA2
1

x+ 1
9B2

1β2A4
1
(Σ1+Σ2)t+θ

)

, (43)

where

η =
−2A2B1

A2
1

√
b1

a

(
x +

(
α + 2a

8b3A
3
1 + 3b2B1A

2
1

3B1βA2
1

)
t

)
.

It should be pointed out that these solitons forA0 = 0.

3. Algorithm of the extended sinh-Gordon
equation expansion method

Take the sinh–Gordon equation as:

uxt = α sinh (u) , (44)

whereu=u(x, t) and α is a constant. By utilizing the re-
lations u(x, t) =U(ξ) and ξ = kx − ωt, then Eq. (44)
transforms to the following NODE:

U
′′

= − α

kω
sinh (U) . (45)

By using of the integrating process of Eq. (45) gets

[(
U

2

)′]2

= − α

kω
sinh2

(
U

2

)
+ p, (46)

wherep is an integration constant.

PuttingU2 = w(ξ), and−α/kω = q in Eq. (46), we
gain

w′ =
√

p + q sinh2 (w), (47)

by choosing the parametersp andq in Eq. (47) can be found
the further results of solutions [63–67]:

Case-I: Takep = 0 andq = 1, then Eq. (47) gets

w′ = sinh (w) . (48)

Simplifying Eq. (48), the following results are gained [63]:

sinh (w) = ±isech (ξ) , cosh (w) = −tanh (ξ) (49)

and

sinh (w) = ±csch (ξ) , cosh (w) = −coth (ξ) . (50)

where,i =
√−1 represent an imaginary number.

Case-II: Takep = 1 andq = 1, then Eq. (47) gets

w′ = cosh (w) . (51)

Again, simplifying Eq. (51), the following results are
achieved [63]:

sinh (w) = tan (ξ) , cosh (w) = ±sec (ξ) (52)

and

sinh (w) = −cot (ξ) , cosh (w) = ±csc (ξ) . (53)

We assume that the given nonlinear PDE

F (u, ut, ux, utt, uxx, uxt, . . . ) = 0, t > 0. (54)

In Eq. (54),u = u(x, t) is an unknown function,F is a poly-
nomial in u(x, t) and its various partial derivatives are in-
volved. Consider the following transformation:

u (x, t) = U (ξ) ξ = kx− ωt. (55)
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Implementing the transformation of (55) into Eq. (54), then
Eq. (54) converted to the following NODE

G(U, −ωU
′
, kU

′
, ω2U

′′
, k2U

′′
, ....) = 0, (56)

whereG is a polynomial ofU = U(ξ) and its derivatives
with respect toξ.

Suppose the exact solution be as

U (w) =
N∑

j=1

coshj−1 (w)

× [Bj sinh (w) + Aj cosh (w)] + A0. (57)

Base on the relations (48)-(50), then (57) can be written
in the following forms

U (ξ) =
N∑

j=1

(− tanh (ξ))j−1

× [±iBj sech (ξ)−Aj tanh (ξ)] + A0, (58)

and

U (ξ) =
N∑

j=1

(− coth (ξ))j−1

× [±Bjcsch (ξ)−Aj coth (ξ)] + A0. (59)

Similarly, base on the relations (51)-(53), then (57) can be
written in the following forms

U (ξ) =
N∑

j=1

(± sec (ξ))j−1

× [Bjtan (ξ)±Aj sec (ξ)] + A0, (60)

and

U (ξ) =
N∑

j=1

(± csc (ξ))j−1

× [−Bjcot (ξ)±Aj csc (ξ)] + A0, (61)

the value ofN can be determined by using the homogeneous
balance principle.

3.1. The EShGEEM

3.1.1. For Case-I: Eq. (48)

Base on the Eqs. (57)-(59), the solution of Eq. (11) can be
presented as

U (ξ) = ±iB1sech (ξ)−A1tanh (ξ) + A0, (62)

and

U (ξ) = ±B1csch (ξ)−A1coth (ξ) + A0, (63)

and so

U (w) = B1 sinh (w) + A1 cosh (w) + A0, (64)

whereA1 6= 0 or B1 6= 0.
Inserting (64) and its derivatives into Eq. (11), we can

obtain the following results by solving the nonlinear algebra
system with the help of symbolic computation package as:

Set I-1:

A0 = 0, A1 = 0, B1 = B1, k = 2B1

√
−b3

a
, κ =

b2

β
, ω = −b2(ab2 + αβ)

β2
.

The bright and singular soliton solutions for the Eq. (1) are achieved as

q1,1(x, t) =

{
−iB1sech

(
2B1

√
−b3

a

[
x + (α + 2a

b2

β
)t

])} 1
2

e
i
(
− b2

β x− b2(ab2+αβ)
β2 t+θ

)
, (65)

and

q1,2(x, t) =

{
−iB1csch

(
2B1

√
−b3

a

[
x + (α + 2a

b2

β
)t

])} 1
2

e
i
(
− b2

β x− b2(ab2+αβ)
β2 t+θ

)
. (66)

Set I-2:

A0 =
1√−2

B1, A1 = 0, B1 = B1, k = 2B1

√
−b3

a
, κ =

b2

β
+
√−2b3B1

β
,

ω = −4ab3B1b2 + ab2
2 + 2αβb3B1 + αb2β − 2B2

1ab2
3√−2β2
.
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The bright and singular soliton solutions for the Eq. (1) are presented as

q2,1(x, t) =

{
1√−2

B1 − iB1sech

(
2B1

√
−b3

a

[
x + (α + 2a

b2

β
+ 2a

√−2b3B1

β
)t

])} 1
2

× e
i

(
−(

b2
β +

√−2b3B1
β )x− 4ab3B1b2+ab22+2αβb3B1+αb2β−2B2

1ab23√−2β2 t+θ

)

, (67)

and

q2,2(x, t) =

{
1√−2

B1 − iB1csch

(
2B1

√
−b3

a

[
x + (α + 2a

b2

β
+ 2a

√−2b3B1

β
)t

])} 1
2

× e
i
(
−(

b2
β +

√−2b3B1
β )x−frac4ab3B1b2+ab22+2αβb3B1+αb2β−2B2

1ab23
√−2β2t+θ

)
. (68)

Set I-3:

A0 = 0, A1 = A1, B1 = 0, k = 2A1

√
−b3

a
, κ =

b2

β
, ω = −b2(ab2 + αβ)

β2
.

Therefore, we conclude the following dark and singular soliton solutions for the Eq. (1) respectively:

q3,1(x, t) =

{
−A1 tanh

(
2A1

√
−b3

a

[
x + (α + 2a

b2

β
)t

])} 1
2

e
i
(
− b2

β x− b2(ab2+αβ)
β2 t+θ

)
, (69)

and

q3,2(x, t) =

{
−A1 coth

(
2A1

√
−b3

a

[
x + (α + 2a

b2

β
)t

])} 1
2

e
i
(
− b2

β x− b2(ab2+αβ)
β2 t+θ

)
. (70)

Set I-4:

A0 = ±A1, A1 = A1, B1 = 0, k = 2A1

√
−b3

a
, κ =

b2 ± 2b3A1

β
,

ω = −4ab2
3A

2
1 ± 4ab3A1b2 + ab2

2 ± 2αβb3A1 + αb2β

β2
.

The dark and singular soliton solutions for the Eq. (1) are deduced as

q4,1(x, t) =

{
±A1 −A1 tanh

(
2A1

√
−b3

a

[
x + (α + 2a

b2 ± 2b3A1

β
)t

])} 1
2

× e
i

(
− b2±2b3A1

β x− 4ab23A2
1±4ab3A1b2+ab22±2αβb3A1+αb2β

β2 t+θ

)

, (71)

and

q4,2(x, t) =

{
±A1 −A1 coth

(
2A1

√
−b3

a

[
x + (α + 2a

b2 ± 2b3A1

β
)t

])} 1
2

× e
i

(
− b2±2b3A1

β x− 4ab23A2
1±4ab3A1b2+ab22±2αβb3A1+αb2β

β2 t+θ

)

. (72)

Set I-5:

A0 = 0, A1 = ±B1, B1 = B1, k = 4B1

√
−b3

a
, κ =

b2

β
, ω = −b2(ab2 + αβ)

β2
.
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The combined dark-bright and singular soliton solutions for the Eq. (1) are concluded as

q5,1(x, t) =

{
∓B1 tanh

(
4B1

√
−b3

a

[
x + (α + 2a

b2

β
)t

])
− iB1sech

(
4B1

√
−b3

a

[
x + (α + 2a

b2

β
)t

])} 1
2

× e
i
(
− b2

β x− b2(ab2+αβ)
β2 t+θ

)
, (73)

and

q5,2(x, t) =

{
∓B1 coth

(
4B1

√
−b3

a

[
x + (α + 2a

b2

β
)t

])
− iB1csch

(
4B1

√
−b3

a

[
x + (α + 2a

b2

β
)t

])} 1
2

× e
i
(
− b2

β x− b2(ab2+αβ)
β2 t+θ

)
. (74)

Set I-6:

A0 = ±B1, A1 = ±B1, B1 = B1, k = 4B1

√
−b3

a
, κ =

b2 ± 2b3B1

β
,

ω = −αb2β ± 2αβb3B1 + ab2
2 ± 4ab2b3B1 + 4B2

1ab2
3

β2
.

Thus, we deduce the following combined dark-bright and singular soliton solutions for the Eq. (1) respectively:

q6,1(x, t) =
{
±B1 ∓B1 tanh

(
4B1

√
−b3

a

[
x + (α + 2a

b2 ± 2b3B1

β
)t

])

− iB1sech

(
4B1

√
−b3

a

[
x + (α + 2a

b2 ± 2b3B1

β
)t

])} 1
2

× ei(− b2±2b3B1
β x−αb2β±2αβb3B1+ab22±4ab2b3B1+4B2

1ab23β2t+θ), (75)

and

q6,2(x, t) =
{
±B1 ∓B1 coth

(
4B1

√
−b3

a

[
x + (α + 2a

b2 ± 2b3B1

β
)t

])

− iB1csch

(
4B1

√
−b3

a

[
x + (α + 2a

b2 ± 2b3B1

β
)t

]) } 1
2

× ei(− b2±2b3B1
β x−αb2β±2αβb3B1+ab22±4ab2b3B1+4B2

1ab23β2t+θ). (76)

3.1.2. For Case-II: Eq. (48)

Base on the Eqs. (60)-(61), the solution of Eq. (11) can be presented as

V (ξ) = B1tan (ξ)±A1sec (ξ) + A0, (77)

and

V (ξ) = −B1cot (ξ)±A1csc (ξ) + A0, (78)

and so

V (w) = B1 sinh (w) + A1 cosh (w) + A0, (79)

whereA1 6= 0 or B1 6= 0.
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Plugging (94) and its derivatives into Eq. (11), we can gain the following results by solving the nonlinear algebra system
with the help of symbolic computation package as:

Set I-1:

A0 = 0, A1 = 0, B1 = B1, k = 2B1

√
−b3

a
, κ =

b2

β
, ω = −b2(ab2 + αβ)

β2
.

The periodic and singular periodic solutions for the Eq. (1) are shown as

q7,1(x, t) =

{
B1 tan

(
2B1

√
−b3

a

[
x + (α + 2a

b2

β
)t

])} 1
2

e
i
(
− b2

β x− b2(ab2+αβ)
β2 t+θ

)
, (80)

and

q7,2(x, t) =

{
B1 cot

(
2B1

√
−b3

a

[
x + (α + 2a

b2

β
)t

])} 1
2

e
i
(
− b2

β x− b2(ab2+αβ)
β2 t+θ

)
, (81)

Set I-2:

A0 = iB1, A1 = 0, B1 = B1, k = 2B1

√
−b3

a
, κ =

b2 + 2ib3B1

β
,

ω = −4iab3B1b2 + ab2
2 + 2iαβb3B1 + αb2β − 4B2

1ab2
3

β2
.

Therfore, we conclude the following periodic and singular periodic solutions for the Eq. (1) respectively:

q8,1(x, t) =

{
iB1 + B1 tan

(
2B1

√
−b3

a

[
x + (α + 2a

b2 + 2ib3B1

β
)t

])} 1
2

× e
i

(
− b2+2ib3B1

β x− 4iab3B1b2+ab22+2iαβb3B1+αb2β−4B2
1ab23

β2 t+θ

)

, (82)

and

q8,2(x, t) =

{
iB1 + B1 cot

(
2B1

√
−b3

a

[
x + (α + 2a

b2 + 2ib3B1

β
)t

])} 1
2

× e
i

(
− b2+2ib3B1

β x− 4iab3B1b2+ab22+2iαβb3B1+αb2β−4B2
1ab23

β2 t+θ

)

. (83)

Set I-3:

A0 = 0, A1 = A1, B1 = 0, k = 2A1

√
−b3

a
, κ =

b2

β
, ω = −b2(ab2 + αβ)

β2
.

The periodic and singular periodic solutions for the Eq. (1) are presented as

q9,1(x, t) =

{
−A1 sec

(
2A1

√
−b3

a

[
x + (α + 2a

b2

β
)t

])} 1
2

e
i
(
− b2

β x− b2(ab2+αβ)
β2 t+θ

)
, (84)

and

q9,2(x, t) =

{
−A1 csc

(
2A1

√
−b3

a

[
x + (α + 2a

b2

β
)t

])} 1
2

e
i
(
− b2

β x− b2(ab2+αβ)
β2 t+θ

)
. (85)

Set I-4:

A0 =
1√
2
A1, A1 = A1, B1 = 0, k = 2A1

√
−b3

a
, κ =

b2 +
√

2b3A1

β
,

ω = −2
√

2ab3A1b2 + ab2
2 +

√
2αβb3A1 + αb2β + 2A2

1ab2
3

β2
.
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The periodic and singular periodic solutions for the Eq. (1) are shown as

q10,1(x, t) =

{
1√
2
A1 −A1 sec

(
2A1

√
−b3

a

[
x + (α + 2a

b2 +
√

2b3A1

β
)t

])} 1
2

× e
i

(
− b2+

√
2b3A1
β x− 2

√
2ab3A1b2+ab22+

√
2αβb3A1+αb2β+2A2

1ab23
β2 t+θ

)

, (86)

and

q10,2(x, t) =

{
1√
2
A1 −A1 csc

(
2A1

√
−b3

a

[
x + (α + 2a

b2 +
√

2b3A1

β
)t

])} 1
2

× e
i

(
− b2+

√
2b3A1
β x− 2

√
2ab3A1b2+ab22+

√
2αβb3A1+αb2β+2A2

1ab23
β2 t+θ

)

. (87)

Set I-5:

A0 = 0, A1 = ±B1, B1 = B1, k = 4B1

√
−b3

a
, κ =

b2

β
, ω = −b2(ab2 + αβ)

β2
.

Therefore, we conclude the following combined periodic-singular and singular periodic solutions for the Eq. (1) respec-
tively:

q11,1(x, t) =

{
B1 tan

(
2A1

√
−b3

a

[
x + (α + 2a

b2

β
)t

])
∓ sec

(
2A1

√
−b3

a

[
x + (α + 2a

b2

β
)t

])} 1
2

× e
i
(
− b2

β x− b2(ab2+αβ)
β2 t+θ

)
, (88)

and

q11,2(x, t) =

{
B1 cot

(
2A1

√
−b3

a

[
x + (α + 2a

b2

β
)t

])
∓ csc

(
2A1

√
−b3

a

[
x + (α + 2a

b2

β
)t

])} 1
2

× e
i
(
− b2

β x− b2(ab2+αβ)
β2 t+θ

)
. (89)

Set I-6:

A0 = iB1, A1 = ±B1, B1 = B1, k = 4B1

√
−b3

a
, κ =

b2 + 2ib3B1

β
,

ω = −4iab3B1b2 + ab2
2 + 2iαβb3B1 + αb2β − 4B2

1ab2
3

β2
.

Thus, we deduce the following combined periodic-singular and singular periodic solutions for the Eq. (1) respectively:

q11,1(x, t) =
{

iA1 + B1 tan

(
2A1

√
−b3

a

[
x + (α + 2a

b2 + 2ib3B1

β
)t

])

∓B1 sec

(
2A1

√
−b3

a

[
x + (α + 2a

b2 + 2ib3B1

β
)t

])} 1
2

× e
i

(
− b2+2ib3B1

β x− 4iab3B1b2+ab22+2iαβb3B1+αb2β−4B2
1ab23

β2 t+θ

)

, (90)
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and

q11,2(x, t) =
{

iA1 + B1 cot

(
2A1

√
−b3

a

[
x + (α + 2a

b2 + 2ib3B1

β
)t

])

∓B1 csc

(
2A1

√
−b3

a

[
x + (α + 2a

b2 + 2ib3B1

β
)t

])} 1
2

× e
i

(
− b2+2ib3B1

β x− 4iab3B1b2+ab22+2iαβb3B1+αb2β−4B2
1ab23

β2 t+θ

)

, (91)

3.1.3. For Case-II: Eq. (48)

Base on the Eqs. (60)-(61), the solution of Eq. (11) can be presented as

V (ξ) = B1tan (ξ)±A1sec (ξ) + A0, (92)

and

V (ξ) = −B1cot (ξ)±A1csc (ξ) + A0, (93)

and so

V (w) = B1 sinh (w) + A1 cosh (w) + A0, (94)

whereA1 6= 0 or B1 6= 0.
Plugging (94) and its derivatives into Eq. (11), we can gain the following results by solving the nonlinear algebra system with
the help of symbolic computation package as:

Set I-1:

A0 = 0, A1 = 0, B1 = B1, k = 2B1

√
−b3

a
, κ =

b2

β
, ω = −b2(ab2 + αβ)

β2
.

The periodic and singular periodic solutions for the Eq. (1) are shown as

q7,1(x, t) =

{
B1 tan

(
2B1

√
−b3

a

[
x + (α + 2a

b2

β
)t

])} 1
2

e
i
(
− b2

β x− b2(ab2+αβ)
β2 t+θ

)
, (95)

and

q7,2(x, t) =

{
B1 cot

(
2B1

√
−b3

a

[
x + (α + 2a

b2

β
)t

])} 1
2

e
i
(
− b2

β x− b2(ab2+αβ)
β2 t+θ

)
, (96)

Set I-2:

A0 = iB1, A1 = 0, B1 = B1, k = 2B1

√
−b3

a
, κ =

b2 + 2ib3B1

β
,

ω = −4iab3B1b2 + ab2
2 + 2iαβb3B1 + αb2β − 4B2

1ab2
3

β2
.

Therfore, we conclude the following periodic and singular periodic solutions for the Eq. (1) respectively:

q8,1(x, t) =

{
iB1 + B1 tan

(
2B1

√
−b3

a

[
x + (α + 2a

b2 + 2ib3B1

β
)t

])} 1
2

× e
i

(
− b2+2ib3B1

β x− 4iab3B1b2+ab22+2iαβb3B1+αb2β−4B2
1ab23

β2 t+θ

)

, (97)
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and

q8,2(x, t) =

{
iB1 + B1 cot

(
2B1

√
−b3

a

[
x + (α + 2a

b2 + 2ib3B1

β
)t

])} 1
2

× e
i

(
− b2+2ib3B1

β x− 4iab3B1b2+ab22+2iαβb3B1+αb2β−4B2
1ab23

β2 t+θ

)

. (98)

Set I-3:

A0 = 0, A1 = A1, B1 = 0, k = 2A1

√
−b3

a
, κ =

b2

β
, ω = −b2(ab2 + αβ)

β2
.

The periodic and singular periodic solutions for the Eq. (1) are presented as

q9,1(x, t) =

{
−A1 sec

(
2A1

√
−b3

a

[
x + (α + 2a

b2

β
)t

])} 1
2

e
i
(
− b2

β x− b2(ab2+αβ)
β2 t+θ

)
, (99)

and

q9,2(x, t) =

{
−A1 csc

(
2A1

√
−b3

a

[
x + (α + 2a

b2

β
)t

])} 1
2

e
i
(
− b2

β x− b2(ab2+αβ)
β2 t+θ

)
. (100)

Set I-4:

A0 =
1√
2
A1, A1 = A1, B1 = 0, k = 2A1

√
−b3

a
, κ =

b2 +
√

2b3A1

β
,

ω = −2
√

2ab3A1b2 + ab2
2 +

√
2αβb3A1 + αb2β + 2A2

1ab2
3

β2
.

The periodic and singular periodic solutions for the Eq. (1) are shown as

q10,1(x, t) =

{
1√
2
A1 −A1 sec

(
2A1

√
−b3

a

[
x + (α + 2a

b2 +
√

2b3A1

β
)t

])} 1
2

× e
i

(
− b2+

√
2b3A1
β x− 2

√
2ab3A1b2+ab22+

√
2αβb3A1+αb2β+2A2

1ab23
β2 t+θ

)

, (101)

and

q10,2(x, t) =

{
1√
2
A1 −A1 csc

(
2A1

√
−b3

a

[
x + (α + 2a

b2 +
√

2b3A1

β
)t

])} 1
2

× e
i

(
− b2+

√
2b3A1
β x− 2

√
2ab3A1b2+ab22+

√
2αβb3A1+αb2β+2A2

1ab23
β2 t+θ

)

. (102)

Set I-5:

A0 = 0, A1 = ±B1, B1 = B1, k = 4B1

√
−b3

a
, κ =

b2

β
, ω = −b2(ab2 + αβ)

β2
.

Therefore, we conclude the following combined periodic-singular and singular periodic solutions for the Eq. (1) respectively:

q11,1(x, t) =

{
B1 tan

(
2A1

√
−b3

a

[
x + (α + 2a

b2

β
)t

])
∓ sec

(
2A1

√
−b3

a

[
x + (α + 2a

b2

β
)t

])} 1
2

× e
i
(
− b2

β x− b2(ab2+αβ)
β2 t+θ

)
, (103)
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and

q11,2(x, t) =

{
B1 cot

(
2A1

√
−b3

a

[
x + (α + 2a

b2

β
)t

])
∓ csc

(
2A1

√
−b3

a

[
x + (α + 2a

b2

β
)t

])} 1
2

× e
i
(
− b2

β x− b2(ab2+αβ)
β2 t+θ

)
. (104)

Set I-6:

A0 = iB1, A1 = ±B1, B1 = B1, k = 4B1

√
−b3

a
, κ =

b2 + 2ib3B1

β
,

ω = −4iab3B1b2 + ab2
2 + 2iαβb3B1 + αb2β − 4B2

1ab2
3

β2
.

Thus, we deduce the following combined periodic-singular and singular periodic solutions for the Eq. (1) respectively:

q11,1(x, t) =
{

iA1 + B1 tan

(
2A1

√
−b3

a

[
x + (α + 2a

b2 + 2ib3B1

β
)t

])

∓B1 sec

(
2A1

√
−b3

a

[
x + (α + 2a

b2 + 2ib3B1

β
)t

]) } 1
2

× e
i

(
− b2+2ib3B1

β x− 4iab3B1b2+ab22+2iαβb3B1+αb2β−4B2
1ab23

β2 t+θ

)

, (105)

and

q11,2(x, t) =
{

iA1 + B1 cot

(
2A1

√
−b3

a

[
x + (α + 2a

b2 + 2ib3B1

β
)t

])

∓B1 csc

(
2A1

√
−b3

a

[
x + (α + 2a

b2 + 2ib3B1

β
)t

])} 1
2

× e
i

(
− b2+2ib3B1

β x− 4iab3B1b2+ab22+2iαβb3B1+αb2β−4B2
1ab23

β2 t+θ

)

, (106)

4. Physical significance by graphical presenta-
tion of some of the obtained solutions

In this portion of the paper, we seek to draw attention on the
physical conduct of some of the obtained solutions. We have
examined the nature of the solutions by assuming appropri-
ate values of involved unknown parameters and plotted these
solutions graphically. Resultant solutions for the Eq. (1)
consist of kink, singular, dark, combined dark-bright, kink-
singular, and bell soliton solutions as well as periodic solu-
tions. Solitons are a unique kind of solitary wave having a
very important property of not losing its identity upon the in-
teraction with various other solitons. Particle-like structures
and extended structures such as magnetic monopoles, domain
walls as well as cosmic strings, whose repercussions lie in the
cosmology of the early universe, are exhibited by soliton so-
lutions. The obtained solutions including the bright soliton
(65), singular soliton (66), dark soliton (69), combined dark-
bright soliton (73), periodic wave solutions (95) and (99), and

periodic-singular wave solution (103). Graphical representa-
tions of the accomplished solutions are as follows Figs. (1-7):

Remark 4.1

Foroutan et al. [4] employed the generalizedG′/G-
expansion method to obtain the solitary wave solutions of the
NLSE with dual power law nonlinearity. On the other hand,
authors of [5] have used improvedtan(φ(ξ)/2)-expansion
method with the aim of exploring new solutions of Eq. (1).
The two methods mentioned above assume different forms
of solutions which contain functions ofξ. These functions of
η in exp(−Ω(η)) satisfies an ODE with hyperbolic, trigono-
metric, and rational functions. On the other hand, the
ODE used in improvedtan(φ(ξ)/2)-expansion method and
the generalizedG′/G-expansion method contain polynomial
functions and all the cases of solutions of the ODE have not
been explored in [4,5]. Some of the obtained complex expo-
nential solutions are in harmony with the already existing
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FIGURE 1. Graph of (65) by takingB1 = 1, a = 1, b2 = 0.5, b3 = −0.6, α = 2, β = 3, θ = 1 (a) 3D plot and (b)) 2D plot (red (t = 0.1),
blue (t = 0.5) and green (t = 1)).

FIGURE 2. Graph of (66) by takingB1 = 1, a = 1, b2 = 0.5, b3 = −0.6, α = 2, β = 3, θ = 1 (a) 3D plot and (b)) 2D plot (red (t = 0.1),
blue (t = 0.5) and green (t = 1)).

FIGURE 3. Graph of (69) by takingA1 = 1, a = 1, b2 = 0.5, b3 = −0.6, α = 2, β = 3, θ = 1 (a) 3D plot and (b)) 2D plot (red (t = 0.1),
blue (t = 0.5) and green (t = 1))
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FIGURE 4. Graph of (73) by takingA1 = 1, a = 1, b2 = 0.5, b3 = −0.6, α = 2, β = 3, θ = 1 (a) 3D plot and (b)) 2D plot (red (t = 0.1),
blue (t = 1.5) and green (t = 5)).

FIGURE 5. Graph of (95) by takingA1 = 1, a = 1, b2 = 0.5, b3 = −0.6, α = 2, β = 3, θ = 1 (a) 3D plot and (b)) 2D plot (red (t = 0.1),
blue (t = 0.5) and green (t = 1)).

FIGURE 6. Graph of (99) by takingA1 = 1, a = 1, b2 = 0.5, b3 = −0.6, α = 2, β = 3, θ = 1 (a) 3D plot and (b)) 2D plot (red (t = 0.1),
blue (t = 0.5) and green (t = 1)).
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FIGURE 7. Graph of (103) by takingB1 = 1, a = 1, b2 = 0.5, b3 = −0.6, α = 2, β = 3, θ = 2 (a) 3D plot and (b)) 2D plot (red (t = 0.1),
blue (t = 0.5) and green (t = 1)).

solutions [5]. The number of arbitrary constants in the so-
lutions mentioned in [5] is less than those obtained in this
paper. The extra arbitrary parameters might have potential
applications in various fields of science which would make
our solutions better than the already published ones. Thus,
it can be stated that solutions obtained in this manuscript be-
stow valuable supplements to the existing literature.

5. Conclusion

In this work, we have investigated the nonlinear Schrödinger
equation with anti-cubic nonlinearity by employing the im-
provedexp(−Ω(η))-expansion method and extended sinh-
Gordon equation expansion method. These methods have
been lately augmented in order to explore more and more
exact solutions for various NLPDEs. The richness of these
obtained solutions lies in the existence of abundant arbitrary
constants, having local structures, whose numerous applica-

tions prevail in various fields namely; signal propagation in
optical fibers, wave propagation, IMD, SS as well as ND etc.
It is worthy to note that several already published solutions of
optical metamaterials, with anti-cubic nonlinearity, can be re-
covered by taking appropriate values of the involved arbitrary
constants. Various explicit physical structures such as soli-
tary wave, kink, and bell-shaped wave solutions are graphi-
cally represented distinctly which reveal the competence and
high applicability of the obtained solutions. These solutions
may be helpful in validating several numerical schemes and
their accuracy.
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